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Abstract. It is known that a threshold policy (or trunk reservation policy) is optimal for Erlang’s
loss system under certain assumptions. In this paper we examine the robustness of this policy
under departures from the standard assumption of exponential service times (call holding times)
and give examples where the optimal policy has a generalized trunk reservation form.
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1. Introduction

We consider a single link loss network consisting of C circuits or servers, each able
to carry a single call or customer. Calls of type r E 7 {1,2,...,R} arrive
as independent Poisson processes at rate At. For ease of exposition, we shall often
consider 7 { 1, 2}, but the results we obtain are easily extended to larger numbers
of distinct call types. Calls that arrive when all C circuits are in use are lost or
blocked. We shall assume that call holding times are distributed as the sum of I
independent exponential random variables where the ith variable has mean 1/#.
Thus we can think of the service time for a customer as being the time it takes for
a Markov process to move from states 1 through to I and then to leave state I,
assuming that when the process leaves state it must move to i + 1, and that the
time it spends in state is exponentially distributed with mean 1/#. When this
process is in state i we say the customer is in the th service phase. The holding
time distribution we describe here is a special case of more general phase-type
distributions. Finally, we assume that all holding times and interarrival times are
independent of one another.
We are interested in the situation where a reward wr is received whenever a call of

type r is accepted. We assume without loss of generality that wl > w2 > > wR.
No reward is received or penalty paid for rejecting calls. Our aim is to maximize
the expected reward earned per unit time when the system is in equilibrium.
The case when holding times are exponentially distributed has been extensively

studied. It was first shown by Miller[21] that for each type r E 7, there exists a
parameter t, such that if the number currently in the system is less than C- t, it
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is optimal (in terms of maximising the revenue earned per unit time in equilibrium),
to accept type customers, _< r, and if the number in the system is greater than or
equal to C-t then type customers should be rejected for >_ r. Furthermore, for
the optimal policy, 0 = tl _< t2 _< _< tR. Such a policy is called a threshold policy
or, in the telecommunications literature, a trunk reservation policy. Lippman[19]
later gave a proof of this result using the technique of uniformization, which has
been much used since then.

It is known that trunk reservation need not be optimal in more general cases. It is
not in general optimal for any network consisting of more than a single link (Key[16]
gives a numerical example of this in the case of a network with just two links).
However, trunk reservation may be asymptotically optimal for networks with special
structure (see Hunt and Laws[9] and MacPhee and Ziedins[20]). Hunt and Laws[10]
have also shown that trunk reservation is asymptotically optimal for the single link
when the assumptions on holding times and capacity requirements are weakened
(although they still assume that holding times are exponentially distributed). The
single link has also been examined by Ziedins[33], who considered the form of the
optimal policy when interarrival times are distributed as a sum of exponentials.
She found that a generalized trunk reservation policy, closely related to that of the
examples given by us below, is optimal. Prior to that Nguyen[23] showed that a
generalized trunk reservation policy is optimal for overflow traffic. A generalized
trunk reservation policy is a threshold policy where the threshold may now depend
on more than just the number of customers in the system- the threshold may
vary with some other variable, such as, for instance, the number of calls in the
first phase of their service. Other authors who have studied trunk reservation
and threshold policies in telecommunication networks include Bean, Gibbens and
Zachary[l], Kelly[14], Key[17] and Reiman[25]. Admission controls to queueing
(rather than loss) systems, have been studied by, amongst others, Stidham[29],
Johansen and Stidham[12], and Hordijk and Spieksma[8]. For an excellent overview
of and introduction to the general area of loss networks see the review paper by
Kelly[15].
The use of general phase-type or Coxian distributions has a long history (see,

for instance, Cox[4]). The emphasis in most work has remained on single server
facilities. Langen[18] used hyper-Erlang distributions for arrivals to single server
queues and found optimal admission policies for GIIM]C queues with batch ad-
missions. Jo and Stidham[ll] found policies for the control of service rates in an

