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The input passivity and output passivity are investigated for a generalized complex dynamical
network, in which the coupling may be nonlinear, time-varying, and nonsymmetric. By
constructing some suitable Lyapunov functionals, some input and output passivity criteria are
derived in form of linear matrix inequalities (LMIs) for complex dynamical network. Finally, a
numerical example and its simulation are given to illustrate the efficiency of the derived results.

1. Introduction

In the past few decades, the passivity theory provides a nice tool for analyzing the stability
of systems and has found applications in diverse areas such as stability, complexity, signal
processing, chaos control and synchronization, and fuzzy control. Many interesting results
in linear and nonlinear systems have been derived (see [1–21]). Especially, the passivity of
neural networks [5, 7, 11–13, 21] and fuzzy systems [6, 10, 16, 19] have been extensively
investigated because of their great significance for both practical and theoretical purposes.

Recently, the complex networks have been gaining increasing recognition as a
fundamental tool in understanding dynamical behavior and the response of real systems
across many fields of science and engineering. In particular, synchronization is one of the
most significant and interesting dynamical properties of the complex networks which has
been carefully studied [22–46]. However, few authors have considered the problem on the
passivity of complex dynamical networks. Therefore, it is interesting to study the passivity of
complex dynamical networks.

It is well known that the power supply is an important role for stability analysis and
controller synthesis of linear or nonlinear systems. Based on the concept of power supply,
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the input passivity is introduced. For instance, Chang et al. [19] dealt with developing the
relaxed stability conditions for continuous-time affine Takagi-Sugeno (T-S) fuzzy models by
applying the input passivity and Lyapunov theory. However, to the best of our knowledge,
the intput passivity of complex dynamical networks with time-varying delays has not yet
been established in the literature. Therefore, it is interesting to study input passivity of
complex dynamical networks possessing general topology. As a natural extension of input
passivity, we also introduce the output passivity in order to study dynamical behavior of
complex networks much better.

It should be pointed out that many literatures on the dynamical behavior of complex
dynamical networks are considered under some simplified assumptions. For instance, the
coupling among the nodes of the complex networks is linear, time invariant, symmetric,
and so on. In fact, such simplification does not match the peculiarities of real networks in
many circumstances. Firstly, the interplay of two different nodes in a network cannot be
described accurately by linear functions of their states because they are naturally nonlinear
functions of states. Secondly, many real-world networks are more likely to have different
coupling strengths for different connections, and coupling strength are frequently varied
with time. Moreover, the coupling topology is likely directed and weighted in many real-
world networks such as the food web, metabolic networks, World-Wide Web, epidemic
networks, document citation networks, and so on. Hence, it is interesting to remove the
assumptions mentioned above in order to investigate the passivity of complex networks
much better. Additionally, it is well known that the phenomena of time delays are common
in complex networks, in which delays even are frequently varied with time. Therefore, It is
interesting to study such a complex dynamical network model with nonlinear, time-varying,
nonsymmetric, and delayed coupling.

Motived by the above discussion, we formulate a delayed dynamical network model
with general topology. The objective of this paper is to study the input and output passivity
of complex networks. Some sufficient conditions on input and output passivity are obtained
by LMI and Lyapunov functional method for complex dynamical networks.

The rest of this paper is organized as follows. In Section 2, a complex dynamical
network model is introduced and some useful preliminaries are presented. Some input and
output passivity conditions are presented in Section 3. In Section 4, a numerical example and
its simulation are given to illustrate the theoretical results. Finally, conclusions are drawn in
Section 5.

