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Abstract. This study develops the foundation for a simple, yet efficient method for
uncovering functional and approximate functional dependencies in relational databases.
The technique is based upon the mathematical theory of partitions defined over a re-
lation’s row identifiers. Using a levelwise algorithm the minimal non-trivial functional
dependencies can be found using computations conducted on integers. Therefore, the
required operations on partitions are both simple and fast. Additionally, the row identi-
fiers provide the added advantage of nominally identifying the exceptions to approximate
functional dependencies, which can be used effectively in practical data mining applica-
tions.
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1. Introduction

The complexity of discovering functional dependencies has been studied in
[5], [6], [7]. Functional dependencies are relationships between attributes
of a database relation. A functional dependency states that the value of
an attribute is uniquely determined by the value of some other attributes.
Algorithmic approaches to the discovery of functional dependencies has
been studied in [2], [6], [10], [11], [3].

Suppose that a company sets up a database to keep track of its employees
and the various departments to which they are assigned from time to time.
This would require three relations: one for employees, one for departments
and one for assignments of employees to departments. An instance of this
database might include the following relations:

† Requests for reprints should be sent to Ronald King,Computer Science Department,
The University of Texas at Tyler, Tyler, Texas 75799.
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Table 1. Company Database

Employee number First name Family name Date joined Salary

123 David Jones 15-Feb-1995 $32,000
234 Alice Johnson 4-Mar-1995 $36,000
345 Mary Trent 31-Aug-1990 $44,000

Department code Department name

DEV Development
SLS Sales
SPT Support
MKT Marketing

Employee number Department code Date assigned

123 DEV 15-Feb-1995
123 MKT 1-Dec-1998
234 SLS 4-Mar-1998
345 MKT 31-Aug-1990
345 SLS 5-Jun-1994
345 SPT 18-Oct-1998

In the ASSIGNMENTS relation Employee number does not functionally
determine Date Assigned, but Employee number plus Department code
does functionally determine Date assigned. Employee number is a primary
key for the EMPLOYEES relation since the Employee number uniquely
functionally determines all of the remaining attributes within the relation.
Department code is the primary key for the DEPARTMENTS relation.

An approximate functional dependency is a functional dependency that
almost holds. In a relation a few rows can contain errors, due to var-
ious noise factors, or simply be a row that is an exception to the rule.
Many operational definitions for approximate functional definitions have
been studied [4]. The definition utilized in this paper is based upon the
minimum number of rows that need to be removed from the relation r
for X → A to hold in r: the error, g3(X → A) = 1 − (max{|s| : s ⊆
r and X → A holds in s}/|r|. X → A is an approximate dependency if
and only if g3(X → A) ≤ ε for 0 ≤ ε ≤ 1. If the following modification for
the EMPLOYEES relation is made: Then First name plus Family name
does not functionally determine Salary since the first entry has a Salary
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Table 2. Modified EMPLOYEES Relation: Approximate Functional Dependency
Firstname‖Familyname → Salary

Employee number First name Family name Date joined Salary

123 David Jones 15-Feb-1995 $32,000
234 Alice Johnson 4-Mar-1995 $36,000
345 Mary Trent 31-Aug-1990 $44,000
127 David Jones 5-Jan-2001 $33,000
128 David Jones 4-Mar-2000 $33,000
129 David Jones 23-Jan-2000 $33,000

value that is not equal to the Salary value for the last three entries in the
relation. Note that First name plus Family name determining Salary is an
approximate functional dependency with a 25 percent error rate.

The algorithm for discovering functional and approximate functional de-
pendencies employed in this paper is similar to the levelwise approach for
the discovery of association rules [1]. This search strategy first computes
some non–trivial information about attribute sets, frequent item sets, and
then which association rules can be computed easily. In the present study,
first computations for the non–trivial information about attribute sets takes
the form of partitions of row identification numbers, from which the de-
pendencies can be computed. [8] employed the levelwise method for the
computations of dependencies as an instance of the generic data mining
algorithm. [9] introduced the concept of rough sets which is based upon
partitions. Using rough sets [12] utilized rough sets for identifying the most
critical factors for allowing for the elimination of irrelevant attributes in a
relation prior to the generation of rules describing data dependencies in
databases.

2. Functional Dependencies and Partitions

Definition. Rows s and t are equivalent with respect to a set of attributes
X if and only if s[A] = t[A] for all AεX.

Note that the definition for equivalent rows on a set of attributes X
partitions the rows of the relation into equivalence classes. The equivalence
class of a row tεr with respect to a given set X ⊆ R by [t]X . The set
ΠX = {[t]X |tεr} of equivalence classes is a partition of r under X.

