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Let T: K — H be a mapping from a nonempty closed convex subset K of a finite-
dimensional Hilbert space H into H. Let f : K — R be proper, convex, and lower semi-
continuous on K and let h: K — R be continuously Frec¢het-differentiable on K with
h" (gradient of h), a-strongly monotone, and -Lipschitz continuous on K. Then the
sequence {x¥} generated by the general auxiliary problem principle converges to a solu-
tion x* of the variational inequality problem (VIP) described as follows: find an element
x* € K such that (T(x*),x —x*) + f(x) — f(x*) = 0 forall x € K.

1. Introduction

The class of partially relaxed monotone variational inequalities is more general than the
widely well-explored classes of strongly monotone as well as cocoercive variational in-
equalities in different space settings. As far as the solvability of this class of variational in-
equalities is concerned, in most of the cases, either projection or projection-type methods
have been applied to finite-dimensional settings, because most of the nice applications
happen to be in R". In this paper, based on the generalized auxiliary problem princi-
ple, we plan to present the approximation-solvability of variational inequality problems
(VIPs) involving partially relaxed cocoercive mappings, where the convergence analysis
is more involved even in finite-dimensional settings than projection-type methods. As
Frechet-differentiable functions play a pivotal role in developing a general framework for
the auxiliary problem principle, these investigations are new and in certain cases comple-
ment the work of El Farouq [7], Verma [21], and others. For more details on variational
method, we recommend [1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22].

Let H be a finite-dimensional Hilbert space with the inner product (-, -) and the norm
|| - |l on H. We consider the VIP as follows: determine an element x* € K such that

(T(x*),x—x*)+ f(x)— f(x*) =0, VxeK, (1.1)
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where K is a nonempty closed convex subset of H and f : K — R is a function on K. For
f =0in (1.1), it reduces to the problem: find an element x* € K such that

(T(x*),x—x*) =0, VxeKk. (1.2)

We need now to define and in some cases to upgrade the existing notions in the liter-
ature. A mapping T : K — H is said to be monotone if

(T(x)=T(y),x—y)=0, Vx,yeK (1.3)
The mapping T is a-strongly monotone if there exists a constant « > 0 such that
(T(x)-T(y)x—y)=allx—yl?>, Vx,y€eK. (1.4)
The mapping T is y-cocoercive if there exists a constant y > 0 such that
(T(x)—T(y),x—y)=y||T(x)— T(y)||2, Vx,y € K. (1.5)
A mapping T': K — H is said to be pseudomonotone if
(T(y),x—y)=20= (T(x),x—y) =0, Vx,yeK. (1.6)
T :K — H is b-strongly pseudomonotone if
(T(y),x—y)=20= (T(x),x—y) = bllx—yl*>, Vx,y€eK (1.7)
T is c-pseudococoercive if there exists a constant ¢ > 0 such that
(T(hx—y)20= (Tx),x—y) = c|Tx) - T, VxyeK (1.8
T is quasimonotone if
(T(y),x—y) >0= (T(x),x—y) =0, Vx,y€K. (1.9)

T is L-relaxed monotone (also referred to as weakly monotone) if there exists a constant
L >0 such that

(T(x)=T(y)x—y)=(-L)lx—yll>, Vx,yeK. (1.10)

T is hemicontinuous if, for all x, y,w € K, the function
te[0,1] — (T[y+tx—y)],w) (1.11)
is continuous. T is y-partially relaxed monotone if there exists a constant y > 0 such that

(T(x)—T(y)z—y) = (-p)llz—xl*>, Vx,y,z€K. (1.12)
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T is y-partially relaxed pseudomonotone if there exists a constant y > 0 such that
(T(y)yz—y) 20= (T(x),z—y) = (-p)llz—xl>, Vx,y,z€K. (1.13)

T is said to be y-r-partially relaxed cocoercive if there exist constants y,7 > 0 such that

2

(T(x) = T(y)z—y) = (=p)llz—xl>+7||T(x) - T (1.14)

This implies that T is y-partially relaxed monotone. T is said to be y-r-partially relaxed
pseudococoercive if

(T(y),z—y) 20 = (T(x),z—y) = —pllz— x> +7||T(x) - T(y)||2. (1.15)

2. Some auxiliary results

In this section, we recall some auxiliary results crucial to the approximation-solvability
of the VIP (1.1). Let h: H — R be a continuously Fréchet-differentiable mapping on a
Hilbert space H. It follows that ' (x) € L(H,R), the space of all bounded linear operators
from H into R. From now on, we will denote the real number i’ (x)(y) by (h'(x), y) for
x,y € H. The following result is a modified version of [2, Lemma 4.1].

LemMa 2.1. Let H be a Hilbert space and K a nonempty convex subset of H. Suppose that I,
the gradient of h: K — R, is a-strongly monotone on K, where h: K — R is a continuously
Fréchet-differentiable mapping.

