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We prove that in the sense of Baire category, almost all backward stochastic differential
equations (BSDEs) with bounded and continuous coefficient have the properties of exis-
tence and uniqueness of solutions as well as the continuous dependence of solutions on
the coefficient and the L2-convergence of their associated successive approximations.

1. Introduction

Let (Wt)0≤t≤1 be an r-dimensional Wiener process defined on a probability space (Ω,�,
P) and let (�t)0≤t≤1 denote the natural filtration of (Wt) such that �0 contains all P-null
sets of �. Let ξ be an �1-measurable d-dimensional square-integrable random variable.
Let f be an Rd-valued process defined on R+×Ω×Rd ×Rd×r with values in Rd such that
for all (y,z)∈Rd ×Rd×r , the map (t,ω)→ f (t,ω, y,z) is �t-progressively measurable. We
consider the following backward stochastic differential equation (BSDE):

(E f ,ξ)

Yt = ξ +
∫ 1

t
f
(
s,Ys,Zs

)
ds−

∫ 1

t
ZsdWs (0≤ t ≤ 1). (1.1)

Equation (E f ,ξ) is closely connected to stochastic optimal control (via the adjoint pro-
cess in the formulation of the Pontryagin maximum principle [5]) and to certain non-
linear partial differential equations (via nonlinear Feynmann-Kac formula [19, 20]); it
is also used in mathematical finance. The BSDEs are also studied for their mathematical
interest since nice problems still remain open.

Linear BSDEs were introduced by Bismut [5]. Pardoux and Peng [18] were the first
to consider general nonlinear BSDEs in the above form. They have proved that when
the coefficient f is globally Lipschitz, then the BSDE (E f ,ξ) has a unique adapted and
square-integrable solution. Moreover, the solution can be constructed by a successive
approximations procedure, see also [8]. Since the paper [18], several works have at-
tempted to weaken the Lipschitz condition on the coefficient f , see, for example, Mao
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[15], Hamadène [10], Lepeltier and San Martin [14], Dermoune et al. [7], and Kobylanski
[12] and the references therein. When the coefficient f is merely continuous, the ques-
tions of existence (and sometimes the uniqueness) of solutions have been partially solved
for one-dimensional equations, either by comparison techniques or by using a classical
transformation which removes the drift, see, for example, [7, 12, 14]. Stronger conditions
are required to obtain the uniqueness. Note that the techniques used in dimension one
do not work in the multidimensional case. Moreover, with the above-quoted techniques,
there is no information about the convergence of the Picard successive approximation
and, probably, this approximation does not converge in these situations.

In the multidimensional case, the questions of existence and uniqueness of solutions
still remain largely open. Up to our knowledge, except for the papers [2, 3, 15, 20], no re-
sults are known about when the coefficient is nonuniformly Lipschitz in the two variables
(y,z). Moreover, in [15, 20], the assumptions imposed on the coefficient are global.

Our approach is quite topological but it allows the derivation of some precise exam-
ples. More precisely, we consider the set of multidimensional BSDEs, with bounded and
continuous coefficients. We are then concerned with the prevalence, in the sense of Baire
categories, of BSDEs which have the properties of existence and uniqueness as well as the
stability of solutions and the L2-convergence of their associated successive approxima-
tions.

Prevalence questions were studied in many areas of mathematics (see, e.g., [1, 4, 6, 9,
11, 13, 16, 21, 22, 23]) and seem to take their origin from an earlier paper of Orlicz [16],
where it is shown that “most” ordinary differential equations with continuous coefficient
have unique solutions. In the theory of stochastic differential equations (SDE), the first
result in this direction is due to Skorokhod [23], where the author has used it also to
study the dependence of weak solutions on a parameter. The method developed in [23]
cannot be extended to BSDEs, since it needs the notion of solutions in the sense of law
and unfortunately this notion is actually not clear in BSDE’s theory.

In this paper, we give an analytic approach. We consider the space of bounded �t-
progressively measurable processes f (t,ω, y,z) which are continuous in (y,z) for almost
all (t,ω) and measurable in (t,ω) for all (y,z). We define an appropriate complete metric
on it and then look at the prevalence, in the sense of Baire categories, of the set of all f
such that

(1) the corresponding BSDE (E f ,ξ) has a unique solution;
(2) the approximate solutions, given by the successive approximations associated to

(E f ,ξ), converge to the unique solution of (E f ,ξ);
(3) the solutions of equation (E f ,ξ) (when they exist) are continuous with respect to

the coefficient f .

