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A solution to the ranking and selection problem of determining a subset of size m containing
at least c of the v best from k normal distributions has been developed. The best distributions
are those having, for example, (i) the smallest means, or (ii) the smallest variances. This paper
reviews various applicable algorithms and supplies the operating constants needed to apply these
solutions. The constants are computed using a histogram approximation algorithm and Monte
Carlo integration.

1. Introduction

Discrete-event simulation has been widely used to compare alternative system designs or
operating policies. When evaluating k alternative system designs, we select one or more
systems as the best and control the probability that the selected systems really are the best.
This goal is achieved by using a class of ranking and selection (R&S) procedures in simulation
(see [1] for a detailed description). Chen [2, 3] considered a general version of this problem to
select a subset of size m containing at least c of the v best of k normally distributed systems
with the lth smallest θil (mean or variance), where θi1 ≤ θi2 ≤ · · · ≤ θik represent proposed
sampling solutions. Moreover, in practice, if the difference between θiv and θiv+1 is very small,
we might not care if we mistakenly choose system iv+1, whose expected response is θiv+1 .
The “practically significant” difference d∗ (a positive real number) between a desired and a
satisfactory system is called the indifference zone in the statistical literature, and it represents
the smallest difference about which we care.

If the absolute difference is θiv+1 − θiv < d∗ or the relative difference is θiv+1/θiv < d∗, we
say that the systems are in the indifference zone for correct selection. Note that the absolute
difference and the relative difference are two completely separate problems. On the other
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hand, if the absolute difference is θiv+1 − θiv ≥ d∗ or the relative difference is θiv+1/θiv ≥ d∗, we
say that the systems are in the preference zone for correct selection.

Let P ∗ denote the requiredminimal probability of correct selection. The goal is to make
a correct selection (CS)with probability at least P ∗, where

P ∗ ≥ P(c, v,m, k) =

(
k

m

)−1 min(m,v)∑
i=c

(
v

i

)(
k − v

m − i

)
. (1.1)

If P ∗ < P(c, v,m, k), the precision requirement is satisfied by choosing the subset at random.
The minimal correct selection probability P ∗ and the “indifference” amount d∗ are specified
by the user. If c = v = m = 1, the problem is to choose the best system. When m > c = v = 1,
we are interested in choosing a subset of size m that contains the best. If c = v = m > 1, we
are interested in choosing them best systems.

This paper proposes a new approach to estimate the operating constants needed to
apply the solutions in [2, 3]. We first review these procedures in Sections 2 and 3. We then
describe the histogram approximation algorithm of Chen and Kelton [4] and theMonte Carlo
integration technique used to compute tables of operating constants in Section 4. A brief
illustration demonstrating how to apply the tables is provided in Section 5.

2. Selection Problems with Respect to Means

Consider k independent normal distributions having means μi and variances σ2
i , i =

1, 2, . . . , k. It is assumed that μi and σ2
i are unknown. Selection procedures generally sample

certain observations from each alternative (at the initial stage) and select the systems having
the best sample means as the best systems. The question that arises is whether enough
observations have been sampled and if not, the number of additional observations that are
needed. Hence, at the second stage of the procedure, the required number of observations is
generally estimated based on the available sample variances and sample means.

Extending the work of Dudewicz and Dalal [5] and Mahamunulu [6], Chen [3]
proposed a two-stage solution when the parameter of interest θi is μi. Chen’s procedure is
as follows. Let Xij , i = 1, 2, . . . , k; j = 1, 2, . . . , ni be the jth observation from the ith population.

Randomly sample n0 observations from each of the k populations. Let X
(1)
i = (Σn0

j=1Xij)/n0

be the usual unbiased estimate of μi and let s2i (n0) = Σn0
j=1(Xij − X

(1)
i )/(n0 − 1) be the usual

unbiased estimate of σ2
i . Compute

ni = max

(
n0 + 1,

⌈(
hsi(n0)

d∗

)2
⌉)

, for i = 1, 2, . . . , k, (2.1)

where h is a constant to be described later and �z� denotes the integer ceiling (round-up)
of the real number z. Randomly sample an additional (ni − n0) observations from the ith
population.
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We then compute the second-stage sample means:

X
(2)
i =

1
ni − n0

ni∑
j=n0+1

Xij , for i = 1, 2, . . . , k. (2.2)

