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Let T : K → H be a mapping from a nonempty closed convex subset K of a finite-
dimensional Hilbert space H into H . Let f : K → R be proper, convex, and lower semi-
continuous on K and let h : K → R be continuously Frećhet-differentiable on K with
h′ (gradient of h), α-strongly monotone, and β-Lipschitz continuous on K . Then the
sequence {xk} generated by the general auxiliary problem principle converges to a solu-
tion x∗ of the variational inequality problem (VIP) described as follows: find an element
x∗ ∈ K such that 〈T(x∗),x− x∗〉+ f (x)− f (x∗)≥ 0 for all x ∈ K .

1. Introduction

The class of partially relaxed monotone variational inequalities is more general than the
widely well-explored classes of strongly monotone as well as cocoercive variational in-
equalities in different space settings. As far as the solvability of this class of variational in-
equalities is concerned, in most of the cases, either projection or projection-type methods
have been applied to finite-dimensional settings, because most of the nice applications
happen to be in Rn. In this paper, based on the generalized auxiliary problem princi-
ple, we plan to present the approximation-solvability of variational inequality problems
(VIPs) involving partially relaxed cocoercive mappings, where the convergence analysis
is more involved even in finite-dimensional settings than projection-type methods. As
Frećhet-differentiable functions play a pivotal role in developing a general framework for
the auxiliary problem principle, these investigations are new and in certain cases comple-
ment the work of El Farouq [7], Verma [21], and others. For more details on variational
method, we recommend [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22].

Let H be a finite-dimensional Hilbert space with the inner product 〈·,·〉 and the norm
‖ · ‖ on H . We consider the VIP as follows: determine an element x∗ ∈ K such that

〈
T
(
x∗),x− x∗

〉
+ f (x)− f

(
x∗
)≥ 0, ∀x ∈ K , (1.1)
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where K is a nonempty closed convex subset of H and f : K →R is a function on K . For
f ≡ 0 in (1.1), it reduces to the problem: find an element x∗ ∈ K such that

〈
T
(
x∗
)
,x− x∗

〉≥ 0, ∀x ∈ K. (1.2)

We need now to define and in some cases to upgrade the existing notions in the liter-
ature. A mapping T : K →H is said to be monotone if

〈
T(x)−T(y),x− y

〉≥ 0, ∀x, y ∈ K. (1.3)

The mapping T is α-strongly monotone if there exists a constant α > 0 such that

〈
T(x)−T(y),x− y

〉≥ α‖x− y‖2, ∀x, y ∈ K. (1.4)

The mapping T is γ-cocoercive if there exists a constant γ > 0 such that

〈
T(x)−T(y),x− y

〉≥ γ
∥∥T(x)−T(y)

∥∥2
, ∀x, y ∈ K. (1.5)

A mapping T : K →H is said to be pseudomonotone if

〈
T(y),x− y

〉≥ 0=⇒ 〈T(x),x− y
〉≥ 0, ∀x, y ∈ K. (1.6)

T : K →H is b-strongly pseudomonotone if

〈
T(y),x− y

〉≥ 0=⇒ 〈T(x),x− y
〉≥ b‖x− y‖2, ∀x, y ∈ K. (1.7)

T is c-pseudococoercive if there exists a constant c > 0 such that

〈
T(y),x− y

〉≥ 0=⇒ 〈T(x),x− y
〉≥ c

∥∥T(x)−T(y)
∥∥2

, ∀x, y ∈ K. (1.8)

T is quasimonotone if

〈
T(y),x− y

〉
> 0=⇒ 〈T(x),x− y

〉≥ 0, ∀x, y ∈ K. (1.9)

T is L-relaxed monotone (also referred to as weakly monotone) if there exists a constant
L > 0 such that

〈
T(x)−T(y),x− y

〉≥ (−L)‖x− y‖2, ∀x, y ∈ K. (1.10)

T is hemicontinuous if, for all x, y,w ∈ K , the function

t ∈ [0,1]−→ 〈T[y + t(x− y)
]
,w
〉

(1.11)

is continuous. T is γ-partially relaxed monotone if there exists a constant γ > 0 such that