2. Network Model and Preliminaries

In this paper, we consider a dynamical network consisting of N identical nodes with diffusive
and delay coupling. The mathematical model of the coupled network can be described as
follows:

ẋi(t) = f(xi(t)) +
N∑

j=1

Gij(t)h
(
xj(t)

)
+

N∑

j=1

Ĝij(t)ĥ
(
xj
(
t − τj(t)

))
+ Bi(t)ui(t),

yi(t) = Ci(t)xi(t) +Di(t)ui(t),

(2.1)

where i = 1, 2, . . . ,N, f(·) is continuously differentiable function, xi(t) = (xi1(t),xi2(t),
. . .,xin(t))

T ∈ Rn is the state variable of node i, τil(t) is the time-varying delays with
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0 � τil(t) � τil � τ , l = 1, 2, . . . , n, yi(t) ∈ Rn is the output of node i, and ui(t) ∈ Rn is the input
vector of node i, Bi(t), Ci(t) and Di(t) are known matrices with appropriate dimensions,
h(xi(t))=[h1(xi(t)),h2(xi(t)),. . .,hn(xi(t))]

T and ĥ(xi(t − τi(t))) = [ĥ1(xi(t − τi1(t))),ĥ2(xi(t −
τi2(t))),. . .,ĥn(xi(t − τin(t)))]T are continuously functions that describe the coupling relations
between two nodes for nondelayed configuration and delayed one at time t, respectively,
G(t) = (Gij(t))N×N and Ĝ(t) = (Ĝij(t))N×N represent the topological structure of the complex
network and coupling strength between nodes for nondelayed configuration and delayed
one at time t, respectively, and the diagonal elements of G(t) and Ĝ(t) are defined as follows:

Gii(t) = −
N∑

j=1
j /= 1

Gij(t), Ĝii(t) = −
N∑

j=1
j /= 1

Ĝij(t), i = 1, 2, . . . ,N. (2.2)

One should note that, in this model, the individual couplings between two connected nodes
may be nonlinear, and the coupling configurations are not restricted to the symmetric
and irreducible connections or the nonnegative off-diagonal links. In [47], Yu and his
colleagues investigated a linearly hybrid coupled network with time-varying delay, in which
the coupling is linear, time invariant. In addition, the coupling relation and the coupling
configuration are not related to the current states and the delayed states. Hence, the complex
dynamical network discussed in this paper can describe the real-world networks much better.

In the following, we give several useful denotations, definitions, and lemmas.
Let Rn be the n-dimensional Euclidean space and Rn×m the space of n×m real matrices.

P � 0 (P � 0) means matrix P is symmetrical and semipositive (seminegative) definite.
P > 0 (P < 0) means that matrix P is symmetrical and positive (negative) definite. ‖ · ‖ is the
Euclidean norm. In denotes the n × n real identity matrix.

Definition 2.1 (see [3, 4, 19]). Network (2.1) is called input passive if there exist two constants
β and γ > 0 such that

2
∫ tp

0
yT (s)u(s)ds � −β2 + γ

∫ tp

0
uT (s)u(s)ds, (2.3)

for all tp � 0.

Definition 2.2. Network (2.1) is called output passive if there exist two constants β and γ > 0
such that

2
∫ tp

0
yT (s)u(s)ds � −β2 + γ

∫ tp

0
yT (s)y(s)ds, (2.4)

for all tp � 0.

Lemma 2.3 (see [32]). For any vectors x, y ∈ Rn and n × n square matrix P > 0, the following LMI
holds:

xTy + yTx � xTPx + yTP−1y. (2.5)
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3. Main Results

In order to obtain our main results, two useful assumptions are introduced.

(A1) There exist two constants L1 < 0, L2 > 0 such that

xT (t)f(x(t)) � L1x
T (t)x(t),

fT
(
y(t)

)
f
(
y(t)

)
� L2y

T (t)y(t)
(3.1)

hold for any t. Here x(t), y(t) ∈ Rn are time-varying vectors.

(A2) There exist two positive constants L3, L4 > 0 such that

‖h(x(t))‖ � L3‖x(t)‖,
∥∥∥ĥ

(
y(t)

)∥∥∥ � L4
∥∥y(t)

∥∥
(3.2)

hold for any t. Here x(t), y(t) ∈ Rn are time-varying vectors.

In the following, we first give some input passivity criteria.