Theorem 1 A functional dependency X → A, where A is a single at-
tribute and X is a set of attributes, holds if and only if ΠX refines ΠA.
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Proof: Case I: Assume that ΠX refines ΠA.
Let t, u ε R where t[X] = u[X]. Then t, u ε ΠX

⇒ u, t ε C where C ε ΠX

⇒ u, t ε D where D ε ΠA

⇒ u[A] = t[A]

Thus u[X] = t[X] ⇒ u[A] = t[A] ⇒ (X → A).
Case II: Suppose X → A t[X] = u[X] ⇒ t[A] = u[A].

Let CεΠX . Then C is a set of t”s and u”s such that t[X] = u[X]. But
this implies that t[A] = u[A]. Therefore, since X → A, t[A] = u[A] which
implies that C ⊆ D where D is a set of t”s and u”s such that t[A] = u[A].
Thus there exists C ⊆ D such that DεΠA. We can therefore conclude that
ΠX refines ΠA.

An extremely interesting simplification for the latter theorem exists which
states that adding the attribute A to the set of attributes X does not break
any equivalence classes of ΠX whenever ΠX refines ΠA.

Theorem 2 X ⇒ A if and only if |ΠX | = |ΠX
⋃
{A}|, where |ΠX | denotes

the rank of the partition ΠX (or the number of equivalence classes belonging
to the partition).

Proof: Case I: Assume that X → A. Then adding A to X does not
break any equivalence classes in X, since t[A] = u[X] ⇒ t[A] = u[A]. Thus
ΠX

⋃
{A} = ΠX . But this requires that |ΠX | = |ΠX

⋃
{A}|.

Case II: Suppose that |ΠX | = |ΠX
⋃
{A}|. Note that ΠX

⋃
{A} always refines

ΠX . Let u, tεC where CεΠX , since u[X] = t[X]. But C = D where
DεΠX

⋃
{A}. Therefore t[XA] = u[XA]. But t[XA] = u[XA] ⇒ t[A] =

u[A]. Thus we have demonstrated that t[X] = u[X] ⇒ t[A] = u[A] or
X → A.

Using Theorem 2 one can determine the approximate functional depen-
dencies for a relation r. The error g3(X → A) for a functional dependency,
X → A, is the minimum fraction of rows that must be removed from the
relation for the dependency to hold. Note that any equivalence class C of
ΠX is the union of one or more equivalence classes C ′

1, C ′
2, ... of ΠX

⋃
{A},

and the rows in all but one of the C ′
i s must be removed for X → A to be

valid. The minimum number of rows to remove is the size of C minus the
size of the largest of the C ′

i s. Therefore,
g3(X → A) = 1 −

∑
CεΠX

max{|C ′| : C ′εΠX
⋃
{A} and C ′ ⊆ C}/|r|.

Clearly any superkey has the property that its’ partition consists of sin-
gleton equivalence classes only. Additionally, a set X is a key it is a superkey
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and no proper subset of it is a superkey. These observations lead to the
following definition:

Definition. The error of a superkey, g3(X), is the minimum fraction of
rows that need to be removed from the relation r for X to be a superkey.
Given an error threshold ε, where 0 ≤ ε ≤ 1, then X is an approximate
superkey if and only if g3(X) is at most ε.

The partition ΠX can be utilized for computing g3(X) : g3(X) = 1 −
|ΠX |/|r|. Also, due to the latter computation, we have:

Lemma 1 g3(X) = g3(Y ) if and only if |ΠX | = |ΠY |.

Then from Theorem 2 we have:

Theorem 3 X → A if and only if g3(X) = g3(X
⋃
{A}).

The latter foundation can be employed in data mining to find all mini-
mal non–trivial functional dependencies by searching through the space of
non-trivial dependencies and testing the validity and minimality for each
dependency. A functional dependency X → A for which there does not
exist Y ⊂ X such that Y → A is called a minimal functional dependency.
But these minimal non-trivial dependencies are test for validity by tak-
ing refinements of partitions and superkeys are represented by partitions
containing only singleton equivalence classes. This leads to the observa-
tion that a singleton equivalence class, of the left-hand side of a functional
dependency, cannot break any dependency.

3. Optimizations via Constrained Partitions

Both space conservation and efficiency consideration lead to the concept of
constrained partitions.

Definition. A partition with singleton equivalence classes removed is called

a constrained partition. Π denotes the constrained partition for the parti-
tion Π.

Theorem 1 still holds for constrained partitions, since the refinement rela-
tionships of partitions are not affected by the singleton equivalence classes.