Define the weights

Wi1 =
n0

ni

⎡
⎣1 +

√√√√1 − ni

n0

(
1 − (ni − n0)(d∗)2

h2s2i (n0)

)⎤
⎦ (2.3)

and Wi2 = 1 −Wi1, for i = 1, 2, . . . , k. Compute the weighted sample means

X̃i = Wi1X
(1)
i +Wi2X

(2)
i , for i = 1, 2, . . . , k (2.4)

and select the m systems with the smallest X̃i values. Note that the expression for Wi1 was
chosen to guarantee that (X̃i−μi)/(d∗/h) has a t distribution with (n0−1) degrees of freedom
(d.f., see [5]).

The derivation is based on the fact that for i = 1, 2, . . . , k,

Ti =
X̃i − μi

d∗/h
(2.5)

has a t distribution with (n0 − 1) d.f., where h depends on k, m, v, c, n0, and P ∗. Note that
Ti’s are independent. Furthermore, correct selection occurs if and only if the cth smallest μil ’s
of systems il for l = 1, 2, . . . , v is less than the (m − c + 1)th smallest μil ’s of systems il for
l = v + 1, v + 2, . . . , k.

Let f and F, respectively, denote the probability density function (pdf) and the
cumulative distribution function (cdf) of the random variable Y . Hogg and Craig ([7], page
198) show that the pdf of the uth order statistic out of n observations of Y is

gn,u
(
y[u]
)
= β
(
F
(
y[u]
)
;u, n − u + 1

)
f
(
y[u]
)
, (2.6)

where β(x;a, b) = (Γ(a + b)/Γ(a)Γ(b))xa−1(1 − x)b−1 is the beta distribution with shape
parameters a and b. In our case, f and F are, respectively, the pdf and cdf of the t distribution
with (n0 −1) d.f. For selection problems with respect to means, the least favorable configuration
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(LFC) occurs when μi1 = μi2 = · · · = μiv and μiv + d∗ = μiv+1 = · · · = μik (Mahamunulu [6]).
Let X̃[c] be the cth smallest weighted sample mean from X̃il for l = 1, 2, . . . , v and μ[c] be its
unknown true mean. Let X̃[u] be the uth (u = m− c+ 1) smallest weighted sample mean from
X̃il for l = v + 1, v + 2, . . . , k and μ[u] be its unknown true mean. We can write the probability
of correct selection as

P(CS) = P
[
X̃[c] < X̃[u]

]

= P

[
X̃[c] − μ[c]

d∗/h
≤ X̃[u] − μ[u]

d∗/h
+
μ[u] − μ[c]

d∗/h

]

= P
[
T[c] ≤ T[u] +

μ[u] − μ[c]

d∗/h

]

≥ P
[
T[c] ≤ T[u] + h

]
.

(2.7)

The inequality follows because μ[u] − μ[c] ≥ μiv+1 − μiv ≥ d∗. Furthermore, if da(μ[u], μ[c]) =
μ[u] − μ[c] is used instead of d∗ in the above equations, we obtain strict equality.

Note that T[c] ∼ β(F(T[c]); c, v − c + 1)f(T[c]) and T[u] ∼ β(F(T[u]);m − c + 1, k − v −m +
c)f(T[u]).Here “∼” denotes “is distributed as.” Hence,

P(CS) ≥
∫∞

−∞

∫y+h

−∞
β(F(x); c, v − c + 1)f(x)β

(
F
(
y
)
;m − c + 1, k − v −m + c

)
f
(
y
)
dx dy. (2.8)

We equate the right-hand side to P ∗ to solve for h. The value of h is determined by P[T[c] ≤
T[u] + h] = P ∗. Let τ = T[c] − T[u]. Then P[τ ≤ h] = P ∗. That is, under the LFC, the value of h is
the P ∗ quantile of the distribution of τ .

For example, if we are interested in the probability of correctly selecting a subset of size
5 containing 3 of the first 3 best from 10 alternatives, then T[c] ∼ g3,3(t[c]) and T[u] ∼ g7,3(t[u]).
Furthermore, if the initial sample size is n0 = 20, then f and F are, respectively, the pdf and
cdf of the t-distribution with 19 d.f.