Theorem 3.1. Let (A1) and (A2) hold, and τ̇il(t) � σ < 1. Suppose that there exist matrices P =
diag(P1, . . . , PN), Pi = diag(pi1, pi2, . . . , pin), pil > 0, and two positive constants ξ, γ > 0 such that

(
2L1 + aL2

4 + L
2
3

)
I +

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T

1 − σ +

(
B(t) − CT (t)

)(
BT (t) − C(t)

)

ξ

+ (G(t) ⊗ In)(G(t) ⊗ In)T � 0,

D(t) +DT (t) −
(
ξ + γ

)
I � 0,

(3.3)

where

a = max
{
pil, i = 1, 2, . . . ,N, l = 1, 2, . . . , n

}
, (3.4)

i = 1, 2, . . . ,N, l = 1, 2, . . . , n. I denotes theNn ×Nn real identity matrix. Then the network (2.1)
is input passive.

Proof. Firstly, we can rewrite network (2.1) in a compact form as follows:

ẋ(t) = F(x(t)) + (G(t) ⊗ In)H(x(t)) +
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t),
(3.5)
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where

x(t) =
[
xT1 (t), x

T
2 (t), . . . , x

T
N(t)

]T
, y(t) =

[
yT1 (t), y

T
2 (t), . . . , y

T
N(t)

]T
,

F(x(t)) =
[
fT (x1(t)), fT (x2(t)), . . . , fT (xN(t))

]T
,

B(t) = diag[B1(t), B2(t), . . . , BN(t)],

Ĥ
(
x(t − τ(t))

)
=
[
ĥT

(
x1(t − τ1(t))

)
, ĥT

(
x2(t − τ2(t))

)
, . . . , ĥT

(
xN(t − τN(t))

)]T
,

C(t) = diag[C1(t), C2(t), . . . , CN(t)], H(x(t)) =
[
hT (x1(t)), hT (x2(t)), . . . , hT (xN(t))

]T
,

D(t) = diag[D1(t), D2(t), . . . , DN(t)], u(t) =
[
uT1 (t), u

T
2 (t), . . . , u

T
N(t)

]T
.

(3.6)

In the following, construct Lyapunov functional for model (3.5) as follows:

V (x(t)) = xT (t)x(t) +
N∑

i=1

n∑

l=1

∫ t

t−τil(t)
pilĥ

2
l (xi(α))dα. (3.7)

The derivative of V (x(t)) satisfies

V̇ (x(t))

� 2xT (t)ẋ(t) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

= 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ 2xT (t)B(t)u(t) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
,

(3.8)

where Ĥ(x(t)) = (ĥT (x1(t)), ĥT (x2(t)), . . . , ĥT (xN(t)))T . Then we have

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)B(t)u(t)

+ 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
− (1 − σ)ĤT

(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

− 2xT (t)CT (t)u(t) − uT (t)
[
D(t) +DT (t)

]
u(t) + γuT (t)u(t).

(3.9)
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Applying Lemma 2.3, then we can easily obtain

2xT (t)(G(t) ⊗ In)H(x(t)) � HT (x(t))H(x(t)) + xT (t)(G(t) ⊗ In)(G(t) ⊗ In)Tx(t),

2xT (t)
[
B(t) − CT (t)

]
u(t) �

xT (t)
[
B(t) − CT (t)

][
BT (t) − C(t)

]
x(t)

ξ
+ ξuT (t)u(t),

2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
� (1 − σ)ĤT

(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

+
xT (t)

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T
x(t)

1 − σ .

(3.10)

Hence, we have

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) + xT (t)(G(t) ⊗ In)(G(t) ⊗ In)Tx(t)

+HT (x(t))H(x(t)) +
xT (t)

[
B(t) − CT (t)

][
BT (t) − C(t)

]
x(t)

ξ

+
xT (t)

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T
x(t)

1 − σ .

(3.11)

According to (A1) and (A2), we have

xT (t)F(x(t)) =
N∑

i=1

xTi (t)f(xi(t)) �
N∑

i=1

L1x
T
i (t)xi(t) = L1x

T (t)x(t),

HT (x(t))H(x(t)) =
N∑

i=1

hT (xi(t))h(xi(t)) �
N∑

i=1

L2
3x

T
i (t)xi(t) = L

2
3x

T (t)x(t),

ĤT (x(t))Ĥ(x(t)) =
N∑

i=1

ĥT (xi(t))ĥ(xi(t)) �
N∑

i=1

L2
4x

T
i (t)xi(t) = L

2
4x

T (t)x(t).