〈
T(x)−T(y),z− y

〉≥ (−γ)‖z− x‖2, ∀x, y,z ∈ K. (1.12)
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T is γ-partially relaxed pseudomonotone if there exists a constant γ > 0 such that

〈
T(y),z− y

〉≥ 0=⇒ 〈T(x),z− y
〉≥ (−γ)‖z− x‖2, ∀x, y,z ∈ K. (1.13)

T is said to be γ-r-partially relaxed cocoercive if there exist constants γ,r > 0 such that

〈
T(x)−T(y),z− y

〉≥ (−γ)‖z− x‖2 + r
∥∥T(x)−T(y)

∥∥2
. (1.14)

This implies that T is γ-partially relaxed monotone. T is said to be γ-r-partially relaxed
pseudococoercive if

〈
T(y),z− y

〉≥ 0=⇒ 〈T(x),z− y
〉≥−γ‖z− x‖2 + r

∥∥T(x)−T(y)
∥∥2
. (1.15)

2. Some auxiliary results

In this section, we recall some auxiliary results crucial to the approximation-solvability
of the VIP (1.1). Let h : H → R be a continuously Fréchet-differentiable mapping on a
Hilbert space H . It follows that h′(x)∈ L(H ,R), the space of all bounded linear operators
from H into R. From now on, we will denote the real number h′(x)(y) by 〈h′(x), y〉 for
x, y ∈H . The following result is a modified version of [2, Lemma 4.1].

Lemma 2.1. Let H be a Hilbert space and K a nonempty convex subset of H . Suppose that h′,
the gradient of h : K → R, is α-strongly monotone on K , where h : K → R is a continuously
Fréchet-differentiable mapping.

Then, for all x,x∗ ∈ K ,

h(x)−h
(
x∗
)− 〈h′(x∗),x− x∗

〉≥
(
α

2

)∥∥x− x∗
∥∥2
. (2.1)

Lemma 2.2. Let H be a Hilbert space and K a nonempty convex subset of H . Suppose
that h′ (gradient of h) is β-Lipschitz continuous, where h : K → R is continuously Fréchet-
differentiable. Then, for all x,x∗ ∈ K , the following inequality holds:

h(x)−h
(
x∗
)− 〈h′(x∗),x− x∗

〉≤
(
β

2

)∥∥x− x∗
∥∥2
. (2.2)

3. General auxiliary problem principle

This section deals with a discussion of the approximation-solvability of the VIP (1.1)
based on the general auxiliary problem principle.

Algorithm 3.1. For a given iterate xk, determine xk+1 such that, for k ≥ 0,

〈
ρT
(
xk
)

+h′
(
xk+1)−h′

(
xk
)
,x− xk+1〉+ ρ

[
f (x)− f

(
xk+1)]≥ 0, ∀x ∈ K , (3.1)

where K is a nonempty closed convex subset of H .

For f ≡ 0 in Algorithm 3.1, we obtain the following algorithm.



146 Variational auxiliary problem principle

Algorithm 3.2. For a given iterate xk, determine xk+1 such that, for k ≥ 0,

〈
T
(
xk
)

+h′
(
xk+1)−h′

(
xk
)
,x− xk+1〉≥ 0, ∀x ∈ K , (3.2)

where K is a nonempty closed convex subset of H .

We are just about ready to present, based on Algorithm 3.1, the approximation-
solvability of the VIP (1.1).

Theorem 3.3. Let T : K → H be any γ-r-partially relaxed cocoercive mapping from
a nonempty closed convex subset K of a finite-dimensional Hilbert space H into H . Let f :
K →R be proper, convex, and lower semicontinuous on K , and let h : K →R be continuously
Fréchet-differentiable on K with h′ (gradient of h), α-strongly monotone, and β-Lipschitz
continuous.

