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For the GI/G/1 queueing model with traffic load a <1, service time
distribution B(t) and interarrival time distribution A(t), whenever for

t—00 s
1-B(t)~—5—+4+0(™ %), c>0,1<vr<2,6>0,
and
o0
/ tHd A(t) < oo for p> v,
0

1
(1 — a)¥ ~ 1w converges in distribution for all. Here w is distributed as the

stationary waiting time distribution. The L.-S. transform of the limiting
distribution is derived and an asymptotic series for its tail probabilities is
obtained. The theorem actually proved in the text concerns a slightly
more general asymptotic behavior of 1— B(t), t—oo, than mentioned
above.
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1. Introduction

For the GI/G/1 queue, denote by A(t) and B(t) the interarrival time distribution
and service time distribution, respectively, and by a the traffic load, with a < 1.
The distribution B(t) is said to have a Pareto-type tail if: for t—oo,
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-6t
=B =wpp +n2_:1 (t/ﬁ)”"+ o™,
l<v<2, g =/ tdB(t)), ¢>0, 6>0, (1.1)
0

¢, >0, v,>v, N afinite integer > 1.

n

w shall denote a stochastic variable with distribution W(t), the stationary distribu-
tion of the actual waiting time of the GI/G/1 model.
Write

A= [1 _ g I()sino - m}ﬁ

; (1.2)

here I'( - ) is the gamma function and =%, « real, is defined by its principal value, i.e.,
it is positive for z positive.
Theorem: When B(t) has a Pareto-type tail as specified in (1.1) and when

o0

/ tHdA(t) < oo for a p> v, (1.3)
0

1
then the stochastic variable (1 —a)” —lw/B converges for all in distribution, and

1 - pAw/ﬁ = —————1 >0 ]. 4
lipBie™ "0 = L Rep20 (14)
the right-hand side of (1.4) is the Laplace-Stieltjes transform of a true probability dis-
tribution R, _(t) with support (0,00); and for t—oo and every finite H € {1,2,...},
H .
1 _1l(n(v = 1))sinn(v — )7 —(H+1)(v—-1
1-R,_y(t)=4) " (-1)*~! =) +of{t~H+D=-1y (15

n=1

For a special class of Pareto-type tailed service time distributions, the theorem
has been derived for the M/G/1 model in [2]. The distribution R, _,(t) is called the
Kovalenko distribution, cf. [9]. For v = 11 we have, cf. [1],

Ry 1o(t) = 1—TetErfc(t1/2), t>0, (1.6)
™
with
<2
Erfc(m):/ e ¥ du.

T

The proof of the theorem is given in the next section; it uses an idea of the proof
of Theorem 1, [7], vol. I, p. 467.

The theorem stated above is a heavy traffic result. The classical heavy traffic
theorem for the GI/G/1 model, cf. [3], Section IIL.7.2, requires the finiteness of the
second moment of A(t) and that of B(t). In a forthcoming paper by O.J. Boxma and
the present author, generalizations of the theorem above will be discussed.
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2. Proof of the Theorem

We consider first the case with all ¢, =0, n =1,...,,N. Consequently, it is seen from
(1.1) that we may write: for t > 3,

1—B(t):W+F(t), (2.1)
with
/ e ~P'F(t)dt convergent for Rep > —6, §>0. (2.2)
With g
By = [ emPaB(t), Rep20, (2.3)
we have: for Rep > 0, °"
1-8(p) _ . tr dt
S —Z =P~ B
2.4
0 8 Y
and 5
1:/ {1—B(t)}%+/ (t/cﬂ)u%+/ F(odt
0 B B
It follows that: for Rep > 0,
_l_i(p)_ _ - —pt__c _dt
1-280 - 500)- [ et g (25)
with g
0,(pB): = / (l—e“’t)l_TB(t)dt+/ (tTcﬂ)_u%Tu/ {l-emyrdh (20)
0 ¢ 1Y

By using (2.2) it is readily seen that g,(pf) is a regular function of p for Rep > — 6.
For the integral in (2.5) we have by partial integration: for Rep > 0,

e [ e (L) "ak = —oy(p8) +eri o) )
with g
s 1—-v
95(pB): =57 e P+ 1c_pu/ egpt@—) dt. (28)
0