(3.12)

It follows from inequalities (3.12) that

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� xT (t)

⎡
⎢⎣
(

2L1 + aL2
4 + L

2
3

)
I +

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T

1 − σ

+

(
B(t) − CT (t)

)(
BT (t) − C(t)

)

ξ
+ (G(t) ⊗ In)(G(t) ⊗ In)T

⎤
⎥⎦x(t)

� 0.

(3.13)
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By integrating (3.13) with respect to t over the time period 0 to tp, we get

2
∫ tp

0
yT (s)u(s)ds � V

(
x
(
tp
))
− V (x(0)) + γ

∫ tp

0
uT (s)u(s)ds. (3.14)

From the definition of V (x(t)), we have V (x(tp) � 0. Thus,

2
∫ tp

0
yT (s)u(s)ds � −V (x(0)) + γ

∫ tp

0
uT (s)u(s)ds, (3.15)

for all tp � 0. The proof is completed.

Theorem 3.2. Let (A1) and (A2) hold, and τ̇il(t) � σ < 1. Assume that there exist two
matrices Z = diag(Z1, . . . , ZN), Zi = diag(zi1, zi2, . . . , zin), P = diag(P1, P2, . . . , PN), Pi =
diag(pi1, pi2, . . . , pin), zil, pil > 0, and two positive constants ξ, γ > 0 such that

2L1 + aL2
4 + ξ

(
1 + L2 + L2

3

)
� 0, (3.16)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 G(t) ⊗ In Ĝ(t) ⊗ In B(t) − CT (t)

0 M M(G(t) ⊗ In) M
(
Ĝ(t) ⊗ In

)
MB(t)

A AM AM(G(t) ⊗ In) AM
(
Ĝ(t) ⊗ In

)
AMB(t)

B BM BM(G(t) ⊗ In) BM
(
Ĝ(t) ⊗ In

)
BMB(t)

BT (t) − C(t) BT (t)M BT (t)M(G(t) ⊗ In) BT (t)M
(
Ĝ(t) ⊗ In

)
γI + BT (t)MB(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0,

(3.17)

where A denotes (G(t) ⊗ In)T and B denotes (Ĝ(t) ⊗ In)
T

D(t) +DT (t) − ξI � 0,

b(1 − σ) − ξ � 0,
(3.18)

where

a = max{Pil, i = 1, 2, . . . ,N, l = 1, 2, , . . . , n}, Mi = diag(τi1zi1, τi2zi2, . . . , τinzin),

b = min{Pil, i = 1, 2, . . . ,N, l = 1, 2, . . . , n}, M = diag(M1,M2, . . . ,MN),
(3.19)
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i = 1, 2, 3, . . . ,N, l = 1, 2, . . . , n. I denotes theNn×Nn real identity matrix. Then the network (2.1)
is input passive.

Proof. Firstly, construct the following Lyapunov functional for system (3.5):

V (x(t)) = xT (t)x(t) +
N∑

i=1

n∑

l=1

∫0

−τil(t)

∫ t

t+β
zilẋ

2
il(α)dαdβ +

N∑

i=1

n∑

l=1

∫ t

t−τil(t)
pilĥ

2
l (xi(α))dα. (3.20)

The derivative of V (x(t)) satisfies

V̇ (x(t))

� 2xT (t)ẋ(t) +
N∑

i=1

n∑

l=1

τ̇il(t)
∫ t

t−τil(t)
zilẋ

2
il(α)dα +

N∑

i=1

n∑

l=1

τil(t)zilẋ2
il(t) −

N∑

i=1

n∑

l=1

∫ t

t−τil(t)
zilẋ

2
il(α)dα

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

� 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ 2xT (t)B(t)u(t) +
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]T

×M
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
.

(3.21)

Then we can easily obtain

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t))

+ 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ 2xT (t)B(t)u(t)

+
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]T

×M
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

− 2xT (t)CT (t)u(t) − uT (t)
[
D(t) +DT (t)

]
u(t) + γuT (t)u(t).

