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1. Introduction

Controllability of linear and nonlinear systems represented by ordinary differential
equations in finite dimensional spaces has been extensively studied. Several authors
extended the concept to infinite dimensional systems in Banach spaces with bounded
operators. Chukwu and Lenhart [3] studied controllability of nonlinear systems in ab-
stract spaces. Naito [7, 8] studied controllability of semilinear systems and nonlinear
Volterra integrodifferential systems. Quinn and Carmichael [11] showed that a con-

trollability problem in Banach spaces can be converted into a fixed-point problem for
a single-valued mapping. Balachandran et al. [1] established sufficient conditions for
controllability of nonlinear integrodifferential systems in Banach spaces.

In many cases it is advantageous to treat second order abstract differential equa-
tions directly rather than convert them to first order systems. For example,
Fitzgibbon [4] used the second order abstract differential equations for establishing
the boundedness of solutions of an equation governing the transverse motion of an

extensible beam. A useful tool for the study of abstract second order equations is the
theory of strongly continuous cosine families. We will make use of some of the basic
ideas from cosine family theory [14, 15]. A motivation for second order systems can

be found in [5, 6]. Recently, Park et al. [10] discussed controllability of second order
nonlinear systems in Banach spaces with the help of the Schauder fixed point theo-
rem. The purpose of this paper is to study controllability of semilinear second order
differential systems in Banach spaces by using the Schaefer theorem.
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2. Prehminaries

We consider the semilinear second order control system

x"(t) Ax(t) + f(t, x(t), x’(t)) + Bu(t), t J [0, T],

(1)

where the state x(. takes values in a Banach space X, x0, Y0 E X, A is the infinite-
simal generator of the strongly continuous cosine family C(t)(t E ), of bounded
linear operators in X, f is a nonlinear mapping from J x X x X to X, B is a bounded
linear operator from V to X and the control function u(.) is given in L2(J,U), a
Banach space of admissible control functions, with U also being a Banach space.

Definition 1: [14] A one parameter family C(t), tEN, of bounded linear
operators in the Banach space X is called a strongly continuous cosine family iff

(i) C(s + t) + C(s t) 2C(s)C(t) for all s, t E ;
(ii) C(O) I;
(iii) C(t)x is continuous in t on N for each fixed x E X.

Define the associated sine family S(t), t E , by

s(t) f x, t e
0

Assume the following conditions on A.
(HI) A is the infinitesimal generator of a strongly continuous cosine family

C(t), t E , of bounded linear operators from X into itself and the adjoint
operator A* is densely defined i.e., D(A*)= X* (see [2]).

The infinitesimal generator of a strongly continuous cosine family C(t), t E , is
the operator A: X--X defined by

where

x E D(A),-d-yC(t)x
o

D(A)- {x E X’C(t)x is twice continuously differentiable in t).

Define

E- {x E X: C(t)x is once continuously differentiable in t}.

To establish our main theorem we need the following lemmas.
Lemma 1: [14] Let (H1) hold. Then,
(i) there exist constants M > 1 and co >_ 0 such that

II c(t) II Ne and [I S(t) co(t*)II < N
t*

for t,t* E ;
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(ii) S(t)X a E and S(t)E a D(A) for t ;
(iii) C(t)x AS(t)x for x E and G ;

d2(iv) -t2C(t)x AC(t)x for x E D(A) and t .
Lemma 2: [14] Let (H1) hold, let v’-+X be such that v is continuously

ff,a6 a, q() f ’oS(, )()d. Tn,

q is twice continuously differentiable and for t , q(t) D(A),

q’(t)- / C(t-s)v(s)ds, and q"(t)- / C(t-s)v’(s)ds + C(t)v(O)
0 0

=Aq(t)+v(t).

Lemma 3: (Schaefer Theorem [13]) Let S be a convex subset of a normed linear
space Y and assume 0 S. Let F’S-S be a completely continuous operator, and let

(F) {x S:x AFx for some 0 < A < 1}.

Then either (F) is unbounded or F has a fixed point.
We make the following assumptions"
(H2) f(t,., .)’XXX is continuous for each t E J and the function

f(.,x,y)’JX is strongly measurable (see [12, p. 116]) for each x,y X.
(H3) For every positive constant k there exists ck G LI(j) such that

sup II f(t,x, y)II _< k(t) for almost all t G J.
I111, I111 <_

(H4) There exists a continuous function m:J[0, oe) such that

II f(t, u, v)II rn(t)a( II II + II v II ), t J, u, v e X,

where a" (0, cxz)--,(O, oe)is a continuous nondecreasing function and

T

M(T + 1)I m(s)ds < i ftd(;)
0 c

with
c (M + M*)II 0 II / (1 + T)M II y0 II / (1 + T)M IIB II T II w- ill

T

[11 Xl [I + M I[ Xo II + M I[ Yo II + MT / m(s)f( II x()II + II x’()II
0

M sup{ l] C(t)II" e J}, and M* sup{ II AS(t)II" J}.
(H5) Bu(t)is continuous.