It is shown, by using the Baire categories theorem, that the set of coefficients f having
the above three properties is a set of a second category of Baire. See Definition 2.2 be-
low for the Baire category sets and Oxtoby’s book [17] for more details on this subject.
Since a set of the second category in a Baire space contains “almost all” the points of the
space, it may be thought of as the topological analogue of the measure-theoretical con-
cept of a set whose complement is of measure zero. Our results state that, in some sense,
almost all BSDEs with bounded continuous coefficient have solutions which satisfy the
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above properties (1), (2), and (3). We do not impose any boundedness condition on the
terminal data ξ which is assumed to be square-integrable only.

The paper is organized as follows. Section 2 introduces some notations and defini-
tions. Section 3 is devoted to the continuous dependence of solutions with respect to the
coefficient. In Section 4, we deal with the continuous dependence of the solutions with
respect to the coefficient. Section 5 is devoted to the convergence of the Picard successive
approximations.

2. Notations and definitions

We denote by � the set of (Rd ×Rd×r)-valued processes (Y ,Z) defined on R+×Ω, which
are �t-adapted and such that

∥∥(Y ,Z)
∥∥2 = E

(
sup

0≤t≤1

∣∣Y(t)
∣∣2

+
∫ 1

0

∣∣Z(s)
∣∣2
ds
)
< +∞. (2.1)

(�,‖ · ‖) is a Banach space.

Definition 2.1. A solution of equation (E f ,ξ) is a pair (Y ,Z) which belongs to the space
(�,‖ · ‖) and satisfies (E f ,ξ).

Throughout the paper, the solutions of equation (E f ,ξ) will be denoted by (Y f ,Z f ).
For a given real number M > 0, we denote by � the set of functions f (t,ω, y,z), defined
on R+ ×Ω×Rd ×Rd×r with values in Rd, which are continuous in (y,z) for almost all
(t,ω), measurable in (t,ω) for all (y,z) and such that esssup(t,ω,y,z) | f (t,ω, y,z)| ≤M. Let
� be the subset of � consisting of functions f which are Lipschitz in (y,z).

Definition 2.2. A Baire space is a separated topological space in which all countable in-
tersections of dense open subsets are dense also. Let T be a Baire space. A subset F of
T is said to be meager (or a first-category set in the Baire sense) if it is contained in a
countable union of closed nowhere dense subsets of T . The complement of a meager set
is called a residual (or a second-category set).

3. Prevalence of existence and uniqueness

Since f is bounded, we can assume without loss of generality that ξ = 0. Indeed, let
(Y ,Z) be a solution of the BSDE (E f ,ξ). By Itô’s representation theorem, there exists a
predictable process Z′ such that E(ξ/�t)= ξ +

∫ t
0 Z

′
s dWs. Thus, Yt −E(ξ/�t)=

∫ 1
t f (s,Ys,

Zs)ds−
∫ 1
t (Zs − Z′s )dWs. Define Y ′′t := Yt − E(ξ/�t), Z′′t := Zt − Z′t , and f ′′(s,u,v) :=

f (s,u + E(ξ/�s),v + Z′s ). It is not difficult to see that (Y ,Z) is a solution to the BSDE
(E( f ,ξ)) if and only if (Y ′′,Z′′) is a solution to the BSDE (E( f ′′,0)).

As a consequence, the terminal condition will play no role in our situation. Hence, we
consider BSDEs with ξ = 0.

We denote by �e the set of processes f ∈� for which equation (E f ,0) has a (not nec-
essarily unique) solution and by �1 the subset of � which consists of all functions f for
which equation (E f ,0) has a unique solution.
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Theorem 3.1. �1 is a residual set in the Baire space (�,ρ).

To prove this theorem we need some lemmas.

Lemma 3.2. Endowed with the distance

ρ( f ,g)=
∞∑
n=1

(
1
2n

) (
E
∫ 1

0 sup|y|,|z|≤n
∣∣ f (s, y,z)− g(s, y,z)

∣∣2
ds
)1/2

1 +
(
E
∫ 1

0 sup|y|,|z|≤n
∣∣ f (s, y,z)− g(s, y,z)

∣∣2
ds
)1/2 , (3.1)

(�,ρ) is a complete metric space in which � is dense.

The above lemma can be proved by truncation and regularization.

Lemma 3.3. Let f be an element of � and let ( fn)n∈N be a sequence in �e. Let (ξn)n∈N be a
sequence of square-integrable random variables which are �1-measurable. Assume that

ρ
(
fn, f

)−→ 0, E
(∣∣ξn− ξ

∣∣2)−→ 0, as n−→∞. (3.2)

Then (Y fn ,Z fn) converges to (Y f ,Z f ) in (�,‖ · ‖).