Letw[c][u] denote the one-tailed P ∗ confidence interval (c.i.) half-width of (μ[u] − μ[c]).
We conclude that the sample sizes allocated by (2.1) achieve w[c][u] ≤ d∗. That is, the
indifference amount d∗ in (2.1) corresponds to the upper bound of the desired c.i. half-width
w[c][u]. Hence, under the LFC μ[c] + d∗ = μ[u], the sample sizes allocated by (2.1) ensure that

P(CS) = P
[
X̃[c] < X̃[u]

]

= P
[
X̃[c] − X̃[u] − d∗ < μ[c] − μ[u]

]

≥ P
[
X̃[c] − X̃[u] −w[c][u] < μ[c] − μ[u]

]
= P ∗.

(2.9)
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The last equality follows from the definition of the c.i. Note that if w[c][u] > d∗, then P(CS) <
P ∗. It can be shown that

w[c,u] =
h√
2

√√√√s2[c](n0)

n[c]
+
s2[u](n0)

n[u]
. (2.10)

Koenig and Law [8] provide some h values for the case that c = v = 1 or c = v = m.
This paper supplies a table of the h values with selected c, v,m, and k; where c, v, andmmay
be different.

3. Selection Problems with Respect to Variances

Extending the work of Bechhofer and Sobel [9] and Mahamunulu [6], Chen [2] proposed a
single-stage solution when the parameter of interest θi is σ2

i . Chen’s procedure is as follows.
Let ni = n0 for i = 1, 2, . . . , k. Thus, we use the notation s2i instead of s2i (ni) in the rest of
this section. Randomly sample n0 observations from each of the k populations and compute

s2i = Σn0
j=1(Xij −X

(1)
i )/(n0 − 1). Select them systems with the smallest s2i .

For selection problems with respect to variances, the LFC occurs when σ2
i1

= σ2
i2

=
· · · = σ2

iv
and σ2

iv
d∗ = σ2

iv+1
= · · · = σ2

ik
(Mahamunulu [6]). The derivation is based on the fact

that (n0 − 1)s2i /σ
2
i has a χ2 distribution with (n0 − 1) d.f. Let s2[c] be the cth smallest sample

variance from s2il for l = 1, 2, . . . , v and σ2
[c] be its unknown true variance. Let s2[u] be the

uth (u = m − c + 1) smallest sample variance from s2il for l = v + 1, v + 2, . . . , k and σ2
[u] be its

unknown true variance. Then

P(CS) = P
[
s2[c] < s2[u]

]

= P

[
(n0 − 1)

s2[c]

σ2
[c]

≤ (n0 − 1)
s2[u]

σ2
[u]

σ2
[u]

σ2
[c]

]

= P

[
X[c] ≤ X[u]

σ2
[u]

σ2
[c]

]

≥ P
[
X[c] ≤ X[u]d

∗].

(3.1)

The third equality follows because X[c] = (n0 − 1)s2[c]/σ
2
[c], X[u] = (n0 − 1)s2[u]/σ

2
[u], and

1 < d∗ ≤
σ2
iv+1

σ2
iv

≤
σ2
[u]

σ2
[c]

. (3.2)

Furthermore, if dr(σ2
[u], σ

2
[c]) = σ2

[u]/σ
2
[c] is used instead of d∗ in the above equation, we obtain

strict equality. Note that under the LFC, dr(σ2
[u], σ

2
[c]) = d∗.
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Letω andΩ, respectively, denote the pdf and cdf of the χ2 distribution with (n0−1) d.f.
ThenX[c] ∼ β(Ω(X[c]); c, v−c+1)ω(X[c]) andX[u] ∼ β(Ω(X[u]);m−c+1, k−v−m+c)ω(X[u]).
Hence,

P(CS) ≥
∫∞

0

∫yd∗

0
β(Ω(x); c, v − c + 1)ω(x)β

(
Ω
(
y
)
;m − c + 1, k − v −m + c

)
ω
(
y
)
dxdy

=
v!

(c − 1)!(v − c)!
(k − v)!

(m − c)!(k − v −m + c − 1)!

×
∫∞

0

∫yd∗

0
[Ω(x)]c−1[1 −Ω(x)]v−cω(x)

[
Ω
(
y
)]m−c[1 −Ω

(
y
)]k−v−m+c−1

ω
(
y
)
dxdy.

(3.3)

We can compute P(CS) values under the LFC given k,m, v, c, d∗, and n0. Bechhofer and Sobel
[9] provide some P(CS) for the cases that k ≤ 4. We provide additional P(CS) values for some
selected parameters in Section 4.2.