(3.22)

Set

W(t) =
[
xT (t), FT (x(t)),HT (x(t)), ĤT

(
x(t − τ(t))

)
, uT (t)

]T
. (3.23)
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We have

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
+WT(t)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 G(t) ⊗ In Ĝ(t) ⊗ In B(t) − CT (t)

0 M M(G(t) ⊗ In) M
(
Ĝ(t) ⊗ In

)
MB(t)

A AM AM(G(t) ⊗ In) AM
(
Ĝ(t) ⊗ In

)
AMB(t)

B BM BM(G(t) ⊗ In) BM
(
Ĝ(t) ⊗ In

)
BMB(t)

BT (t) − C(t) BT (t)M BT (t)M(G(t) ⊗ In) BT (t)M
(
Ĝ(t) ⊗ In

)
γI + BT (t)MB(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×W(t) − uT (t)
[
D(t) +DT (t)

]
u(t).

(3.24)

According to LMI (3.17)-(3.18), we have

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

− uT (t)
[
D(t) +DT (t) − ξI

]
u(t)

+ ξxT (t)x(t) + ξFT (x(t))F(x(t)) + ξHT (x(t))H(x(t)) + ξĤT
(
x(t − τ(t))

)
Ĥ
(
x(t − τ(t))

)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) + ξxT (t)x(t) + ξFT (x(t))F(x(t)) + ξHT (x(t))H(x(t)).
(3.25)

Since (A1), we can easily obtain

FT (x(t))F(x(t)) =
N∑

i=1

fT (xi(t))f(xi(t)) �
N∑

i=1

L2x
T
i (t)xi(t) = L2x

T (t)x(t). (3.26)

It follows from inequalities (3.12) and (3.26) that

V̇ (x(t)) − 2yT (t)u(t) + γuT (t)u(t) � xT (t)
[
2L1 + aL2

4 + ξ
(

1 + L2 + L2
3

)]
x(t) � 0. (3.27)
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By integrating (3.27) with respect to t over the time period 0 to tp, we get

2
∫ tp

0
yT (s)u(s)ds � V

(
x
(
tp
))
− V (x(0)) + γ

∫ tp

0
uT (s)u(s)ds. (3.28)

From the definition of V (x(t)), we have V (x(tp) � 0. Thus,

2
∫ tp

0
yT (s)u(s)ds � −V (x(0)) + γ

∫ tp

0
uT (s)u(s)ds, (3.29)

for all tp � 0. The proof is completed.

In the above, two sufficient conditions are given to ensure the input passivity of
network (2.1). In the following, we discuss the output passivity of network (2.1).

Theorem 3.3. Let (A1) and (A2) hold, and τ̇il(t) � σ < 1. Suppose that there exist matrices P =
diag(P1, . . . , PN), Pi = diag(Pi1, Pi2, . . . , Pin), Pil > 0, and two positive constants ξ, γ > 0 such that

(
2L1 + aL2

4 + L
2
3

)
I + γCT (t)C(t) +

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T

1 − σ +
W(t)WT (t)

ξ

+ (G(t) ⊗ In)(G(t) ⊗ In)T � 0,

D(t) +DT (t) − γDT (t)D(t) − ξI � 0,

(3.30)

where

a = max{Pil, i = 1, 2, . . . ,N, l = 1, 2, . . . , n},

W(t) = B(t) − CT (t) + γCT (t)D(t),
(3.31)

i = 1, 2, . . . ,N, l = 1, 2, . . . , n.I denotes theNn×Nn real identity matrix. Then the network (2.1) is
output passive.

Proof. Firstly, we construct the same Lyapunov functional as (3.7) for system (3.5), then we
can obtain

V̇ (x(t)) � 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ 2xT (t)B(t)u(t) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
.

(3.32)
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Then we have

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ 2xT (t)B(t)u(t) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

− 2xT (t)CT (t)u(t) − uT (t)
[
D(t) +DT (t)

]
u(t) + γ[C(t)x(t) +D(t)u(t)]T

× [C(t)x(t) +D(t)u(t)]

= 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

+ 2xT (t)
[
B(t) − CT (t) + γCT (t)D(t)

]
u(t) + γxT (t)CT (t)C(t)x(t)

− uT (t)
[
D(t) +DT (t) − γDT (t)D(t)

]
u(t).