Proof. Without loss of generality, we may suppose that ξ = ξn = 0 for each n. Let (Y f ,Z f )
(resp., (Y fn ,Z fn)) be a solution of equation (E f ,0) (resp., (E fn,0)). Itô’s formula shows that

∣∣∣Y fn
t −Y

f
t

∣∣∣2
+
∫ 1

t

∣∣∣Z fn
s −Z

f
s

∣∣∣2
ds

= 2
∫ 1

t

(
Y

fn
s −Y

f
s

)∗(
fn
(
s,Y

fn
s ,Z

fn
s

)
− f

(
s,Y

f
s ,Z

f
s

))
ds

−
∫ 1

t

(
Y

fn
s −Y

f
s

)∗(
Z

fn
s −Zs

)
dWs,

(3.3)

where (Y
fn
s −Y

f
s )∗ denotes the transpose of the vector (Y

fn
s −Y

f
s ). Let α be an arbitrary

number in R∗
+ and let L be the Lipschitz constant of the function f . For a given positive

number N , let AN
n = {(s,ω); |Y fn

s |2 + |Z fn
s |2 + |Y f

s |2 + |Z f
s |2 ≥N2} and A

N
n =Ω \AN

n , and
denote by �E the indicator function of the set E. Using Young and Chebychev inequalities
and the fact that f is uniformly Lipschitz, we get

E
(∣∣∣Y fn

t −Y
f
t

∣∣∣2
)

+E
∫ 1

t

∣∣∣Z fn
s −Z

f
s

∣∣∣2
ds

≤ E
∫ 1

t

∣∣∣Y fn
s −Y

f
s

∣∣∣(∣∣∣ fn(s,Y fn
s ,Z

fn
s

)
− f

(
s,Y

f
s ,Z

f
s

)∣∣∣)ds
≤ 2α2E

∫ 1

t

∣∣∣Y fn
s −Y

f
s

∣∣∣2
ds

+
2
α2

E
∫ 1

t

∣∣∣ fn(s,Y fn
s ,Z

fn
s

)
− f

(
s,Y

f
s ,Z

f
s

)∣∣∣2
�AN

n
ds

+
2
α2

E
∫ 1

t

(∣∣∣ fn(s,Y fn
s ,Z

fn
s

)
− f

(
s,Y

f
s ,Z

f
s

)∣∣∣2
)

�A
N
n (s)ds
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≤ 2α2E
∫ 1

t

∣∣∣Y fn
s −Y

f
s

∣∣∣2
ds

+
8M2

α2

1
N2

E
∫ 1

t

(∣∣∣Y fn
s

∣∣∣2
+
∣∣∣Z fn

s

∣∣∣2
+
∣∣∣Y f

s

∣∣∣2
+
∣∣∣Z f

s

∣∣∣2
)
ds

+
4
α2

E
∫ 1

t

∣∣∣ fn(s,Y fn
s ,Z

fn
s

)
− f

(
s,Y

fn
s ,Z

fn
s

)∣∣∣2
�A

N
n (s)ds

+
4
α2

E
∫ 1

t

∣∣∣ f (s,Y fn
s ,Z

fn
s

)
− f

(
s,Y

f
s ,Z

f
s

)∣∣∣2
�A

N
n (s)ds

≤ 2α2E
∫ 1

t

∣∣∣Y fn
s −Y

f
s

∣∣∣2
ds+

8M2K

α2

1
N2

+
4
α2

(
2Nρ

(
fn, f

)
1− 2Nρ

(
fn, f

))2

ds

+
4
α2

L2E
∫ 1

t

∣∣∣Y fn
s −Y

f
s

∣∣∣2
ds+

4
α2

L2E
∫ 1

t

∣∣∣Z fn
s −Z

f
s

∣∣∣2
ds,

(3.4)

where K is a constant which depends only on M.
We choose α such that 4L2/α2 < 1, then we use Gronwall lemma to get E(|Y fn(t)−

Y f (t)|2) ≤ [(4/α2)(2Nρ( fn, f )/1− 2Nρ( fn, f ))2 + (8M2K/α2)(1/N2)]exp(2α2 + 1). We
use Burkholder-Davis-Gundy inequality to show that a positive constant C = C(α,L) ex-
ists such that

E
(

sup
0≤t≤1

∣∣Y fn(t)−Y f (t)
∣∣2
)
≤ C

[
4
α2

(
2Nρ

(
fn, f

)
1− 2Nρ

(
fn, f

))2

+
8M2K

α2

1
N2

]
exp

(
2α2 + 1

)
,

E
∫ 1

0

∣∣∣Z fn
s −Z

f
s

∣∣∣2
ds≤ C

[
4
α2

(
2Nρ

(
fn, f

)
1− 2Nρ

(
fn, f

))2

+
8M2K

α2

1
N2

]
exp

(
2α2 + 1

)
.

(3.5)

Lemma 3.3 follows by passing to the limit first on n and next on N . �

Now, we define the oscillation function Dδ : �→R+ as follows:

Dδ( f )= sup
{
d
((
Y f1 ,Z f1

)
,
(
Y f2 ,Z f2

))
; fi ∈� and ρ( f , fi) < δ for i= 1,2

}
,

De( f )= lim
δ→0

Dδ( f ).
(3.6)

We then have the following lemma.