But | ΠX | can be the same as | ΠX
⋃
{A}| even if |ΠX | = |ΠX

⋃
{A}|. How-

ever, Theorem 2 can be employed. The value g3(X) can be found using
constrained partitions:

g3(X) = (|| ΠX || − | ΠX |/|r|),
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Figure 1. The set containment lattice for W, X, Y, Z:

where || ΠX || is the sum of the cardinalities of the equivalence classes

in ΠX . The computing error g3(X → A) for the relation r is O(|r|). But
employing the operational definitions for g3(X → A) and g3(X) leads to:

g3(X) − g3(X
⋃
{A}) ≤ g3(X → A) ≤ g3(X)

Therefore, if g3(X) − g3(X
⋃
{A}) ≥ ε or g3(X) < ε, then one does not

need to compute g3(X → A) to find whether or not X → A.

4. Searching for the Non-Trivial Minimal Functional

Dependencies

Partitions of row numbers can be utilized to perform necessary validity
tests on functional dependencies. Computations of constrained partitions
make these validity tests able to be done efficiently.

The search for the functional / approximate functional dependencies con-
sist of the space of all left–hand sides of potential dependencies. For exam-
ple the set containment lattice, the latter space, for W, X, Y, Z is illustrated
in Figure 1.

Using a levelwise algorithm the search starts from the singleton sets, and
works its way through the lattice level by level until the minimal functional
dependencies are found. For each set X of attributes, the algorithm will
test dependencies of the form X −{A} → A, where AεX. False dependen-



FUNCTIONAL AND APPROXIMATE FUNCTIONAL DEPENDENCIES 55

cies are eliminated as early as possible in order to reduce the search space.
An edge between sets X and X

⋃
{A} in the containment set lattice rep-

resents the non-trivial dependency X → A. Search efficiency is obtained
by reducing the computations on each level by using results from previous
level computations.

By using the lattice, one can compute a partition as a product of two
earlier partitions. The product of two partitions Π and Π′, denoted by
Π × Π′, is the least refined partition Π′′ that refines both Π and Π′.

Theorem 4 ΠX × ΠY = ΠX
⋃

Y for all X,Y ⊆ R.

Proof: Case I: Assume we are given ΠX and ΠY . For each CεΠX form the
set of all nonempty intersections which can be formed from the equivalence
classes of ΠY with C, call this set CX . Then the union of all CX ’s is by
construction the least refined partition for both ΠX and ΠY . Therefore
the latter construction yields ΠX × ΠY . Let u, tεC for some CεΠX × ΠY .
Then there exist a DεΠX and there exist an EεΠY such that t[X] = u[Y ]
and t[Y ] = u[Y ] where C ⊆ D and C ⊆ E. Thus C ⊆ D

⋂
E where

t[X
⋃

Y ] = u[X
⋃

Y ]. Thus ΠX × Πy is a refinement of ΠX
⋃

Y .
Case II: t, uεC for some CεΠX

⋃
Y ⇒ t[X

⋃
Y ] = u[X

⋃
Y ]. Then t, uεC

where t[X] = u[X] and t[Y ] = u[Y ]. Thus by construction there exist a
DεΠX × ΠY where t[X] = u[X] and t[Y ] = u[Y ]. Therefore, ΠX

⋃
Y is a

refinement of ΠX × ΠY . Since we have set containment in both directions
we have ΠX

⋃
Y = ΠX × ΠY .

A levelwise computational scheme can be employed to compute the par-
titions. First the computations for Π{A}, for each attribute AεR, are
performed directly on the database. Partitions ΠX , for |X| ≥ 2, are com-
puted as the product of partitions with respect to two subsets of X. To
find a size two partition the direct product of two singleton set partitions
will be employed. A size k partition will be found using the direct product
of a (k − 1) and a singleton partition, thus only the partitions from the
previous levels are employed in the computations for finding partitions on
the present level.

Once the partition ΠX is found, the error g3(X) is computed in order to
test a functional dependencies validity using Theorem 3. The same value
g3(X) can be utilized for testing the validity of X → A or X − {A} → A
for several AεR.

5. Testing for Minimality of Functional Dependencies

To test for the minimality of X − {A} → A, we need to know whether
Y − {A} → A for some proper subset Y of X.
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Definition. Let C(X−{A}) be the set of right-hand candidates of X−{A}
for all A.

AεC(X) if A has not been found to depend on any proper subset of X.
The set of right-hand-candidates (rhs) of a set X ⊆ R is C(X) = R−C(X)′,
where C(X)′ = {AεX : X − {A} → A}.

Assume that the proposed algorithm is considering the set X = {A,B,C},
and that {C} → A. Since {C} → A, we have that A /∈ εC({A,C}) =
C(X − {B}), which infers that {B,C} → A is not minimal. This example
illustrates that it suffices to test functional dependencies X − {A} → A,
where AεX and AεC(X − {B}) for all BεX.

6. Pruning the Set Containment Lattice

If X → A, then Y → A is not minimal for any proper subset Y of X.
Similarly, if Y → A does not hold, then neither does XrightarrowA for
any X ⊆ Y . The levelwise approach will only employ the former rule for
discovering functional dependencies due to the movement from small to
large partition sizes. Additionally, if C(X) = ∅, then C(Y ) = ∅ for all
supersets Y of X, and no dependency of the form Y − {A} → A can be
minimal.