(H6) The linear operator W" L2(J,U)X defined by
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T

Wu / S(T- s)Bu(s)ds
0

has a bounded invertible operator W 1. XL2(j, U)/kerW.
(HT) C(t), t > 0 is compact.

Then the system (1) has a mild solution of the form (see [9])

x(t) C(t)xo + S(t)yo + / S(t- s)f(s, x(s), x’(s))ds
0

+ / S(t-s)Bu(s)ds.
0

(2)

Definition 2: The system (1) is said to be controllable on J if for every
xo E D(A), Yo E and xI X there exists a control u-L2(j,U)such that the
solution x(. of (1) satisfies x(T) x1.

3. Main Result

Theorem: Suppose (H1)-(HT) hold. Then system (1) is controllable on J.
Proof: Using (H6) for an arbitrary function x(. we define the control

tt(t) W l[x1 C(T)xo S(T)yo

T

S(T s)f(s, x(s), x’(s))ds](t).
0

Using this control we will show that the operator defined by

(Fx)(t) C(t)xo + S(t)yo + / S(t- s)f(s, x(s), x’(s))ds
0

+ ]" S(t s)BW l[x C(T)xo S(T)yo
0

T

S(T O)f(O, x(O), x’(O))dO](s)ds,
0

rE J,

has a fixed point. This fixed point is then a solution of Equation (2).
Clearly, (Fx)(T) Xl, which means that the control u steers the system from the

initial state x0 to x in time T, provided we obtain a fixed point of the nonlinear
operator F. Consider the space Z CI(J, X) with norm

In order to study the controllability problem for the system (1) we apply Lemma 3 to
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the following system

x"(t) AAx(t) + Af(t,x(t),x’(t)) + Bu(t), J, (0, 1).

Let x be a mild solution of system (3). Then from

we h&ve

x(t) A(C(t)xo + S(t)yo) + A f S(t- s)f(s, x(s), x’(s))ds
0

+ } (t 8)BW l[x1 C(T)x0 S(T)yo
0

T

/ S(T O)f(O, x(O), x’(O))dO](s)ds
0

II x(t) II <- M II Xo II + MT II Yo I] + MT f rn(s)( [I x(s) ]] + I[ x’(s) II )ds
0

+ MT2 II B II W-1 II x II + M II Xo [[ + MT I[ Yo [[

T

+ MT} m(s)( II x(s)II + ]1 x’(s)]1 )ds]
0

=_ K1 + MT} rn(s)( II x(s) II + II x’(s) I] )ds.
0

Denoting by v(t) the right-hand side of the above inequality we have

v(O) tt’l, II X(t) II --and

v’(t) + MTrn(t)a( II  (t)II + II  ’(t)II ), t e J.

On the other hand,

x’(t) [AS(t)xo + C(t)yo] + / C(t s)f(s, x(s), x’(s))ds
0

2r- / / C(t 8)BW l[x C(T)x0 S(T)yo
0

T

} S(T O)f(O,x(O),x’(O))dO](s)ds.
0

(3)
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Thus we have

II x’(t)II -< M* II Xo II + M II Yo I] + M/m(s)f( II x(s)II + II x’(s)II )ds
0

+ MT I] B ]1 ]1 W- 111[] x1 II + M II Xo II + MT ]l Yo II
T

+ MT / m(s)f( II x(s)]1 + II x’(s)II )ds]
0

K2 + M/ m(sDa( II x(s)II + II x’(s)II )ds.
0

Denoting by r(t) the right-hand side of the above inequality we have

,-(o) K, II ,’(t)II _< r(t)

and

r’(t) Mm(t)f( ]l x(t) II + II x’(t) II ), t E J.

Let

w(t) v(t) + (t), t e J.

Then

(o) v(O)+ r(o) c,

and

w’(t)-v’(t)+r’(t)

<_ MTm(t)a(w(t)) + Mm(t)a(w(t))

M(T + 1)m(t)a(w(t)), J.