Lemma 3.4. (i) If f belongs to �, then De( f )= 0.
(ii) The function De is upper semicontinuous on �.

Proof. Assertion (i) is a consequence of Lemma 3.3. We prove assertion (ii). Let ( fn) be a
sequence in � converging to a limit f , which belongs to �. Assume that limn→∞De( fn) >
0. Then there exist ε > 0 and a subsequence (nk) such that, for each k, there exist two
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sequences ( f 1
nk ) and ( f 2

nk ) in �, which satisfy

ρ
(
fnk , f

1
nk

)
<

1
nk

, ρ
(
fnk , f

2
nk

)
<

1
nk

, (3.7)

d
((

Y f 1
nk ,Z f 1

nk

)
,
(
Y f 2

nk ,Z f 2
nk

))
> ε. (3.8)

Thus, (3.7) and Lemma 3.3 imply that limk→∞d((Y f 1
nk ,Z f 1

nk ),(Y f 2
nk ,Z f 2

nk )) = 0. This con-
tradicts (3.8). Assertion (ii) is proved. �

The following proposition gives a sufficient condition which ensures the existence of
solutions to the BSDE (E f ,0).

Proposition 3.5. If De( f )= 0 for an f in �, then equation (E f ,0) has at least one solution
in �.

Proof. Let f ∈�. Since De( f )= 0, then there exists a decreasing sequence of strictly pos-
itive numbers δn (δn ↓ 0) such that

sup
{
d
((
Y f1 ,Z f1

)
,
(
Y f2 ,Z f2

))
; fi ∈� and ρ

(
f , fi

)
< δn for i= 1,2

}
<

1
n
. (3.9)

But Lemma 3.2 implies that for each n ∈ N∗, there exists fn ∈ � such that ρ( fn, f ) <
δn. Since δn decreases, it follows from (3.9) that d((Y fn ,Z fn),(Y fm ,Z fm)) < sup(1/m,1/n).
Hence (Y fn ,Z fn)n∈N is a Cauchy sequence in the Banach space (�,‖ · ‖). Let (Y ,Z) be its
limit. We will show that (Y ,Z) satisfies equation (E f ,0). We immediately have

lim
n→∞E

(
sup

0≤s≤1

∣∣Y fn(s)−Y(s)
∣∣2
)
= 0, (3.10)

lim
n→∞E

∫ 1

0

∣∣Z fn(s)−Z(s)
∣∣2
ds= 0. (3.11)

From (3.11) we get that, for each t ∈ [0,1],

lim
n→∞

∫ 1

t
Z fn(s)dWs =

∫ 1

t
Z(s)dWs in probability. (3.12)

Moreover, (3.10) and (3.11) imply that there exists a subsequence (nk) such that

(
Y fnk ,Z fnk

)
converges to (Y ,Z) dP×dt -a.e. (3.13)

It remains now to prove that, for each t ∈ [0,1],

lim
n→∞

∫ 1

t
fnk
(
s,Y fnk (s),Z fnk (s)

)
ds=

∫ 1

t
f
(
s,Y(s),Z(s)

)
ds in probability. (3.14)
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Without loss of generality, we may assume that (3.13) holds without extracting subse-
quence. Let N be an arbitrary positive number. Since both fn and f are bounded by M,
we can show that

E
∣∣∣∣
∫ 1

t
fn
(
s,Y fn(s),Z fn(s)

)
ds−

∫ 1

t
f
(
s,Y(s),Z(s)

)
ds
∣∣∣∣

≤ E
∫ 1

t

∣∣ fn(s,Y fn(s),Z fn(s)
)− f

(
s,Y fn(s),Z fn(s)

)∣∣ds
+E

∫ 1

0

∣∣ f (s,Y fn(s),Z fn(s)
)− f

(
s,Y(s),Z(s)

)∣∣ds
≤ E

∫ 1

0
sup

|y|,|z|≤N

∣∣ fn(s, y,z)− f (s, y,z)
∣∣ds+

2M
N

+E
∫ 1

0

∣∣ f (s,Y fn(s),Z fn(s)
)− f

(
s,Y(s),Z(s)

)∣∣ds
= I1(n) +

2M
N

+ I2(n).