Theorem 5 Let BεX and X −{B} → B. If X → A, then X −{B} → A.
If X is a superkey, then X − {B} is a superkey.

proof
Let X → A. Then t, uεR such that t[X] = u[X] ⇒ t[A] = u[A]. But
X−{B} ⊆ X, thus (t[X−{B}] = u[X−{B}] ⇒ t[A] = u[A]) or X−{B} →
A. Let X be a superkey. Then ΠX is a set of singleton equivalence classes.
X−{B} → B if and only if |ΠX−{B}| = |Π(X−{B})

⋃
{B}=X |. Therefore the

cardinality of ΠX−{B} is the same as the cardinality of ΠX . Thus X −{B}
is a collection of singleton sets. Therefore X − {B} is a superkey. 2

The first implication in Theorem 5 allows one to remove additional at-
tributes from the rhs candidate sets. Assume that X − {B} → B for some
BεX. Then a dependency with X on the left-hand side cannot be minimal
because we can remove B from the left-hand side without changing the
validity of the dependency. As a result, we can safely remove from C(X)
the following set:

C ′′(X) = {AεR − X| there exists BεX such that X − {B} → B}
Furthermore, assume that X has a proper subset Y such that Y −{B} → B
for some BεY . Then we can also remove from C(X) all AεX − Y . The
following set of attributes can be removed from C(X):
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c′′′(X) = {Aε X : there exists B εX − {A} such that X − {A,B} → B}.
The closure of the rhs candidates, C+(X), for a set X ⊆ R is defined as:
C+(X) = (((R − C ′(X)) − C ′′(X)) − C ′′′(X)).

Theorem 6 C+(X) = {AεR| for all BεX,X−{A,B} → B does not hold}.

Proof: C+(X)

= (((R − C ′(X)) − C ′′(X)) − C ′′′(X))

= R−{AεX|X−{A} → A}−{AεR−X| there exists BεX such that X−
{B} → B}−{AεX| there exists BεX −A such that X −{A,B} → B}

= R−{AεX| there exists BεX−A such that X−{A,B} → B}−{AεR−
X| there exists BεX such thatX − {A,B} → B}

= R − {AεR| there exists BεX such that X − {A,B} → B}

= {AεR| for all BεX,X − {A,B} → does not hold}

This theorem shows that one can use the closure of the rhs candidates to
test the minimality of a dependency.

Theorem 7 Let AεX and X − {A} → A. The functional dependency
X − {A} → A is minimal if and only if for all BεX, AεC+(X − {B}).

Proof: Suppose that X−{A}εA is not minimal, then there exists BεX−
{A} for which X − {A,B} → A. Then A /∈ C+(X − {B}). Therefore, for
all B, if AεC+(X − {B}), then X − {A} → A is minimal. Assume that
there exists BεX with A /∈ C+(X − {B}). Then there exists CεX − {B})
such that X−{A,B,C} → C. If C = A, then B 6= A and X−{A,B} → A.
If C 6= A, then X − {A,B,C} → C and, consequently, X − {A,C} → C.
Thus X −{A,C} → A by Theorem 5. Thus X −{A} → A is not minimal.
Therefore, if X − {A} → A is minimal, then, for all B, AεC+(X − {B}).

Theorem 7 gives the closure of rhs candidates two advantages over rhs
candidates. First, once such a B is encountered checking can be stopped.
Second, for some B, C+(X{B}) can be empty when C(X − {B}) is not
empty. The last statement implies that with the closure of rhs candidates,
the set X is never even generated due to pruning.

When a key is found, additional pruning methods can be applied. X → A,
A /∈ X, is tested when X

⋃
{A} is computed since one needs ΠX

⋃
{A} for

validity testing. If X is a superkey then X → A is always valid and we do
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not need X
⋃
{A}. If a superkey X is not a primary key, then a dependency

X → A is not minimal for any A /∈ X. Also, if AεX and X − {A} → A,
then by the second part of Theorem 5, X − {A} is a superkey and we do
not need ΠX for testing the validity of X − {A} → A. X and ΠX are not
required for finding the non-trivial dependencies. All keys can be deleted
and thereby all their supersets can be pruned, i.e., the superkeys that are
not keys.

7. Conclusion

The foundation for a new algorithmic approach for the discovery of func-
tional and approximate functional dependencies from relations has been
provided. The approach is based on partitions of row identification num-
bers from the relation and determining non-trivial minimal dependencies
from the partitions. A breadth-first or levelwise search for the dependen-
cies is conducted. Additionally, the search space can be pruned effectively.
Both the partitions and dependencies can be computed efficiently.
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