Obviously g,(pf) is an entire function of p for all p; note that 0 <v—1< 1.
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From cf. [8], p. 3,

INCYINCEEPYE ﬁ, A not an integer, (2.9)
and with
9(pB): = 91(pB) + 95(PB), (2.10)
we have from (2.5), ..., (2.10): for Rep >0,
1- IB(p) - v -
l-—p5 = 9(ph) +f”(7)§1f‘%,‘:m(/>ﬁ) g (2.11)

From (2.6), (2.8) and (2.10), it is seen that g(pB) is also a regular function of p for
Rep > — 6. From (2.11) it follows that g(0) = 0. Hence since g(pfB), Rep > —disa
regular function we have: for Rep > — 6, |p|—0,

9(pB) = 1B+ 0((pB)%), (2.12)

with v a finite constant.
Write

o0

a(—p): = / e”'dA(t), Rep=0, (2.13)
0

so that a(—p) is the characteristic function of the distribution A(t). From (1.1),
(1.3) and the series expansion of a characteristic function, cf. [10], p. 199, we have:
for Rep =0, |p|—0,

a(=p)=1+ap+0(|p|*), (2.14)

o0

a = / tdA(t) = B/a.

0

Let i be the idle period, i.e., the difference of a busy cycle and the busy period
contained in this busy cycle. The relation between the distributions of w and i is
given by, cf. [4], p. 21, or [3], p. 371: for Rep =0,

i _ ol — )] 71
e = i a2 219
note that
E{i} = (o~ A)E{n}, (2.16)

with n the number of customers served in a busy cycle.
With

A = Wcz/—l—)? (2.17)



A Heavy-Traffic Theorem for the GI/G/1 Queue 251

we have from (2.11): for Rep =0,

1-B(p)a(—p)
(B—a)p
ol — (2.18)
= 2 P80 1 1 g(a8 et~ )= Ao el )]
Set, cf. (1.3),
o: =min(l,p—1) > 0. (2.19)

By using (2.12) and (2.14) it follows from (2.18) since p > v, cf. (1.3), that: for
Rep =0, | p|—0,

1—5;{)3;/’)=ﬁ§a[-%H—Ay(pﬂ)"-woupl")] (2.20)

=1+75{A4,(p8)" "1+ 0(1 £ )}

Write for Rer > 0, cf. (1.2),
1

p=[L524,1]" " "r/8 = Ar/B. (2.21)
With Rep <0, a < 1,
ooy =B, x(py =1 (2.22)
we have from (2.15), (2.20) and (2.21): for 0 < 1 —a<<1 and Rer =0,
1-v+4o |~ 1
() w(rA/B)= X(—’“A//@')[1 +rY 7 4 r70((1-a)) V-1 )jl, (2.23)

(©1)  w(rA/p) and x(rA/pB) are both regular for Rer > 0, continuous for
Rer >0,
(i) Jw(ra/f)| <1, [x(rA/f)| <1, Rer 20, w(0) =1, x(0) = 1.

The conditions (2.23) formulate for w(rA/fB) and x(—rA/B) a boundary value
problem of a type discussed in [6]. It is not difficult to verify that the conditions
(26)¢, ..., v of [6] are fulfilled for the present boundary value problem with
0 <1—a<<1. Hence from (31) of [6] its solution reads: for 0 < 1—a<<1,

w(rA/B) = H(r8/8) Rer >0,
(2.24)
X("’“A/ﬂ)"e rA/ﬂ), Rer <0,

with
ico
rdn
(n—r)m

a9y =5k [ o1+~ 4 970((1 — ) FT)

— ioo
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This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and
[6]. The integral is absolutely convergent and it follows readily by contour integra-
tion in the right half-plane that
ico
i =1 v-1
lim Hra/8) =5k [ log{1407 )

—ioco

rdn
(n—r)n

(2.25)

= —log{l+r*~ '} for Rer >0,
=0 for Rer <0;

note that the logarithm of the integrand is regular for Ren > 0, continuous for
Ren >0 and zero for n =0, cf. further [5], Section 1.1.5. Hence from (2.24) and
(2.25): for Rer >0,

. T —rAw/By _ 1
limw(rA/f) = lim Efe b=t (2.26)

limx(ra/8) = 1.