(3.15)

Lemma 3.2 shows that limn→∞ I1(n) = 0. On the other hand, since f ∈ �, then (3.13)
implies that f (·,Y fn(·),Z fn(·)) converges to f (·,Y(·),Z(·)), dP× ds-a.e. Hence, the Le-
besgue dominated convergence theorem shows that limn→∞ I2(n) = 0. Proposition 3.5 is
proved. �

Proof of Theorem 3.1. Lemma 3.2 and assertions (i) and (ii) of Lemma 3.4 imply that, for
each integer n, the set �n = { f ∈�; De( f ) < 1/n} is a dense open subset of (�,ρ). Then,
by the Baire categories theorem, the set � =⋂n∈N∗ �n is a dense Gδ subset of the Baire
space (�,ρ). Moreover, if f ∈ �, then Proposition 3.5 implies that the corresponding
equation (E f ,0) has one solution. Hence, � ⊂�e. This implies that �e is a residual subset
in (�,ρ).

To prove that �1 is residual, we define the function Du : �→ R+ as follows: Du( f ) =
sup{d((Y

f
1 ,Z

f
1 ),(Y

f
2 ,Z

f
2 ));(Y

f
i ,Z

f
i ) is a solution to equation (E f ,0), i= 1,2} and for each

n∈N∗, we put �n = { f ∈ �; Du( f ) < 1/n}. By using Lemma 3.3, we see, as in the proof
of Lemma 3.4(ii), that the function Du is upper semicontinuous on �. This implies that
each �n contains the intersection of � and a dense open subset of (�,ρ). Thus, the set
� =⋂n∈N∗ �n contains a dense Gδ subset of the Baire space (�,ρ). Hence, it is residual
in (�,ρ). Finally, if f ∈�, then the corresponding equation (E f ,0) has a unique solution.
Thus, � ⊂�1. Theorem 3.1 follows. �

Examples. In this section, we give two examples of BSDEs with nonuniformly Lipschitz
coefficient and for which the existence and uniqueness hold. The proof follows as a di-
rect application of Proposition 3.5. This shows that the sufficient condition given by the
oscillation function De( f )= 0 is not only theoretical but can also be applied to concrete
cases.
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Corollary 3.6. Let f ∈� and let ξ be a square-integrable random variable. Assume more-
over that f satisfies the following hypothesis:

(H1) for every N ∈ N∗, there exists a constant LN > 0 such that | f (t,ω, y,z)− f (t,ω,
y′,z′)| ≤ LN (|y − y′|+ |z− z′|), P-a.s., a.e. t ∈ [0,1], and for all y, y′, z, z′ such
that |y| ≤N , |y′| ≤N , |z| ≤N , |z′| ≤N .

If LN = �(
√

logN), then equation (E f ,0) has a unique solution.

Proof. Let δ > 0 and f1, f2 ∈� be such that ρ( f , fi) < δ, i= 1,2. Arguing as in the proof
of Lemma 3.3, we show that there exists a constant C = C(M,ξ) > 0 such that

E
(

sup
0≤t≤1

∣∣∣Y f1
t −Y

f2
t

∣∣∣2
)

≤ C

[
2Nρ2

(
f1, f

)
1− 2Nρ2

(
f1, f

) +
2Nρ2

(
f2, f

)
1− 2Nρ2

(
f2, f

) +
1(

L2
N

)
N2

]
exp

(
2L2

N

) (3.16)

for each N such that N > 1 and ρ( f , fi) < 1/2N .

Since ρ( fi, f ) < δ and LN = �(
√

logN), we deduce that

Dδ( f )≤ C

[
2Nδ2

1− 2Nδ2
+

1
L2
N

]
. (3.17)

Letting δ→ 0 and N →∞, we deduce that De( f )= 0. Corollary 3.6 is proved. �

Corollary 3.7. Let f ∈� and let ξ be a square-integrable random variable. Assume more-
over that f satisfies the following hypotheses:

(H2) for every N ∈ N, there exists a constant µN ∈ R such that 〈y − y′, f (t,ω, y,z)−
f (t,ω, y′,z)〉 ≤ µN |y− y′|2, P-a.s., a.e. t ∈ [0,1], and for all y, y′, z such that |y| ≤
N , |y′| ≤N , |z| ≤N ;

(H3) for everyN ∈N, there exists a constant LN > 0 such that | f (t,ω, y,z)− f (t,ω, y,z′)|≤
LN |z − z′|, P-a.s., a.e. t ∈ [0,1], and for all y, z, z′ such that |y| ≤ N , |z| ≤ N ,
|z′| ≤N .

If µ+
N +L2

N = �(logN), then (E( f ,ξ)) has a unique solution.