(3.33)

Applying Lemma 2.3, we have

2xT (t)(G(t) ⊗ In)H(x(t)) � HT (x(t))H(x(t)) + xT (t)(G(t) ⊗ In)(G(t) ⊗ In)Tx(t),

2xT (t)W(t)u(t) � xT (t)W(t)WT(t)x(t)
ξ

+ ξuT (t)u(t),

2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
� (1 − σ)ĤT

(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

+
xT (t)

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T
x(t)

1 − σ .

(3.34)

Hence, we can easily obtain

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� 2xT (t)F(x(t)) + xT (t)(G(t) ⊗ In)(G(t) ⊗ In)Tx(t)

+
xT (t)

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T
x(t)

1 − σ +
xT (t)W(t)WT (t)x(t)

ξ

+HT (x(t))H(x(t)) + ĤT (x(t))PĤ(x(t)) + γxT (t)CT (t)C(t)x(t).

(3.35)
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It follows from inequalities (3.12) that

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� xT (t)

⎡
⎢⎣
(

2L1 + aL2
4 + L

2
3

)
I + γCT (t)C(t) +

(
Ĝ(t) ⊗ In

)
P−1

(
Ĝ(t) ⊗ In

)T

1 − σ

+
W(t)WT (t)

ξ
+ (G(t) ⊗ In)(G(t) ⊗ In)T

⎤
⎥⎦x(t) � 0.

(3.36)

By integrating (3.36) with respect to t over the time period 0 to tp, we get

2
∫ tp

0
yT (s)u(s)ds � V

(
x
(
tp
))
− V (x(0)) + γ

∫ tp

0
yT (s)y(s)ds. (3.37)

From the definition of V (x(t)), we have V (x(tp)) � 0. Thus,

2
∫ tp

0
yT (s)u(s)ds � −V (x(0)) + γ

∫ tp

0
yT (s)y(s)ds, (3.38)

for all tp � 0. The proof is completed.

Theorem 3.4. Let (A1) and (A2) hold, and τ̇il(t) � σ < 1. Assume that there exist two
matrices Z = diag(Z1, . . . , ZN), Zi = diag(zi1, zi2, . . . , zin), P = diag(P1, P2, . . . , PN), Pi =
diag(pi1, pi2, . . . , pin), zil, pil > 0, and two positive constants ξ, γ > 0 such that

2L1 + aL2
4 + ξ

(
1 + L2 + L2

3

)
� 0, (3.39)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γCT (t)C(t) 0 G(t) ⊗ In Ĝ(t) ⊗ In W1(t)

0 M M(G(t) ⊗ In) MO MB(t)

A AM AM(G(t) ⊗ In) AM
(
Ĝ(t) ⊗ In

)
AMB(t)

B BM BM(G(t) ⊗ In) BM
(
Ĝ(t) ⊗ In

)
BMB(t)

WT
1 (t) BT (t)M BT (t)M(G(t) ⊗ In) BT (t)M

(
Ĝ(t) ⊗ In

)
W2(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0,

(3.40)
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D(t) +DT (t) − ξI � 0, (3.41)

b(1 − σ) − ξ � 0, (3.42)

where

a = max
{
pil, i = 1, 2, . . . ,N, l = 1, 2, . . . , n

}
, W1(t) = B(t) − CT (t) + γCT (t)D(t),

b = min
{
pil, i = 1, 2, · · · ,N, l = 1, 2, . . . , n

}
, W2(t) = γDT (t)D(t) + BT (t)MB(t),

Mi = diag(τi1zi1, τi2zi2, . . . , τinzin), M = diag(M1,M2, . . . ,MN),
(3.43)

i = 1, 2, 3, . . . ,N, l = 1, 2, . . . , n. I denotes the Nn × Nn real identity matrix. Then the network
(2.1) is output passive.

Proof. Similarly, we construct the same Lyapunov functional as (3.20) for system (3.5), then
we can obtain

V̇ (x(t))

� 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t)) + 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)

+ 2xT (t)B(t)u(t) +
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]T

×M
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
.