This implies

w(t)

(o)

Z

f(s) <- M(T + 1) m(s)ds < a(s)’
J.

0 c

The last inequality implies that there is a constant K such that

(t)- (t)+ r(t)</’, e J.

Then
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I1 (t)II _< (t), t ,,

and hence

II x [[* max{ II a II, II ’ II } K,

where K depends only on T and on the functions m and ft.
We shall now prove that the operator F" Z-Z defined by

(r)(t) c(t)o + s(t)vo + / s(t- )I(, (), x’())
0-- / S(t s)BW l[x C(T)xo S(T)yo

0

T

/ S(T O)f(O, x(O), x’(O))dO](s)ds,
0

rE J,

is a completely continuous operator.
Let Bk-{xZ, Ilxll*_<k} for some k>_l. We first show that F maps Bk

into an equicontinuous family. Let x Bk and tl, t2 J. Then if 0 < tI < 2

_
T,

II(Fx)(tl)-(Fx)(t)ll IIC(tl)-C(ta)l[ Ilxoll + IlS(tl)-S(t)ll [lyoll

2

1

112:1 C(T)x0 S(T)y0

T

/ S(T O)f(O, x(O), x’(O))dO](s)ds II
0

_< II C(tl) C(t2)II II x0 II / II S(tl) S(t2)II II y0 l[
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1

/ / II S(tl s)- s(t2 s)[I Cek(S)ds
o t2

1

and similarly,

II S(tl s) s(t2 s)II II B II II W- 111111 xI II + M II o II + MT II yo II
T

+ MT/ ak(O)dO]ds
0

T

+ MT / ak(O)dO]ds,
0

(4)

[I (Fx)’(tl) (Fx)’(t2)[I <- II c’(tl) c’(t2)II I[ Xo II + II s’(tl) s’(t2)I[ II yo II
1

+ II / [C(tl s) C(t2 s)]f(s,x(s),x’(s))ds II
0 t2
/ II/ C(t s)f(s, x(s), x’(s))ds II

1 tl-- II f [C(tl s) C(t2 s)]BW l[x1 C(Z)x0 S(T)y0
0

T

/ S(T O)f(O, z(O), x’(O))dO](s)ds [I
0

2

+ II / c(t )BW- l[x C(T)xo S(T)yo

T

J S(T O)f(O, x(O), x’(O))dO](s)ds II
0

<- II A(S(tl)- S(t2))II II o II + II C(tl)- C(t2)[I II 0 II

II C(tl s)- c(t2 s)II
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I

2

2

II c(t- s)II ()d

T

+ MT/ ck(O)dO]ds
0

II c(t2- )II II B II W- 11111 x1 II + M II x0 II + MT II yo II
T

+ MT / ck(O)dO]ds.
0

(5)

The right-hand side of (4) and (5) are independent of y E B/C and tends to zero as
t2 -tl+0 since C(t) and S(t) are uniformly continuous for t E d. The compactness
of C(t) and co(t) for t > 0 imply the continuity in the uniform operator topology (or
norm topology, see [12, p. 182]). Furthermore, the compactness of co(t) follows from
that of C(t) (see [15]).

Thus F maps B/C into an equicontinuous family of functions. It is easy to see

that the family FB/C is uniformly bounded.
Next we show that FB/C is compact. Since we have shown that FB/C is an equi-

continuous collection, it suffices by the Arzela-Ascoli theorem to show that F maps

B/C into a precompact set in X.
Let 0<t_<T be fixed and let e be a real number satisfying 0<e<t. For

x G B/c we define

(F)(t) C(t)o + S(t)vo + / S(t- )f(, (), ’())
0

--[- / S(t- s)BW- 112:1
o

c()o s()o

T

S(T O)f(O, 2:(0), 2:’(O))dO](s)ds.
0

Since C(t) and S(t) are compact operators, the set Ye(t)- {(Fx)(t)’x B/C} is pre-
compact in X for every e, 0 < e < t. Moreover, for every x Bk, we have that

II (Fx)(t)- (Fex)(t)II / II s(t- s)f(s,x(s),x’(s))II d

/ / II s(t- )BW- l[x -C(T)x0 S(T)y0
t-e_



274 K. BALACHANDRAN and S. MARSHAL ANTHONI

and

T

/ S(T-O)f(O,x(O),x’(O))dO](s)II ds.