Let γ = X[c]/X[u]. There exists some 0 ≤ p ≤ 1 such that P[γ ≤ d∗] = p. Hence, under the
LFC, the value of d∗ is the p quantile of the distribution of the random variable γ . For example,
if we are interested in the probability of correctly selecting a subset of size 5 containing all 3
of the first 3 best from 10 alternatives, then X[c] ∼ g3,3(x[c]) and X[u] ∼ g7,3(x[u]), with f and
F replaced by ω and Ω, respectively.

If users prefer to specify the indifference amount d∗ in the absolute form, da(θ, θ0) =
θ − θ0, instead of the relative form, dr(θ, θ0) = θ/θ0, when the parameter of interest is
a scale parameter, we can transform the absolute indifference amount into the relative
indifference, dr(θ, θ0) = 1 + da(θ, θ0)/θ0. Since θ0 is unknown, the estimator θ̂0 needs to
be used and dr(θ, θ0) ≈ 1 + d∗/θ̂0. Moreover, a conservative adjustment can be used.
Rank the sample variances such that s2

b1
< s2

b2
< · · · < s2

bv
< s2

bv+1
< · · · < s2

bk
. Let yq

be the q quantile of the χ2 distribution with (nbv − 1) d.f., where 0 < q < 1. We can
conservatively set dr(σ2

iv+1
, σ2

iv
) ≈ 1 + d∗yq/((nbv − 1)s2

bv
(nbv)) (see [2]). Conversely, if users

prefer to specify the indifference amount in the relative form instead of the absolute form
when the parameter of interest is the location parameter, we can set da(θ, θ0) ≈ (d∗ −
1)θ̂0.

4. Method of Computation

Analytical solutions to multidimensional integration problems in the previous section are
difficult to obtain. Below we show our approaches to find h and P(CS).

4.1. Computing the Value of h

Recall that under the LFC the value of h is the P ∗ quantile of the distribution of τ .
Consequently, we can use any quantile-estimation procedures to estimate the P ∗ quantile
of the variable τ given k, m, v, c, and n0. In this section, we briefly review quantile estimates
and the histogram-approximation procedure of Chen and Kelton [4].
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Let X1, X2, . . . , Xn be a sequence of i.i.d. (independent and identically distributed)
random variables from a continuous cdf F(x) with pdf f(x). Let xp (0 < p < 1) denote
the 100pth percentile or the p quantile, which has the property that F(xp) = Pr(X ≤ xp) = p.
Thus, xp = inf{x : F(x) ≥ p}. If Y1, Y2, . . . , Yn are the order statistics corresponding to the Xi’s
from n independent observations (i.e., Yi is the ith smallest of X1, X2, . . . , Xn), then a point
estimator for xp based on the order statistics is the sample p quantile:

x̂p = y�np�. (4.1)

Chen and Kelton [4] control the precision of quantile estimates by ensuring that the p
quantile estimator x̂p satisfies the following:

P
[
xp ∈ x̂p±ε

] ≥ 1 − α1, or equivalently P
[∣∣F(x̂p

) − p
∣∣ ≤ ε

] ≥ 1 − α1. (4.2)

Using this precision requirement (i.e., (4.2)), the required sample size np for a fixed-sample-
size procedure of estimating the p quantile of an i.i.d. sequence is the minimum np that
satisfies

np ≥
z21−α1/2

p
(
1 − p

)
ε2

, (4.3)

where z1−α1/2 is the (1−α1/2) quantile of the standard normal distribution, ε is the maximum
proportional half-width of the c.i., and (1 − α1) is the confidence level. For example, if the
data are independent and we would like to have 95% confidence that the coverage of the 0.9
quantile estimator has nomore than ε = 0.0005 deviation from the true but unknown quantile,
the required sample size is np ≥ 1382976 (=1.96020.9(1 − 0.9)/0.00052). Consequently, we are
97.5% confident that the quantile estimate will cover at least p − 0.0005 (for p ≥ 0.9), with a
sample size of 1382976.

The histogram-approximation procedure sets up a series of grid points based on
a pilot run. New samples are then stored in the corresponding grids according to their
observed value. A histogram is created at the end of the procedure when it has processed
the required sample size. The p quantile estimator is obtained by interpolating among grid
points. Interested readers can see [4] for the detailed steps of the histogram-approximation
procedure.