If, in addition, x∗ ∈ K is a solution of the VIP (1.1), then

(i) ‖T(xk)−T(x∗)‖→ 0 as k→∞;
(ii) the sequence {xk} generated by Algorithm 3.1 converges to x∗ for

0 < ρ <
α

2γ
. (3.3)

Proof. To show that the sequence {xk} converges to x∗, a solution of the VIP (1.1), we
need to compute the estimates. We define a function Λ∗ by

Λ∗(x) := h
(
x∗
)−h(x)− 〈h′(x),x∗ − x

〉
. (3.4)

Then, on applying Lemma 2.1, we have

Λ∗(x) := h
(
x∗
)−h(x)− 〈h′(x),x∗ − x

〉≥
(
α

2

)∥∥x∗ − x
∥∥2

, for x ∈ K , (3.5)

where x∗ is a solution of the VIP (1.1). It follows that

Λ∗
(
xk+1)= h

(
x∗
)−h

(
xk+1)− 〈h′(xk+1),x∗ − xk+1〉. (3.6)

Now, we can write

Λ∗
(
xk
)−Λ∗

(
xk+1)= h

(
xk+1)−h

(
xk
)− 〈h′(xk),xk+1− xk

〉
+
〈
h′
(
xk+1)−h′

(
xk
)
,x∗ − xk+1〉

≥
(
α

2

)∥∥xk+1− xk
∥∥2

+
〈
h′
(
xk+1)−h′

(
xk
)
,x∗ − xk+1〉

≥
(
α

2

)∥∥xk+1− xk
∥∥2

+ ρ
〈
T
(
xk
)
,xk+1− x∗

〉

+ ρ
(
f
(
xk+1)− f

(
x∗
))

(3.7)

for x = x∗ in (3.1).
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If we replace x by xk+1 in (1.1), we obtain

〈(
T
(
x∗
)
,xk+1− x∗

)〉
+ f
(
xk+1)− f

(
x∗
)≥ 0. (3.8)

Since T is γ-r-partially relaxed cocoercive, it implies, in light of (3.8), that

Λ∗
(
xk
)−Λ∗

(
xk+1)≥

(
α

2

)∥∥xk+1− xk
∥∥2

+ ρ
〈
T
(
xk
)−T

(
x∗
)
,xk+1− x∗

〉

≥
[
α

2

]∥∥xk+1− xk
∥∥2− ργ

∥∥xk+1− xk
∥∥2

+ ρr
∥∥T(xk)−T

(
x∗
)∥∥2

=
[
α

2
− ργ

]∥∥xk+1− xk
∥∥2

+ ρr
∥∥T(xk)−T

(
x∗
)∥∥2

, for ρ <
α

2γ
.

(3.9)

It follows from (3.9) that the sequence {Λ∗(xk)} is strictly decreasing except for xk+1 =
xk, and in that situation, xk is a solution to (1.1). Since the difference of two consecutive
terms of the sequence {Λ∗(xk)} tends to zero as k→∞, it implies that

∥∥xk+1− xk
∥∥−→ 0,

∥∥T(xk)−T
(
x∗
)∥∥−→ 0 as k −→∞. (3.10)

On top of that, in light of (3.5), we have

∥∥x∗ − xk
∥∥2 ≤

(
2
α

)
Λ∗
(
xk
)
, (3.11)

and so the sequence {xk} is bounded. Let x′ be a cluster point of the sequence {xk}, that
is, there exists a subsequence {xk j} of the sequence {xk} such that {xk j} converges to x′.

We replace x∗ by x′ and define another function Λ′(xk). Then the analysis is still sim-
ilar to that of Λ∗(xk) and, as a result, the sequence {Λ′(xk)} strictly decreases, and by
Lemma 2.2, we have

Λ′
(
xk j
)≤

(
β

2

)∥∥x′ − xk j
∥∥2
. (3.12)

Here, the sequence {Λ′(xk j)} → 0. On the other hand, we have

Λ′
(
xk j
)≥

(
α

2

)∥∥xk j − x′
∥∥2
. (3.13)

This implies that xk j → x′, and hence the entire sequence converges to x′. This com-
pletes the proof. �

Theorem 3.4. Let T : K → H be a γ-r-partially relaxed cocoercive mapping from a non-
empty closed convex subset K of a finite-dimensional Hilbert space H into H . Let h : K →R

be continuously Fréchet-differentiable on K with h′ (gradient of h), α-strongly monotone,
and β-Lipschitz continuous. If, in addition, x∗ ∈ K is a solution of the VIP (1.2), then the
sequence {xk} generated by Algorithm 3.2 converges to x∗.
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