0

T

+ MT/ ak(O))dO]ds
0

II (F)’(t)- (F)’(t)II J II C(t- )f(s, re(s), m’(8))II d

+ f II c(t s)BW e[x1 C(T)xo S(T)yo

T

J S(T- O)f(O,x(O),x’(O))dO](s)II d.
0

_< / II c(t- )II k()d

+ / IIC(t-s)[[ IIBII [[W-11111 Ix111 +MI]zoll +MTllYoll
T

+ MT/ ak(O)dO]ds.
0

Therefore, there are precompact sets arbitrarily close to the set {(Fx)(t):x E Bk}.
Hence the set {(Fx)(t)’x Bk} is precompact in X.

It remains to show that F" ZZ is continuous. Let {xn} C_ Z with xnx in Z.
Then there is an integer qsuch that IlXn(t) ll <q, IIx’n(t) ll <qfr all n and tGJ,
so II (t)II _< q, II ’(t)II _< q and x,x’ e Z. By (H)

f(t, xn(t), x’n(t))---,f(t x(t), x’(t))

for each J and since

II f(t, xn(t),xn(t))- f(t,x(t),x’(t)) II 2aq(t),

we have by the dominated convergence theorem that

tl F II sup II J s(t s)[f(s, xn(s), X’n(S)) f(s, x(s), x’(s))]dsn
tEJ

0
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and

f S(t s)BW-
0

T

x / S(T O)[f(O, xn(O), x’(O)) f(O, x(O), x’(O))]dOds I]
0

T

II S(t- s)[f(S, Xn(S),X’n(s))- f(s,x(s),x’(s))] II ds
T

+ f II s(t- )BW-
0

T

x J S(T O)[f(O, x,(O), x’n(O)) f(O, x(O), x’(O))]dO II dsO
0

II (Fn)’- (F)’ II up II Z C(t 8)[f(s, xn(8), x(8)) f(, x(8), x’(8))]d8
tGJ

0

/ C(t- s)BW-1
o

T

x J S(T O)[f(O, xn(O), x’n(O)) f(O, x(O), x’(O))]dOds II
0
T

II c(t s)[f(s, x,(s), x’n(s)) f(s, x(s), x’(s))] II d
T

nt- ] II C(t- 8)BW-1
o

T

x j S(T O)[f(O, xn(O), x’n(O)) f(O, x(O), x’(O))]dO II dsO.
0

Thus F is continuous. This completes the proof that F is completely continuous.
Finally, the set (F)= {x E Z:x ,Fx, , e (0, 1)} is bounded as we proved it in

the first step. Consequently, by Schaefer’s theorem, the operator F has a fixed point
in Z. This means that any fixed point of F is a mild solution of (1) on J satisfying
(Fx)(t) x(t). Thus the system (1) is controllable on J.

4. Exaxnple

Consider the partial differential equation

z,(v, t) z,,(v, t) + (t, z(v, t), zt(v, t)) + (, t),

z(O, t) z(-, t) o,
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z(y,O)-- Zo(y), zt(y,0)- Zl(y), 0 < y < 7r, t e J-[0, T]. (6)

Now we have to show that there exists a control # which steers (6) from any specified
initial state to the final state in a Banach space X.

Let X- L2[0, r] and let A:XX be defined by

Aw w", wED(A),

where D(A)- {w X: w, w’ are absolutely continuous, w" X, w(0)- w(r)- 0}.
Then,

Aw E n2(w’ Wn)Wn’ w e D(A),
n--1

where wn(s V//rsinns, n 1,2, 3,... is the orthogonal set of eigenvalues of A.
It can be easily shown that A is the infinitesimal generator of a strongly contin-

uous cosine family C(t), t , in X given by

c(t)- cost(w, )w, e x,

and that the associated sine family is given by

S(t)w- E lgsinnt(w’wn)Wn
n=l

Let f: J x X x XX be define by

wEX.

f(t, v, w)(y) r(t, v(y), w(y)), v, w e X, y e [0, w],

where r" J [0, r] [0, ’]---[0, ’] is continuous and strongly measurable.
Let u: J---.U C X be defined by

((t))() ,(, t), e [0, ],

where #: [0, r] J-,[0, r] is continuous.
Assume that there exists a bounded invertible operator W -1 (with range

L(J, U)/kerW) such that
T

w j" S(T- )()d.
0

Further, the function r satisfies the following condition"
(H) There exists a continuous function p" g--,[0, )such that

where a: (0, oc)---(O, oc) is a continuous nondecreasing function and
T oc

0 c

where c is a known constant.
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With this choice of A, f and B= I, (1) is an abstract formulation of (6).
Furthermore, all the conditions stated in the above theorem are satisfied. Hence,
system (6) is controllable on J.
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