In the appendix, we show how to generate order statistics random variates without
storing and sorting the entire sequence. In order to use this algorithm, we need to be able
to perform an inverse transformation of the cdf of the random variable. Unfortunately,
the inverse transformation of the cdf of the t-distribution and (2.8) are not available.
Nevertheless, numerical methods are available to compute the inverse of the cdf of the t-
distribution; see [10]. Hence, the variates T[c] and T[u] can be generated efficiently without
sorting a series of t-distributed variables.

Table 1 shows the resulting h values for several chosen k, m, v, c, n0, and P ∗. Four
significant digits are retained. Negative values indicate that P ∗ can be achieved with a sample
size of (n0 + 1) and are set to 0.
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Table 1: Values of h for the subset selection procedure.

P ∗ = 0.90 P ∗ = 0.95
k m v c 15 20 25 30 15 20 25 30
7 3 1 1 1.715 1.693 1.680 1.672 2.166 2.132 2.112 2.099
7 3 2 1 0.710 0.704 0.701 0.699 1.069 1.060 1.054 1.051

2 2.495 2.454 2.431 2.416 2.939 2.880 2.846 2.825
7 3 3 1 0.072 0.072 0.071 0.071 0.413 0.410 0.408 0.407

2 1.511 1.495 1.486 1.480 1.865 1.843 1.830 1.822
3 3.495 3.414 3.368 3.339 3.998 3.887 3.825 3.786

8 3 1 1 1.853 1.830 1.817 1.808 2.305 2.268 2.247 2.234
8 3 2 1 0.889 0.882 0.878 0.875 1.243 1.232 1.225 1.221

2 2.630 2.586 2.561 2.545 3.070 3.007 2.972 2.949
8 3 3 1 0.329 0.326 0.324 0.323 0.657 0.652 0.648 0.646

2 1.686 1.667 1.656 1.649 2.037 2.011 1.996 1.987
3 3.621 3.533 3.484 3.453 4.122 4.004 3.939 3.897

9 3 1 1 1.968 1.943 1.929 1.920 2.417 2.380 2.358 2.344
9 3 2 1 1.027 1.019 1.013 1.010 1.375 1.362 1.355 1.350

2 2.740 2.694 2.668 2.651 3.180 3.115 3.078 3.055
9 3 3 1 0.508 0.504 0.501 0.500 0.828 0.821 0.816 0.814

2 1.818 1.796 1.784 1.776 2.163 2.133 2.116 2.106
3 3.723 3.630 3.579 3.546 4.221 4.096 4.028 3.984

10 4 1 1 1.740 1.719 1.707 1.699 2.181 2.146 2.126 2.114
10 4 2 1 0.796 0.790 0.787 0.784 1.135 1.126 1.120 1.117

2 2.388 2.350 2.329 2.315 2.810 2.754 2.723 2.703
10 4 3 1 0.270 0.268 0.267 0.266 0.578 0.574 0.571 0.570

2 1.453 1.439 1.431 1.426 1.770 1.751 1.741 1.733
3 2.977 2.920 2.889 2.869 3.3403 3.325 3.282 3.255

10 4 4 1 0 0 0 0 0.150 0.149 0.148 0.148
2 0.929 0.922 0.917 0.914 1.223 1.212 1.206 1.202
3 2.064 2.039 2.024 2.015 2.396 2.362 2.343 2.331
4 3.888 3.788 3.732 3.696 4.381 4.249 4.175 4.129

10 5 1 1 1.453 1.434 1.423 1.417 1.894 1.862 1.844 1.832
10 5 2 1 0.479 0.475 0.474 0.472 0.815 0.808 0.804 0.802

2 2.041 2.008 1.989 1.977 2.459 2.408 2.379 2.361
10 5 3 1 0 0 0 0 0.221 0.219 0.218 0.218

2 1.076 1.067 1.062 1.058 1.392 1.378 1.370 1.365
3 2.506 2.460 2.434 2.418 2.921 2.855 2.818 2.794

10 5 4 1 0 0 0 0 0 0 0 0
2 0.510 0.506 0.504 0.503 0.797 0.791 0.788 0.785
3 1.560 1.544 1.535 1.529 1.871 1.849 1.837 1.829
4 3.027 2.966 2.932 2.910 3.448 3.364 3.318 3.289