(3.44)

Then, we can easily obtain

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� 2xT (t)F(x(t)) + 2xT (t)(G(t) ⊗ In)H(x(t))

+ 2xT (t)
(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ 2xT (t)B(t)u(t)

+
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]T

×M
[
F(x(t)) + (G(t) ⊗ In)H(x(t)) +

(
Ĝ(t) ⊗ In

)
Ĥ
(
x(t − τ(t))

)
+ B(t)u(t)

]

+ ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)

− 2xT (t)CT (t)u(t) − uT (t)
[
D(t) +DT (t)

]
u(t)

+ γ[C(t)x(t) +D(t)u(t)]T [C(t)x(t) +D(t)u(t)].

(3.45)
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Set

W(t) =
[
xT (t), FT (x(t)),HT (x(t)), ĤT

(
x(t − τ(t))

)
, uT (t)

]T
. (3.46)

So, we have

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) − (1 − σ)ĤT
(
x(t − τ(t))

)
PĤ

(
x(t − τ(t))

)
+WT(t)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γCT (t)C(t) 0 G(t) ⊗ In Ĝ(t) ⊗ In W1(t)

0 M M(G(t) ⊗ In) M
(
Ĝ(t) ⊗ In

)
MB(t)

A AM AM(G(t) ⊗ In) AM
(
Ĝ(t) ⊗ In

)
AMB(t)

B BM BM(G(t) ⊗ In) BM
(
Ĝ(t) ⊗ In

)
BMB(t)

WT
1 (t) BT (t)M BT (t)M(G(t) ⊗ In) BT (t)M

(
Ĝ(t) ⊗ In

)
W2(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×W(t) − uT (t)
[
D(t) +DT (t)

]
u(t).

(3.47)

According to LMI (3.40), we have

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t)

� 2xT (t)F(x(t)) + ĤT (x(t))PĤ(x(t)) + ξxT (t)x(t)

+ ξFT (x(t))F(x(t)) + ξHT (x(t))H(x(t)).

(3.48)

It follows from inequalities (3.12) and (3.26) that

V̇ (x(t)) − 2yT (t)u(t) + γyT (t)y(t) � xT (t)
[
2L1 + aL2

4 + ξ
(

1 + L2 + L2
3

)]
x(t) � 0. (3.49)

By integrating (3.49) with respect to t over the time period 0 to tp, we get

2
∫ tp

0
yT (s)u(s)ds � V

(
x
(
tp
))
− V (x(0)) + γ

∫ tp

0
yT (s)y(s)ds. (3.50)

From the definition of V (x(t)), we have V (x(tp) � 0. Thus,

2
∫ tp

0
yT (s)u(s)ds � −V (x(0)) +

∫ tp

0
yT (s)y(s)ds, (3.51)

for all tp � 0. The proof is completed.
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Remark 3.5. The conditions in the above theorems do not restrict the coupling among the
nodes of the complex networks to be linear, time invariant, symmetric, and so on. Therefore,
our criteria are flexible and convenient.

4. Example

In this section, we give an example and its simulation to show the effectiveness of the above
obtained theoretical criteria.

Example 4.1. Consider the following dynamical network (2.1) with the system parameters:

G(t) =

⎡
⎢⎢⎣

−0.8 0.3 0.5

0.3 0.1 −0.4

0.4 0 −0.4

⎤
⎥⎥⎦,

Ĝ(t) =

⎡
⎢⎢⎣

−1 0.3 0.7

−0.3 0.3 0

0.2 0.8 −1

⎤
⎥⎥⎦,

Bi(t) = Ci(t) = Di(t) =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦,

h(xi(t)) =
[

sin(xi1(t))
5

,
sin(xi2(t))

6
,

sin(xi3(t))
7

]T
,

ĥ(xi(t)) =
[

sin(xi1(t))
5

,
sin(xi2(t))

7
,

sin(xi3(t))
8

]T
,

f(xi(t)) = [−4xi1(t),−5xi2(t),−6xi3(t)]T , xi(t) ∈ R3, i = 1, 2, 3.