MIGI1 queue. In both cases results were first shown for phase-type distributions
and then extended to general distributions. Stidham and Weber [30] used a dif-
ferent approach and established results for service rate control based on first step
probabilities. However their method relies on passing through certain states and is
not easily extended to multiserver systems with multi-dimensional state spaces.
There is also a relationship between tandem queues with exponential servers and

single stations with phase service times, although most practical comparisons tend
to be artificial. Examples of results for such systems are Nishimura[24], Ghoneim[6]
and Ghoneim and Stidham[7]. The latter is particularly relevant as the structural
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properties of optimal policies for their model are almost identical to those we expect
to find here. They consider two queues in series, and maximize a benefit function
composed of rewards for entering customers minus holding costs for the two queues.
The optimal policies possess various monotonicity properties adding a customer
to either queue makes it less likely that a new customer is accepted into either queue
and moving a customer from the first queue to the second makes it more(less) likely
that a new customer is accepted into the first(second) queue.
In this paper we will study the form of the policy that maximizes the expected

return per unit time in equilibrium. We give examples showing that trunk reserva-
tion policies may do very nearly as well as the exactly optimal policy. It is known
that the equilibrium distribution for an MIGICIC queue is insensitive to the form
of the holding time distribution and depends on it only through its mean (see for
example Burman, Lehoczky and Lim[3]). We show that this insensitivity still holds
when simple trunk reservation controls (not of the generalized kind) are applied.
Section 2 outlines the Markov decision theory we will be using. In section 3

we discuss monotonicity properties and show that it is always optimal to accept
the more valuable type 1 calls. Section 4 compares the optimal policy with trunk
reservation and obtains an insensitivity result for the latter. We close with some
final remarks in section 5.

2. Markov decision theory

We note first that since all calls have the same holding time distribution, the call
types are indistinguishable from one another once they have entered the system.
Let x(t) (xl (t),... ,XN(:)) where xi(t) denotes the number of calls currently in
phase at time t. Then, since the arrivals are Poisson and phases are exponentially
distributed, (x(Q, >_ 0) is a continuous-time Markov process with state space

{x. < c, e {0}, < <
We now review briefly the theory of Markov and semi-Markov decision processes

as it applies to this problem. We follow the approach used in Tijms [31] and
consider average cost processes only. The other common criterion used is that of
discounted cost (for further details see Ross [26], [27], which also cover the average
cost approach described here).
Markov decision theory can be characterized by a discrete time Markov chain in

which decisions are made at the fixed epochs at which events may occur. We wish
to choose a policy, a E ,4, the action space, for making decisions that is optimal in
some way. If a is deterministic and does not vary with time then it is stationary.
It can be shown (see, for instance, Tijms [31], 3.1 or Derman [5]), that as we are
considering finite state spaces and any state is accessible from any other state we
need only consider stationary policies.
The model analysed here is a loss network and the possible decisions that can be

made are only whether to accept or reject an arriving call of type r. If we denote
acceptance of a call by 1 and rejection by 0 then a stationary policy is a function
ar S -+ {0, 1}, for each r 6 7.
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In order to apply the theory of discrete-time Markov decision processes to this
problem we use the uniformization technique first introduced by Lippman[19]. Let
arrivals and holding time or phase completions occur at the same rates as before
and introduce additional null transitions (events) which leave the system unchanged
and occur at rate -:l<i<i(C- xi)# when the process is in state x. Then the total
rate at which transitions occur is now

rET (i(I

whatever the state of the system. The underlying process is unchanged and a sta-
tionary optimal policy for the uniformized process is also optimal for the underlying
process. Instead of studying the continuous-time uniformized process we can con-
sider instead the discrete-time process with periods 1/A between jumps. In general
the reward structure has to be altered (Serfozo [28]) though we do not need to
do so here- and only stationary policies can be used (Beutler and Ross [2]).
Denote the long term average reward per unit time under policy a by g(a). Then

if we denote the expected gain over the first n epochs starting in state x under
policy a by Vn (x, a), g(a) can be defined by

y (x,a)
= (e)

So, if {(a)}xes is the stationary distribution of the network under policy a, then