Then, for all x,x* € K,

24

h(x) —h(x*) — (K (x*),x —x*) = (E>||x—x*||2. (2.1)

LemMma 2.2. Let H be a Hilbert space and K a nonempty convex subset of H. Suppose
that i’ (gradient of h) is 3-Lipschitz continuous, where h: K — R is continuously Fréchet-
differentiable. Then, for all x,x* € K, the following inequality holds:

h(x) —h(x*) — (K (x*),x —x*) < <§)||x—x*||2. (2.2)

3. General auxiliary problem principle

This section deals with a discussion of the approximation-solvability of the VIP (1.1)
based on the general auxiliary problem principle.

Algorithm 3.1. For a given iterate x*, determine x**! such that, for k > 0,
(pT (xF) + 1 (x*) — 1 (&F),x — ) +p[ f(x) - f(x**1)] =0, VxeK, (3.1)

where K is a nonempty closed convex subset of H.

For f =0 in Algorithm 3.1, we obtain the following algorithm.
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Algorithm 3.2. For a given iterate x, determine x**! such that, for k > 0,
(T(xF) + 1 (xF1) =B (x5),x —x*1) =0, VxeK, (3.2)

where K is a nonempty closed convex subset of H.

We are just about ready to present, based on Algorithm 3.1, the approximation-
solvability of the VIP (1.1).

TaeoreM 3.3. Let T : K — H be any y-r-partially relaxed cocoercive mapping from
a nonempty closed convex subset K of a finite-dimensional Hilbert space H into H. Let f :
K — R be proper, convex, and lower semicontinuous on K, and let h : K — R be continuously
Fréchet-differentiable on K with h' (gradient of h), a-strongly monotone, and f3-Lipschitz
continuous.

If, in addition, x* € K is a solution of the VIP (1.1), then

(1) 1T (x*) = T(x*)|| — 0 as k — oo;
(ii) the sequence {x*} generated by Algorithm 3.1 converges to x* for

o

2 (3.3)

O<p<

Proof. To show that the sequence {xk} converges to x*, a solution of the VIP (1.1), we
need to compute the estimates. We define a function A* by

A*(x):= h(x*) — h(x) — (K (x),x* — x). (3.4)

Then, on applying Lemma 2.1, we have
A*(x) := h(x*) —h(x) — (K (x),x* —x) = (%) [[x* —x||2, forx € K, (3.5)

where x* is a solution of the VIP (1.1). It follows that
AF (xk+1) — h(x*) _ h(xk+l) _ (h’ (Xk+l),x* _xk+1>' (3.6)

Now, we can write

AF (xk) —A* (xk+1) _ h(ka) —h(xk) _ (h'(xk),xk“ —xk)

+ (h'(xkﬂ) —h'(xk),x* _xk+1>
> (S It = 4 () = et =)
> (5 )t = ¥ (T (), 50T = %)

+p(f () f(x¥))

for x = x* in (3.1).
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If we replace x by x**! in (1.1), we obtain
((T(x*),xF —x*)) + £ (xF1) — £ (x*) > 0. (3.8)

Since T is y-r-partially relaxed cocoercive, it implies, in light of (3.8), that
A*(xF) = A% (x541) > (%)kaﬂ —xk||2+p<T(xk) ~ T (%), x5 —x*)

[24
> |5 |1t = I = pylltet = P prll T () - TP

i
2y’
(3.9)

= [g _P)’]”xk+1 _xk”z"'P”HT(Xk) - T(x*)||2, for p <

It follows from (3.9) that the sequence {A* (x*)} is strictly decreasing except for x<*1 =
x¥, and in that situation, x¥ is a solution to (1.1). Since the difference of two consecutive
terms of the sequence {A* (xF)} tends to zero as k — o, it implies that

|5 =Xk — 0, ||T(xF) = T(x*)]| — 0 ask — oo. (3.10)

On top of that, in light of (3.5), we have
(B = (%)A*(x"), (3.11)

and so the sequence {x} is bounded. Let x" be a cluster point of the sequence {x*}, that
is, there exists a subsequence {x*/} of the sequence {x*} such that {x*/} converges to x’.

We replace x* by x’ and define another function A’(x*). Then the analysis is still sim-
ilar to that of A*(x¥) and, as a result, the sequence {A’(x*)} strictly decreases, and by
Lemma 2.2, we have

A () < (g) [P (3.12)

Here, the sequence {A’ (xk1)} = 0. On the other hand, we have

2

A (x9) = (%) ||x5) — x’ (3.13)
This implies that x*/ — x’, and hence the entire sequence converges to x". This com-
pletes the proof. d

TaEOREM 3.4. Let T : K — H be a y-r-partially relaxed cocoercive mapping from a non-
empty closed convex subset K of a finite-dimensional Hilbert space H into H. Let h: K — R
be continuously Fréchet-differentiable on K with h' (gradient of h), a-strongly monotone,
and f3-Lipschitz continuous. If, in addition, x* € K is a solution of the VIP (1.2), then the
sequence {x*} generated by Algorithm 3.2 converges to x*.
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