Proof. Let δ > 0 and f1, f2 ∈� be such that ρ( f , fi) < δ, i= 1,2. Arguing as in the proof
of Lemma 3.3, we show that there exists a constant C = C(M,ξ) > 0 such that

E
(

sup
0≤t≤1

∣∣∣Y f1
t −Y

f2
t

∣∣∣2
)

≤ C
[
ρ2
N

(
f1− f

)
+ ρ2

N

(
f2− f

)
+

1(
2µ+

N +L2
N

)
N2

]
exp

(
2µ+

N +L2
N

) (3.18)

for each N such that N > 1 and ρ( f , fi) < 1/2N .
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Since ρ( fi, f ) < δ and µ+
N +L2

N = �(logN), we deduce that

Dδ( f )≤ 2C

[
2Nδ2

1− 2Nδ2
+

1
2µ+

N +L2
N

]
. (3.19)

Letting δ→ 0 and N →∞, we deduce that De( f )= 0. Corollary 3.7 is proved. �

4. Continuous dependence on the coefficient

For a given f ∈�, we denote by S f = (Y f ,Z f ) the solution of (E f ,0) when it exists.

Theorem 4.1. There exists a second-category set �2 such that the map S : �2 →�, given by
S f = (Y f ,Z f ), is well defined and continuous at each point of �2.

Proof. We will show that S is continuous on � (the dense Gδ set which has been defined
in the proof of Theorem 3.1). Suppose the contrary. Then there exist f ∈ �, ε > 0, and a
sequence ( fp)⊂� such that

lim
p→∞ρ

(
fp, f

)= 0, d
(
S fp,S f

)≥ ε, for each p. (4.1)

Fix n∈N such that ε < 1/n. Since � ⊂�, then there exist a decreasing sequence of strictly
positive numbers δn (δn ↓ 0) and a sequence of functions gn ∈� such that

ρ
(
gn, f

)
< δn, d

(
Sgn,S f

)
<

1
n
. (4.2)

We choose p large enough so as to have ρ( fp, f ) < δn− ρ(gn, f ), then we use (4.2) to ob-
tain ρ( fp,gn)<δn. Therefore, d(S fp,Sgn) < 1/n. Thus, d(S fp,S f )≤d(S fp,Sgn)+d(Sgn,S f )
< 1/n+ 1/n < (2/3)ε, which contradicts (4.1). Theorem 4.1 is proved. �

5. The Picard successive approximations

For a given f ∈ �, we denote by (Y
f
n ,Z

f
n ) the sequence of processes defined by the fol-

lowing equation:

(E
f
n )

Y
f

0 (t)= Z
f

0 (t)= 0, Y
f
n+1(t)=

∫ 1

t
f
(
s,Y

f
n (s),Z

f
n (s)

)
ds−

∫ 1

t
Z

f
n+1(s)dWs. (5.1)

Itô’s representation theorem shows that the sequence (Y
f
n ,Z

f
n ) is well defined for each

n. Let �3 be the subset of � of all those f ∈ � such that the corresponding sequence

(Y
f
n ,Z

f
n ), defined by (E

f ,0
n ), converges in (�,‖ · ‖) to a solution (Y f ,Z f ) of equation

(E f ,0).

Theorem 5.1. The set �3 is residual in (�,ρ).

To prove this theorem, we need the following lemma which is the analogue of the
previous Lemma 3.3.
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Lemma 5.2. Let f be an element of � and let ( fp)p∈N be a sequence in �3. Denote by

(Y
f
n ,Z

f
n ) (resp., (Y

fp
n ,Z

fp
n )) the sequence defined by equation (E

f
n ) (resp., (E

fp
n )). Assume

that ρ( fp, f )→ 0 as p→∞. Then limp→∞ supn∈N
‖(Y

fp
n ,Z

fp
n )− (Y

f
n ,Z

f
n )‖ = 0.

Proof. Let (Y
f
n ,Z

f
n ) (resp., (Y

fp
n ,Z

fp
n )) be a solution of equation (E

f
n ) (resp., (E

fp
n )). Itô’s

formula shows that

E
(∣∣∣Y fp

n+1(t)−Y
f
n+1(t)

∣∣∣2
)

+E
∫ 1

t

∣∣∣Z fp
n+1(s)−Z

f
n+1(s)

∣∣∣2
ds

= 2E
∫ 1

t

(
Y

fp
n+1(s)−Y

f
n+1(s)

)∗(
fp
(
s,Y

fp
n (s),Z

fp
n (s)

)
− f

(
s,Y

f
n (s),Z

f
n (s)

))
ds,

(5.2)

where (Y
fp
n+1(s)−Y

f
n+1(s))∗ denotes the transpose of the vector (Y

fp
n+1(s)−Y

f
n+1(s)). Let α

be an arbitrary number in R∗
+ and let L be the Lipschitz constant of the function f . For a

given positive number N , let AN
n,p = {(s,ω); |Y fp

n (s)|2 + |Z fp
n (s)|2 + |Y f

n (s)|2 + |Z f
n (s)|2 ≥

N2} and A
N
n,p =Ω \AN

n,p, and denote by �E the indicator function of the set E. Arguing
as in the proof of Lemma 3.3, we obtain the following inequalities:

E
(∣∣∣Y fp

n+1(t)−Y
f
n+1(t)