(4.1)

It is obvious that we can take L1 = −4, L2 = 36, L3 = 1/5, and L4 = 1/5, and the coupling is
not restricted to linear, symmetric, and the nonnegative off-diagonal.

Firstly, we analyze the input passivity of network (2.1) with different time-varying
delays.

Set τil(t) = 1 − (1/(3 + i + l))e−t, then we have 0 � τil(t) ≤ τil = τ = 1, τ̇il(t) = (1/(3 + i +
l))e−t � 1/5 < 1, for t ≥ 0, i = 1, 2, 3, l = 1, 2, 3.

Using the MATLAB LMI Toolbox, we can find the following positive-definite matrix P
satisfying the LMI (3.3) with γ = 0.5, ξ = 1.4, and a = 1,

P = diag(1, 1, . . . , 1). (4.2)

According to Theorem 3.1, we know that network (2.1) with above given parameters is input
passive. Then, set ui(t) = [sin(πt/5), sin(πt/5), sin(πt/5)]T and the simulation results are
shown in Figure 1.
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Figure 1: Input passivity of network (2.1) with time-varying delays.
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Figure 2: Output passivity of network (2.1) with time-varying delays.

In the following, we analyze the output passivity of the network (2.1) with different
time-varying delays.

Set τil(t) = 4/((1 + l + i)t + 4), then we have 0 � τil(t) ≤ τil = τ = 1, τ̇il(t) = −4(1 + l +
i)/[(1 + l + i)t + 4]2 ≤ 0 < 1, for t ≥ 0, i = 1, 2, 3, l = 1, 2, 3.

Using the MATLAB LMI Toolbox, we can find the following positive-definite matrix P
satisfying the LMI (3.30) with γ = 1, ξ = 1, and a = 1,

P = diag(1, 1, . . . , 1). (4.3)

According to Theorem 3.3, we know that network (2.1) with above given parameters is
output passive. Then, set ui(t) = [sin(πt/5), sin(πt/5), sin(πt/5)]T , and the simulation
results are shown in Figure 2.
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5. Conclusion

We have studied the input and output passivity of complex dynamical networks. We not
only considered the case that the coupling strength and topology structure are frequently
varied with time, but also took into account the case that the coupling relation and the
coupling configuration are related to the current states and the delayed states. Some input
and output passivity criteria have been established in terms of linear matrix inequalities
(LMIs) for complex dynamical network by constructing appropriate Lyapunov functionals.
An illustrative example was presented to show the efficiency of the derived results.
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[28] W. Yu, J. Cao, and J. Lü, “Global synchronization of linearly hybrid coupled networks with time-
varying delay,” SIAM Journal on Applied Dynamical Systems, vol. 7, no. 1, pp. 108–133, 2008.

[29] J. Lu and J. Cao, “Synchronization-based approach for parameters identification in delayed chaotic
neural networks,” Physica A, vol. 382, no. 2, pp. 672–682, 2007.

[30] L. Wang, H.-P. Dai, H. Dong, Y.-H. Shen, and Y.-X. Sun, “Adaptive synchronization of weighted
complex dynamical networks with coupling time-varying delays,” Physics Letters A, vol. 372, no. 20,
pp. 3632–3639, 2008.

[31] S. Cai, J. Zhou, L. Xiang, and Z. Liu, “Robust impulsive synchronization of complex delayed
dynamical networks,” Physics Letters A, vol. 372, no. 30, pp. 4990–4995, 2008.

[32] J. Wu and L. Jiao, “Synchronization in complex dynamical networks with nonsymmetric coupling,”
Physica D, vol. 237, no. 19, pp. 2487–2498, 2008.

[33] K. Li and C. H. Lai, “Adaptive-impulsive synchronization of uncertain complex dynamical
networks,” Physics Letters A, vol. 372, no. 10, pp. 1601–1606, 2008.

[34] S. Wen, S. Chen, and C. Wang, “Global synchronization in complex networks consisted of systems
with the property of xk-leading asymptotic stability,” Physics Letters A, vol. 372, no. 17, pp. 3021–3026,
2008.
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