We aim o mimise this return. This could be done by calculating the equilibrium
distribution under each policy in . However this is impractical due to the sie of
the sate space, S, and the number of policies,
Two methods are generally used to find the optimal 9. Boh require the introduc-

gion of relative values for each state under a given policy, which we shall denote by
V(x) (strictly V(x, a) but we shall take the dependence on a given policy as read).
Let e denote a vector of lenh I wih 1 as he ith elemeng and 0 for all oher
elements, and e+ 0. Then (ijms [1], Theorem .1.1, Ross [27], Proposition
2.g), if the w and are bounded, the average cos function, 9(a), and the relative
values, V(x), satisfy the following system of linear equations: for x S,

+ + + (1

i=1

Le x* be arbitrary sage. hen solving equations (4), combined with V(x*) 0,
gives a unique solution for 9(a) and the V(x)’s.
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The relative values are only determined up to a constant and so it is differences
between them that are important. The difference V(x) V(y) has a natural eco-
nomic interpretation as the price we are willing to pay to be in state x rather than
state y. Alternatively it is the difference in what we would expect to earn in the
future if the process started in state x rather than state y. Thus if we have Vn (x, a)
as in equation (2) and n large, V(x, a) ng() + V(x)h
One method for calculating the optimal value of g(a), g*, and finding the optimal

policy, is policy-iteration, which proceeds by fixing a policy and solving the Howard
equations (4). Using the values of V(x) given by this solution a new policy can
be found by maximising the Howard equations over all a E A. Note that in the
updated policy a(x) 1 if and only if

V(x + + > V(x). (5)

In other words the call is accepted only if the decrease in relative value between
states is less than the reward gained by accepting the call. If the policy is the same
as before then we have found the optimal policy (see for instance Tijms [31], 3.2);
otherwise the procedure is repeated for the new policy. It can be shown that this
converges to the optimal policy.
A second method is value iteration (also known as the method of successive ap-

proximations). This proceeds by iteratively solving for the relative values while
improving the policy at the same time. We start with an arbitrarily chosen initial
function, V0(x), which is usually set equal to zero, and recursively calculate the
following equations:

Vn (x) : l.Vn-1 (x, r) + x{#iVn_ (x e{ + ei+,)
rET i--1

i }+ (x) x e s

where

= max(V(x /e) / w, V,(x)) if xi < CV (x, r) V(x) otherwise.

It is shown in Tijms [31], 3.4 that ifg is the return under the policy that maximises
the right hand side of equations (6) at time n then Am <_ gn <_ g* <_ AMn, where
ms minx(V(x)-V_ (x)) and M maxx(V,(x)-V_ (x)). Furthermore, m
(M) is monotonically increasing (decreasing) in n. For aperiodic Markov chains
(which we have here since uniformization implies that pxx > 0) these converge as
indicated to g*/A.
Generally the rate of convergence in value iteration is geometrically fast. For

numerical calculations this can be speeded up by using a relaxation factor, although
for theoretical results equations (6) are used directly. A common method for proving
that a class of policy is optimal is to assume Vo has a specific structure and to show
inductively that this is preserved by the iterative procedure.
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3. Structure of optimal policies and monotonicity

We wish to find the optimal control policies for our model. We might expect these to
possess a certain structure. For example, we might expect that the busier the link,
the less likely that calls of a given type would be accepted. We might also expect
that the most valuable calls, that is, calls of type 1, should always be accepted as
long as capacity is available to carry them.
To make this precise we first define what we mean by one state being busier than

another. We define a partial ordering, -, (cf. Topkis [32]) on the state space, S.
For this it is convenient to define a shift operator, T, such that if x E S,

x-e+e+l ifl<i<I-1
x-e ifi=I.

Obviously we preclude use of T on x if x 0. We define

T ...T...T,

in he obvious wy. Noe h he orden is imporn. For example f xj 0
nd x_ ) 0 hen TT_x is possible wheres T_Tx is no. owever, if x ) 0
d xj_ ) 0 hen boh ive he sme result. Then we cn syh x q y if here
exis n) such

Ty x.

n:n
If x y hen x s buser hn y. Thus we wonld exec h if x y hen
ccen cl of ype r in se y mplies h is lso cceped in se x.
Consideration of eqoa () leds us o propose h he optimal policy hs he
followin properties. Le V* denote he relative vle fncion unde he opiml
policy a*.