∣∣∣2
)

+E
∫ 1

t

∣∣∣Z fp
n+1(s)−Z

f
n+1(s)

∣∣∣2
ds

≤ 2α2E
∫ 1

t

∣∣∣Y fp
n+1(s)−Y

f
n+1(s)

∣∣∣2
ds

+
2
α2

E
∫ 1

t

∣∣∣ fp(s,Y fp
n (s),Z

fp
n (s)

)
− f

(
s,Y

f
n (s),Z

f
n (s)

)∣∣∣2
�AN

n,p
ds

+
2
α2

E
∫ 1

t

(∣∣∣ fp(s,Y fp
n (s),Z

fp
n (s)

)
− f

(
s,Y

f
n (s),Z

f
n (s)

)∣∣∣2
)

�A
N
n,p
ds

≤ 2α2E
∫ 1

t

∣∣∣Y fp
n+1(s)−Y

f
n+1(s)

∣∣∣2
ds

+
8M2

α2

1
N2

E
∫ 1

t

(∣∣∣Y fp
n (s)

∣∣∣2
+
∣∣∣Z fp

n (s)
∣∣∣2

+
∣∣∣Y f

n (s)
∣∣∣2

+
∣∣∣Z f

n (s)
∣∣∣2
)
ds

+
4
α2

E
∫ 1

t

∣∣∣ fp(s,Y fp
n (s),Z

fp
n (s)

)
− f

(
s,Y

fp
n (s),Z

fp
n (s)

)∣∣∣2
�A

N
n,p
ds

+
4
α2

E
∫ 1

t

∣∣∣ f (s,Y fp
n (s),Z

fp
n (s)

)
− f

(
s,Y

f
n (s),Z

f
n (s)

)∣∣∣2
�A

N
n,p
ds

≤ 2α2E
∫ 1

t

∣∣∣Y fp
n+1(s)−Y

f
n+1(s)

∣∣∣2
ds

+
8M2K

α2

1
N2

+
4
α2

( 2Nρ
(
fp, f

)
1− 2Nρ

(
fp, f

))2

ds

+
4
α2

L2E
∫ 1

t

∣∣∣Y fp
n (s)−Y

f
n (s)

∣∣∣2
ds+

4
α2

L2E
∫ 1

t

∣∣∣Z fp
n (s)−Z

f
n (s)

∣∣∣2
ds,

(5.3)

where K is a constant which depends only on M.
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We put ϕ
p
n(t)= supt≤u≤1E(|Y fp

n (u)−Y
f
n (u)|2) +E

∫ 1
t |Z

fp
n (s)−Z

f
n (s)|2ds, then we have

ϕ
p
n+1(t)≤ 2α2

∫ 1

t
ϕ
p
n+1(s)ds+

4L2

α2
ϕ
p
n(t) +

8M2K

α2

1
N2

+
4
α2

( 2Nρ
(
fp, f

)
1− 2Nρ

(
fp, f

))2

(5.4)

and Gronwall lemma implies that

ϕ
p
n+1(t)≤ 4L2

α2
ϕ
p
n(t)exp2α2(1− t) +

[
8M2K

α2

1
N2

+
4
α2

( 2Nρ
(
fp, f

)
1− 2Nρ

(
fp, f

))2
]

exp2α2.

(5.5)

If we choose α2 = 12L2 and t sufficiently close to 1 so as to have exp(24L2(1− t)) ≤ 3/2,
we obtain

ϕ
p
n+1(t)≤ 1

2
ϕ
p
n(t) +

[
8M2K

12L2

1
N2

+
4

12L2

( 2Nρ
(
fp, f

)
1− 2Nρ

(
fp, f

))2
]

exp
(
24L2). (5.6)

Since ϕ
p
0 (t)= 0 for each t and p, we deduce that

sup
n∈N

ϕ
p
n(t)≤

[
8M2K

12L2

1
N2

+
4

12L2

( 2Nρ
(
fp, f

)
1− 2Nρ

(
fp, f

))2
]

exp
(
24L2). (5.7)

We successively pass to the limit in p and N to get limp→∞ supn∈N
ϕ
p
n(t)= 0 for each t such

that exp(24L2(1− t))≤ 3/2. Iterating this procedure on the subintervals [ti, ti+1] such that
exp(24L2(ti+1− ti))≤ 3/2, we obtain limp→∞ supn∈N