4.2. Computing the Probability of Correct Selection P(CS)

Monte Carlo integration can be used to approximately evaluate the integrals. Let hypercube
V be the integration volume and hypercube V ′ ⊆ V . Monte Carlo integration picks random
uniformly distributed points over some simple domain V , which contains V ′, checks whether
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each point is within V ′, and estimates the area of V ′ as the area of V multiplied by the fraction
of points falling within V ′. Suppose that we pick randomly distributed points X1, . . . , Xn in
d-dimensional volume V to determine the integral of a function f in this volume:

∫
fdV ≈ V

〈
f
〉 ± V

√〈
f2〉 − 〈f〉2

n
, (4.4)

where

〈
f
〉 ≡ 1

n

n∑
i=1

g(Xi),
〈
f2
〉

≡ 1
n

n∑
i=1

g2(Xi) (4.5)

(see Press et al. [11]). Note that V
√
(〈f2〉 − 〈f〉)/n is a one standard deviation error estimate

of the integral and g is a function to be specified depending on the problem at hand.
In our case V is the unit volume and g will be the indicator function of whether a

correct selection was made. Let ri be the index of the ith simulation and

I(ri) =

⎧⎨
⎩
1, correct selection was made in simulation ri,

0, otherwise.
(4.6)

If we perform n independent simulation replications and the observed P(CS) is p̂, then

〈
f
〉 ≡ 1

n

n∑
i=1

I(ri) =,
〈
f2
〉
≡ 1

n

n∑
i=1

I2(ri) = p̂. (4.7)

Let p denote the true P(CS)with given parameters, that is, p =
∫
fdV . Then

p ≈ p̂ ±
√

p̂ − p̂2

n
. (4.8)

Note that the number of times that the best design is selected from n simulation runs has
a binomial distribution B(n, p), where n ≥ 0 is the number of trials and 0 ≤ p ≤ 1 is the
success probability. Furthermore, when n is large, B(n, p) can be approximated by the normal
distribution N(np, np(1 − p))with mean np and variance np(1 − p) [7]. Consequently,

P

⎡
⎣p ≥ p̂ −

√
p̂ − p̂2

n

⎤
⎦ ≥ 0.84. (4.9)

If the target p = 0.9 and n = 1000000, then P[p ≥ p̂ − 0.0003] ≥ 0.84.
We perform simulation experiments to estimate the value of the integrals. Table 2

shows the resulting probability of correct selection (with four significant digits) for several
chosen k, m, v, c, and n0.
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Table 2: Values of P(CS)when n0 = 20.

d∗

k m v c 1.2 1.4 1.6 1.8 2.0 2.2
7 3 1 1 0.6251 0.7743 0.8725 0.9310 0.9638 0.9814
7 3 2 1 0.8732 0.9495 0.9809 0.9931 0.9976 0.9991

2 0.3090 0.4942 0.6562 0.7791 0.8630 0.9172
7 3 3 1 0.9650 0.9900 0.9971 0.9992 0.9997 0.9999

2 0.6110 0.7872 0.8924 0.9477 0.9755 0.9885
3 0.0933 0.2009 0.3336 0.4693 0.5910 0.6924

8 3 1 1 0.5698 0.7289 0.8399 0.9102 0.9510 0.9740
8 3 2 1 0.9134 0.9626 0.9849 0.9943 0.9978 0.9991

2 0.2515 0.4283 0.5955 0.7303 0.8275 0.8929
8 3 3 1 0.9376 0.9804 0.9941 0.9983 0.9995 0.9998

2 0.5221 0.7201 0.8501 0.9243 0.9630 0.9822
3 0.0656 0.1558 0.2773 0.4096 0.5346 0.6430

9 3 1 1 0.5250 0.6897 0.8107 0.8901 0.9389 0.9667
9 3 2 1 0.7844 0.9016 0.9587 0.9837 0.9938 0.9976

2 0.2105 0.3772 0.5451 0.6877 0.7950 0.8705
9 3 3 1 0.9088 0.9693 0.9903 0.9970 0.9991 0.9997

2 0.4518 0.6610 0.8102 0.9007 0.9498 0.9752
3 0.0491 0.1245 0.2347 0.3622 0.4876 0.6012

10 4 1 1 0.6014 0.7593 0.8651 0.9286 0.9636 0.9822
10 4 2 1 0.8497 0.9416 0.9792 0.9931 0.9977 0.9992