THEOREM 1 Consider the single link model with R independent Poisson arrival
streams having rate , r R. Let the call holding time distribution have I inde-
pendent phases, the ith phase being exponentially distributed with mean 1/#. Calls
of type r are worth w with wl > w2 > > wR. Let V* denote the relative value
]unction under the optimal policy a*. Then ]or all x such that x + e S,

V* (x) V* (x + e) _< wl

that is, type 1 calls are always accepted if there is free capacity available.

Proof This follows immediately from the observation that the system cannot do
better than accept a type 1 call when it is offered, since if it is rejected, the free
capacity will either be used by a later call of type 1 (a delayed reward) or of some
other type (both a reduced a and delayed reward) or, conceivably, not used at all.
A formal proof using a coupling argument is given in [22]. b
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Conjecture 1 (a) For all x such that x + 2el E S,

V* (x) V* (x + el) G V* (x + el) V* (x + 2e)

implying that if a call of type r is accepted in state x + el it is also accepted in
state x.

(b) For all x such that x + e S and xi > O,

V* (Tix) V* (Tx + e) < Y* (x) V* (x + e)

implying that if a call of type r is accepted in state x it is also accepted in state
Tix.

Conjecture l(a) is that V* is concave non-increasing in xl. Conjecture l(b) gives
the value function a related regular structure called submodularity. For a further
discussion of this see Topkis [32]. Repeated use of Conjecture l(b) also gives the
property that if x - y then acceptance of a type r call in state y implies that it
is accepted in state x as well. In particular, repeated application of Conjecture
l(b) implies Conjecture l(a). Note that a trunk reservation policy may satisfy
Conjecture 1.
We note that (5) trivially demonstrates that the optimal policy has the obvious

property that if calls of type r are accepted in state x then calls of type r’ < r are
also accepted in state x, since
We have been unable to prove Conjecture 1. Networks where proofs of expected

policy structures cannot be produced are known (see Ghoneim [6]) and we do not
consider this problem further here. We note that no numerical examples have been
found which contradict this conjecture.

4. Trunk reservation and numerical examples

Although trunk reservation is not in general the optimal control policy for a single
link loss network with phase holding times, it is known to be fairly robust to
parameter changes, such as increases in the arrival rates (Key [16] gives a good
example of this). In practical circumstances the distributions of the inter-arrival
times and service times and their associated parameters will not be known exactly
and a strategy that is fairly insensitive to deviations from assumptions is obviously
desirable.
In this section we begin by showing that the optimal choice of trunk reservation

parameter is insensitive to the call holding time distribution except through its
mean. We then use numerical examples to compare the best trunk reservation
policy with the optimal strategies when the holding times have phase distributions.
We give examples showing that the the optimal trunk reservation policy gives a
return that is very close to optimal for phase holding times with a reasonably wide
range of parameters. We mostly consider examples with two arrival streams and
two stage phase holding times.
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THEOREM 2 Consider a single-link loss system with independent Poisson arrival
streams at rate At, r E T. Let call holding times have a general distribution with
finite mean and variance. Then the optimal stationary policy based solely on the
number o.f calls in the system is trunk reservation. Moreover the optimal trunk
reservation parameters are the same as those for exponential holding times with the
same mean, that is, the optimal control policy is insensitive to the call holding time
distribution except through its mean.