ϕ
p
n(t)= 0 for each t ∈ [0,1]. To finish

the proof, we use Burkholder-Davis-Gundy inequality. Lemma 5.2 is proved. �

Proof of Theorem 5.1. Let f ′ ∈ � and k ∈ N∗. By Lemma 5.2, there exists δ( f ′,k) > 0

such that, for every f ∈ � satisfying ρ( f ′, f ) < δ( f ′,k), the inequality ‖(Y
f ′
n ,Z

f ′
n ) −

(Y
f
n ,Z

f
n
)‖ < 1/k holds. By Lemma 3.2 and the Baire categories theorem, the set �1 =⋂

k

⋃
f ′∈�{ f ∈ �; ρ( f ′, f ) < δ( f ′,k)} is a dense Gδ subset in the Baire space (�,ρ). We

will prove that for each f ∈ �1, the sequence (Y
f
n ,Z

f
n ) defined by (E

f
n ) converges, in

(�,‖ · ‖), to a solution of equation (E f ,0). Let f ∈ �1 and ε > 0. We use Lemma 5.2 and

the fact that the sequence (Y
f ′
n ,Z

f ′
n ) converges for f ′ ∈� to show that a positive number

N0 exists such that, for any n,m≥N0, the following inequality holds:

∥∥∥(Y f
n ,Z

f
n

)
−
(
Y

f
m,Z

f
m

)∥∥∥≤ ∥∥∥(Y f
n ,Z

f
n

)
−
(
Y

f ′
n ,Z

f ′
n

)∥∥∥+
∥∥∥(Y f ′

n ,Z
f ′
n

)
−
(
Y

f ′
m ,Z

f ′
m

)∥∥∥
+
∥∥∥(Y f ′

m ,Z
f ′
m

)
−
(
Y

f
m,Z

f
m

)∥∥∥ < 3ε.
(5.8)

Hence, (Y
f
n ,Z

f
n ) is a Cauchy sequence in the Banach space (�,‖ · ‖), and so its con-

vergence follows. Let (Y ,Z) be its limit. We will show that (Y ,Z) satisfies equation (E f ,0).
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Since (Y
f
n ,Z

f
n ) converges to (Y ,Z) in the space (�,‖ · ‖), we immediately have

lim
n→∞E

(
sup

0≤t≤1

∣∣∣Y f
n+1(t)−Y(t)

∣∣∣2
)
= 0, lim

n→∞E
∫ 1

0

∣∣∣Z f
n+1(s)−Z(s)

∣∣∣2
ds= 0. (5.9)

We prove that limn→∞E
∫ 1

0 | f (s,Y
f
n (s),Z

f
n (s))− f (s,Y(s),Z(s))|2ds=0. Since f is bounded

by M, we have E(|Y f
n (t)|2) ≤M2, and then by Fatou’s lemma, we obtain E(|Y f

n (t)−
Y(t)|2)≤ 2M2. Hence, by (5.9), the sequence (Y

f
n ,Z

f
n ) converges to (Y ,Z) in L2([0,1]×

Ω). Since f is bounded and continuous, then limn→∞E
∫ 1
o | f (s,Y

f
n (s),Z

f
n (s))− f (s,Y(s),

Z(s))|2ds= 0. Theorem 5.1 is proved. �

Remark 5.3. The prevalence of the continuity of the solution with respect to the coeffi-
cient can also be proved via the Picard successive approximations.

Indeed, let � and �1 be the residual sets defined in the proofs of Theorems 3.1 and 5.1,
respectively. Put �2 :=�

⋂
�1 and let S : �3 →� be given by S f = (Y f ,Z f ). We will prove

that S is continuous in �2, the residual set defined in the proof of Theorem 5.1. Assume
the contrary holds. Then there exist f ∈�2, ε > 0, and a sequence ( fp)⊂�2 such that

lim
p→∞ρ

(
fp, f

)= 0,
∥∥S fp− S f

∥∥≥ ε, for each p. (5.10)

Let k ∈N∗ such that 1/k < ε/4. Since f ∈ �2 ⊂ �1, there exists a sequence (gk)⊂� such
that

ρ
(
gk, f

)
< δ
(
gk,k

)
. (5.11)

Hence, by Lemma 5.2, we have ‖(Y
gk
n ,Z

gk
n )− (Y

f
n ,Z

f
n )‖ < 1/k for each n∈N∗. Passing to

the limit on n, we show by using Theorem 5.1 that

∥∥Sgk − S f
∥∥≤ 1

k
. (5.12)

We choose p large enough such that ρ( fp, f ) < δ(gk,k)− ρ(gk, f ), then we use (3.8) and
the triangular inequality to get ρ( fp,gk) ≤ δ(gk,k). Hence, by using Lemma 3.3, we ob-

tain ‖(Y
gk
n ,Z

gk
n )− (Y

fp
n ,Z

fp
n )‖ < 1/k for each n ∈ N∗. We pass to the limit on n and use

Theorem 5.1 to get ‖Sgk − S fp‖ ≤ 1/k. Thus, ‖S fp − S f ‖ ≤ ‖S fp − Sgk‖+ ‖Sgk − S f ‖ ≤
2/k < ε/2, which contradicts (3.7).
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