2 0.3052 0.5018 0.6748 0.8026 0.8862 0.9368
10 4 3 1 0.9481 0.9860 0.9965 0.9991 0.9997 0.9999

2 0.5944 0.7920 0.9051 0.9600 0.9839 0.9937
3 0.1180 0.2612 0.4318 0.5937 0.7253 0.8221

10 4 4 1 0.9841 0.9968 0.9994 0.9998 0.9999 0.9999
2 0.7943 0.9220 0.9733 0.9914 0.9972 0.9991
3 0.3131 0.5372 0.7225 0.8466 0.9195 0.9591
4 0.0265 0.0815 0.1744 0.2931 0.4197 0.5394

10 5 1 1 0.7003 0.8378 0.9187 0.9616 0.9825 0.9924
10 5 2 1 0.9182 0.9739 0.9925 0.9979 0.9994 0.9998

2 0.4401 0.6469 0.7989 0.8934 0.9464 0.9740
10 5 3 1 0.9806 0.9960 0.9992 0.9998 0.9999 0.9999

2 0.7553 0.9006 0.9642 0.9881 0.9962 0.9988
3 0.2370 0.4389 0.6299 0.7755 0.8711 0.9294

10 5 4 1 0.9963 0.9994 0.9999 0.9999 1.0000 1.0000
2 0.9136 0.9763 0.9941 0.9986 0.9996 0.9999
3 0.5328 0.7553 0.8874 0.9526 0.9812 0.9926
4 0.0986 0.2371 0.4108 0.5786 0.7157 0.8171

5. An Illustration

As a brief illustration of how to use Tables 1 and 2, consider 10 systems with θi being the
expected performance of the ith system, i = 1, 2, . . . , 10. It is desired to select 4 systems such
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that they include at least 2 of the 3 best systems, the systems that have the smallest θi’s.
Suppose that for each system the performance of n0 = 20 sampled observations is measured.

If the performance measure is the mean, the question that arises is whether enough
observations have been sampled and if not, the number of additional observations that are
needed. If the required minimum probability of correct selection is to be at least P ∗ = 0.95
when the difference between μi4 and μi3 is 0.5, then from Table 1, h = 1.748. Suppose that the
sample variance of system 1 is s21(n0) = 32. In this case, the required sample size of system 1
is n1 = max(20 + 1, �(1.748 × 3/0.5)2�) = 110.

If the performance measure is the variance, the question that arises is what the
probability guarantee with the chosen parameters will be. If the specified indifference amount
is 1.4, that is, the ratio between σ2

i4
and σ2

i3
is at least 1.4, then from Table 2 the probability

guarantee is approximately 0.79.
Since the binomial distribution B(n, p) can be approximated by the normal distribution

N(np, np(1 − p)), the algorithms discussed in the paper can also be applied when the
underlying processes have a binomial distribution, provided that users agree that the
approximation is acceptable. Furthermore, it is known that order statistics quantile estimates
are asymptotically normal [12]. Consequently, the algorithms are also applicable when the
parameter of interest is a quantile; see, for example, [13].

Appendix

Generating Order Statistics Random Variates

For completeness, we list the algorithms needed to generate order statistics random variates.

(i) Generate X ∼ γ(α, 1) (see [14]). The prespecified constants are a = 1/
√
2α − 1, b =

α − ln 4, q = α + 1/a, θ = 4.5, and d = 1 + ln θ. The steps are as follows.

(1) Generate U1 and U2 as independent and identically distributed U(0, 1).
(2) Let V = a ln[U1/(1 −U1)], Y = αeV , Z = U2

1U2, and W = b + qV − Y .
(3) IfW + d − θZ ≥ 0, return X = Y . Otherwise, proceed to step 4.
(4) IfW ≥ lnZ, return X = Y . Otherwise, go back to step 1.

(ii) Generate X ∼ beta(α1, α2) (see [15]).

(1) Generate Y1 ∼ gamma(α1, 1) and Y2 ∼ gamma(α2, 1) independent of Y1.
(2) Return X = Y1/(Y1 + Y2).

(iii) Let Yi be the ith order statistic from n random variables with cdf F. GenerateX ∼ Yi

(see [15]).

(1) Generate V ∼ beta(i, n − i + 1).
(2) Return X = F−1(V ).
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