Proof Let n(t) be the total number of calls in the system at time t, regardless of
their phase, i.e. n(t) i xi(t). We add to the description of the state "flip-flop"
variables, which can take the values 0 and 1. Each arrival stream is assigned a
"flip-flop" variable, and the rth such variable changes state whenever a call of type
r arrives, but is not admitted into the system. Then with this modification to
the state description we have a symmetric queue (Kelly[13]), and the equilibrium
distribution for such a queue depends on the service time (call holding time) distri-
bution only through its mean (Kelly[13], Theorem 3.10). Hence for any stationary
admission policy its equilibrium distribution is the same as that of the same system
with exponentially distributed holding times with the same mean. Now, if holding
times are exponentially distributed, then the optimal policy is trunk reservation
(Miller[21]), and so it will be the optimal policy for a general holding time distribu-
tion as well. Moreover, the optimal trunk reservation parameter will be the same
as for exponentially distributed service times with the same mean. tb

THEOREM 3 Consider the single link model with R independent Poisson arrival
streams having rate , r R. Let the call holding time distribution have I indepen-
dent phases, the ith phase being exponentially distributed with mean 1/#. Calls of
type r are worth wr with wl > w2 > > wR. Suppose that there is a trunk reser-
vation parameter tr against type r calls, where since we have wl > w2 > > wR,
we will have 0 tl <_ t2 <_ g tn. Define tR+l C. Let xi denote the number
of calls in the ith service phase. Then the equilibrium distribution is given by

]or C tj+ < i xi <_ C t5, 0

_
j

_
Tl + 1, where G r(O) is a normalizing

constant.

Proof. This can be found directly by considering the full balance equations.
Alternatively, note that the x process is equivalent to a closed migration process
with C individuals in it, and I + 1 colonies, labelled 0, 1,..., I, where being in the
th colony corresponds to being in the th service phase, and the 0th colony contains
a reservoir of individuals who are not being serviced (they will form the arrival
process). Following the notation of Kelly ([13], Theorem 2.3), the parameters for
the process are A01 A, Ai,+ = #i, 1 _< i < I and Ai0 = #I with (x) = x,
1 _< _< I. The multipliers 0(’) are a special case they are given by 0(xo)
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’j=l ,’j/l if t < x0 _< t+l, 1 _< r _< R with 0(0) 0, to allow for the changes
in arrival rates with increasing occupancy. The result above then follows from [13],
after some algebraic manipulation. b
An example of the distribution given by equation 7 is illustrated in Figure 1.

Figure 1. Perspective plot of the equilibrium distribution for Example 1.1 in Table 1.

We now compare the returns under different policies. Initially we consider some
systems in which calls spend an equal time in each phase, with parameters as given
in Table 1. We use three basic examples -one is a very overloaded network, one
is underloaded and the third has a total load between the other two. The range of
total arrival rates varies from .8 of capacity to over twice capacity. We also consider
three different capacities, C 10, 40 and 100. Note that for each of these examples
the chosen parameters give an expected total holding time of 1 for each call.

First we give an example of an optimal policy. Table 2 shows the optimal accep-
tance/rejection policy for Example 1.1. Note that since the optimal policy always
accepts type one calls when xl + x2 < C we need only consider the policy for type
2 calls.
Table 3 presents the returns under different policies for the examples given in

Table 1. The calculation of the optimal return in each example was done using value
iteration, with the convergence condition M, m, _< emn used with e 10-4 (cf.
Tijms [31]). The "T.R." return is that for phase holding times with the best choice
of trunk reservation parameter. It can be seen that the gain by using the optimal
policy instead of simple trunk reservation in these examples is almost negligible (at
most 0.2%). The effect of network capacity on this gain can be seen to be small as
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Table 1. Parameters used in examples.

Example
1.1
1.2
1.3
2.1
2.2

i0’ 12 12 2 2 ’2 1
10 6 6 2 2 2 1
10 4 4 2 2 2 1
40 48 48 2 2 2 1
40 24 24 2 2 2 1
40 16 16 2 2 2 1
I00 120 120 2 2 2 1
100 60 60 2 2 2 1
100 40 40 2 2 2 1

Table 2. Optimal values of a2(Xl,X2) for Example 1.1.

Xl

1
2
3
4
5
6
7
8
9
I0

X2
0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

1 1
0 0
0 0
0 0
0 0
0

0 0
0 0
0 0
0

0 0
0

well, with perhaps a slight tendency for the relative difference to be smaller for the
larger networks.