By using Feller’s continuity theorem for L.-S. transforms of probability distributions,
it follows that Aw/( converges in distribution for all, with limiting distribution
R, _(t) given by

(e}

—rt — 1
Z e T de/ _ 1(t) = W, Rer 2 0. (2.27)

It remains to prove (1.5). From (2.27) we obtain: for Rer >0,

o0
v

/e"”{l—R (=l —L 3172 (g
) v— r 1+,r,u—1 1+7“V_1

Because 1< v <2, the right-hand side can be continued analytically out from
Rer >0, into {r: |arg r| < 1,/),%71’ <Y <m}. With D the contour defined by: for a
ro >0,

D: ={r:r= roeid’,qﬁ = x¢Y}U{rr= Reiid)aR > 7ok, (2.29)

it is readily shown by starting from the inversion integral for the Laplace transform
that

1-R,_ () =L [ent—"2 4, (2.30)
v-1\ =54/ ¢ 14y =177 '
D

with the direction on D such that on r = roei¢ it is counterclockwise with respect to
the origin. For r = |ry| <1 we have

v—-2 )

e I D N C il (2.31)

Vo1 T
1+T' n=0
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We now apply a theorem of Doetsch [7], vol. II, p. 159 to derive an asymptotic
series for 1 — R, _(t), t—oo. It is not difficult to show that this theorem may be
applied here. It uses the relation

——/e'tr’\d/\-— /\)t“’\"l, X#0,1,2,...,

and it states that: for t—oo and every finite H € {1,2,...},

n(v-1
()= Z (- "-1ﬁ——))—)+ o~ HFN =1y (2.39)
n=1
By using the relation (2.9), the relation (1.5) follows, and the theorem has been
proved for the case ¢, =0, n=1,...,N.

To complete the proof for ¢, >0, it suffices to take ¢; >0, ¢y =...=cy =0,
since it is readily seen that the general case proceeds along the same lines. However,
we have to distinguish the case that v;( > v) is not an integer and that of v, is an
integer > 2.

First, we consider the case ¢; > 0, v; noninteger. Instead of (2.1) we write: for
t>p,

1-B(t) = (2.33)

c ‘1
w7+ F(t),
t/8)” " (t/m)" ®
with F(t) again satisfying (2.2). By repeated partial integration, it is readily shown,
cf. [7], vol. II, p. 468, and (2.7), that: for Rep >0,

0o
1/1—1

Clé e_ptm%: = 92(pB) + ¢;T(1 = v1)(pB) ) (2.34)

with go(pf) an entire function of p.
The relation (2.11) is now replaced by: for Rep >0,

1-8(p) _ v—
1- Bp 9(pB) + T(v)sin (l/ Dr (pB) !

. (2.35)

+l"(1/1)sin(1/1—1)7r(p’6) e

with g(pB) again a regular function for Rep > —§ which satisfies g(0) =0 and
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads again
to (2.20) since v; > v, cf. (1.1). The remaining part of the proof with ¢; > 0 does not
differ from that with ¢; =0, and so the theorem has been proved for ¢, >0 and v,,
not an integer.

Finally we have to consider the case v; = k > 2, with k an integer. We have, cf.
(7], vol. 1, p. 468,

Y1 di_ (=DF e
clé e (t/lﬁ)kﬁt——gz(Pﬂ)'i‘ﬁm(Pﬁ)k 'log(pB),




254 J.W. COHEN

again with g,(pB) a regular function, and the relation (2.11) is now replaced by: for
Rep >0,

_ o v—-1 _1\k-1
- p[;(p) =9(ph) + F(l/)gﬁlﬂ()l/ Y Cl(r(kl)_ Ty (0B)" ™ Hlog(pB),

where g(pB) is again an entire function for Rep > — §, which satisfies g(0) =0 and
(2.12). The last term is o((pB8)” ~ 1) since k > v. With this it is readily verified that
the second equality sign in (2.20) also applies for the present case, and so the remain-
ing part of the proof is similar to that with ¢; =0. Hence the theorem has been
proved.
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