Table 3. Returns for the examples in Table 1.

Example

1.2

3.1
3.2
3.3

optimal T.RI
parameter

4
1
1
i3
3

26
4
1

optimal T.R.
return return
16.775 16.771
13.046 13.022
10.584 10.575
"74.464’ 74.462
58.681 58.635
46.804 46.803
i92.90 192.90’
152.74 152.69

119.:56 .1.19.56
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We now look at the effect of varying the relative time spent in each phase. We
consider each of examples 1.1 to 1.3, but modify them by varying the mean time
in each phase in such a way that the expected total holding time remains 1. In
particular this means that the optimal trunk reservation parameter for each example
is the same as before. The optimal returns for our modified examples are reported
in Table 4. As can be seen there is again very little difference between the returns
under the optimal and trunk reservation policies (the greatest relative difference
being no more than 0.4%). As would be expected, these differences tend to 0 as #1
or #2 tends to 1.

Table 4. Optimal returns for modified examples 1.1 to 1.3.

32 1{ 8 4 4 8X. #1 1 1 ’--" " #1 " 1 #1 1.1%.
4 8=32 #2=16 #2=8 #.=4 ../=, /=

1.1 16.774 16.777 16.77 16.778 16.772 16.771 16.771
1.2 13.042 13.071 13.071 13.064 13.028 13.023 13.022
1.3 10.600 10.602 10.601 10.595 10.576 10.575 10.575

In the next group of examples we examine the effect of adding additional phases
to the service time distribution. We confine ourselves to considering cases with
C 10, since at larger capacities the relative difference between the returns under
the optimal and best trunk reservation policies was less. In this case we again
consider the examples 1.1 to 1.3, but modify the the service time distribution to
have three phases with #1 #2 3 3, SO that the mean of the total holding
time remains unchanged at 1. The returns for the optimal policy are given in Table
5, with the T.R. return taken from Table 2. A comparison with Table 2 shows that,
although the relative improvement to be obtained by using the optimal policy has
increased very slightly, it is still negligible.

Table 5. Returns for examples with
three phases.

Modified
example

1.1

optimal T.R.
return return
16.778 16.771
13.059 13.022
10.591 10.575

Finally, we examine the effect of adding a third call type, again looking only at
examples with C 10. For these examples we have two phases with 1 2 2, as
before. The rewards are now wl 2.0, w2 1.0 and w3 0.5, with A1 A. A3.
The results for three values of A are displayed in Table 6. Again, we see that adding
additional call types does not substantially increase the relative improvement to be
obtained by using the optimal policy- it remains negligible, with the greatest
improvement here being .16%.
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Table 6. Returns for examples with three types of call.

C

8
4

10
10
10

0ptimal T.R.
parameters

2 10
1 3

optimal T.R.
return return

14.642 14.630
10.684 10.667
7.988 7.978

Two factors appear to be contributing to these observations that the best trunk
reservation policy does nearly as well as the optimal policy. The first is that in
those cases where simple trunk reservation is optimal (e.g. when holding times are
exponentially distributed) it has been observed that a choice of trunk reservation
parameter close to the optimal one generally gives performance not far from optimal
that is, the reward function is not sharply peaked around the optimal value of the

trunk reservation parameter. The second factor is that it seems that the equilibrium
distribution for the processes considered here will, in general, be unimodal (see, for
example, Figure 1). Thus, within the region of high probability, a single choice of
trunk reservation parameter will do rather well. And states outside this region,
where the best choice of trunk reservation parameter may be very different, will
have very low probability. For additional discussion see Hunt and Laws[10].

5. Concluding Remarks

We have seen that the revenue benefits of using the optimal policy rather than the
best trunk reservation policy can be small. There are also additional overheads in
implementing the optimal policy it first needs to be calculated, and when it is
in use there will be costs attached to the additional knowledge required about the
state of the system, and to the greater complexity of the admission rule. Thus the
simple trunk reservation policy, even for relatively small systems, may give very
good performance, as well as being simple to implement and relatively robust.
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