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The theory of operator colligations in Hilbert spaces gives rise to certain models for non-
selfadjoint operators, called triangular models. These models generalize the spectral de-
composition of selfadjoint operators. In this paper, we use the triangular model to obtain
the correlation function (CF) of a nonstationary linearly representable stochastic process
for which the corresponding operator is simple, dissipative, nonselfadjoint of rank 1, and
has real spectrum. As a generalization, we represent the infinitesimal correlation function
(ICF) of a nonhomogeneous linearly representable stochastic field in which at least one
of the operators has real spectrum.

1. Introduction

Kolmogorov, Karhunen, and others have considered stochastic fields of second order as
hypersurfaces in a Hilbert space. This consideration makes it possible to use certain func-
tional tools. The application of spectral theory of the selfadjoint operator in the study of
stochastic homogeneous fields gives immediately the spectral decomposition of the field
and of its correlation function (CF). Yantsevich and Livšic introduced a class of centered
Hilbertian nonhomogeneous stochastic fields tied to bounded nonselfadjoint operators,
known as linearly representable fields. In [1, 8], we find necessary and sufficient condi-
tions for stochastic fields to be linearly representable. In their monograph [8], Livšic and
Yantsevich have used the infinitesimal correlation function (ICF) to represent the CF of a
linearly representable process with simple dissipative operator of rank 1. Later, Abbaoui,
Kirchev, and Zolotarev have obtained analogous results for a broader class of nonhomo-
geneous fields [1, 7, 9].

We consider a stochastic process which is a solution of the system

i
dZ

dt
+AZ = 0, Z(0)= Z0, (1.1)

where A is a simple dissipative operator of rank 1. The simplicity is not a restrictive
condition because every operator could be written as an orthogonal sum of a simple
operator and a selfadjoint one [5].
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The CF was given as a sum of a kernel and an indefinite integral of the ICF.
Livšic and Yantsevich studied two cases:

(1) the operator A is complete;
(2) the spectrum of the operator A is concentrated at zero.

The utilization of the triangular model [2, 3, 8] takes the study from the Hilbert space
HZ ⊂ L2(Ω) to the Hilbert space L2(0, l). In the two cases studied, the system is asymp-
totically damped, contrary to the case when the spectrum of the operator A is real, not
concentrated in a unique point.

In this paper, we investigate a third case when the spectrum is purely real nonconcen-
trated at zero. We begin by the case when the spectrum is concentrated at a unique point
different from zero. Without difficulty, we find the CF when the spectrum is finite. But
in the general case, we are confronted with the difficulty of integrating a function over
a closed rectifiable curve enclosing nonisolated critical points. We give the CF and the
ICF as limits of sequences of CFs and, respectively, ICFs, corresponding to a sequence of
complex Gaussian stochastic processes.

In [1], Abbaoui generalized the study of Livšic and Yantsevich to the nonhomogeneous
centered Hilbertian stochastic fields, admitting linear representation when the operators
are complete or have zero as spectrum. Using the idea of stochastic process, we represent
the ICF of the same stochastic field when at least one of the operators has purely real
spectrum [4].

We note that the result obtained here is valid for stochastic fields as well as for curves
or surfaces in arbitrary Hilbert spaces.

2. Definitions and preliminaries

Let (Ω,�,P) be a probability space and let Z(t), t ∈R, be a centered Hilbertian stochastic
field; that is, MZ(t)= 0 and M|Z(t)|2 <∞, where M is the mathematical expectation. HZ

is a subspace of L2(Ω) spanned by the values of the stochastic variables Z(t), t ∈R.

Definition 2.1. The stochastic process Z(t), t ∈R, is said to be linearly representable if in
HZ it can be written in the form

Z(t)= exp(itA)Z0, (2.1)

where Z0 is a fixed element of HZ and A is a bounded linear operator defined in HZ .
If Z(t), t ∈R, is linearly representable, then HZ is separable.

Definition 2.2. A function of a process Z(t), t ∈R, is called ICF if it exists as follows:

W(t,s)=−∂V(t+ τ,s+ τ)
∂τ

∣∣∣∣
τ=0

, (2.2)

where V(t,s)=MZ(t)Z(s) is the CF of Z(t).

Let the operator A in (2.1) be simple, dissipative, and nonselfadjoint of rank 1 with
real spectrum.
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Lemma 2.3. The CF V(t + τ,s+ τ) of Z(t), t ∈ R, admits a limit when τ tends to infinity.
This limit, denoted by V∞(t− s), is a positive semidefinite selfadjoint kernel depending on
(t− s) [8].

Using this lemma, we can represent the CF of this process by

V(t,s)=V∞(t− s) +
∫ +∞

0
W(t+ τ,s+ τ)dτ, (2.3)

where

W(t,s)= 〈2ImAZ(t),Z(s)
〉
HZ

, (2.4)

2ImA= (1/i)(A−A∗) and A∗ is the adjoint of A.
We include A in the colligation Θ= (A,HZ ,g,1), g ∈HZ is the canal vector, hence

2ImAZ(t)= 〈Z(t),g
〉
HZ
g,

W(t,s)=Φ(t)Φ(s),

Φ(t)= 〈exp(itA)Z0,g
〉=− 1

2πi

∮
γ

exp(itλ)
〈
Z0,
(
A∗ − λI

)−1
g
〉
HZ
dλ,

(2.5)

where γ is a rectifiable curve enclosing the spectrum of A.
The triangular model of A is the operator Â defined in L2(0, l) by

Â( f )(x)= α(x) f (x) + i
∫ l

x
f (t)dt, (2.6)

where l ∈R∗
+ and α(x) is a nondecreasing bounded function of x, 0≤ x ≤ l.

It is proved in [3] that the image of the function α is the spectrum of A.
Replacing A by its triangular model, we find

Φ(t)=− 1
2πi

∮
γ

exp(itλ)
〈
f0,
(
Â∗ − λI

)−1
ĝ
〉
L2(0,l)

dλ, (2.7)

where ĝ(x)= 1, for all x ∈ (0, l), is the canal vector in the colligation Θ̂= (Â,L2(0, l), ĝ,1).
To calculate the function fλ = (Â∗ − λI)−1ĝ, we consider the function Yλ(x) =

(α(x)− λ) fλ(x). Such a function is a solution of the Cauchy problem

dYλ

dx
− i

Yλ(
α(x)− λ

) = 0, Yλ(0)= 1, (2.8)

hence

fλ(x)= (α(x)− λ
)−1

exp
(
i
∫ x

0

(
α(x)− λ

)−1
dξ
)

,

Φ(t)=
∫ l

0
f0(ξ)Λα(t,ξ)dξ,

Λα(t,ξ)=− 1
2πi

∮
γ

(
α(x)− λ

)−1
exp

(
itλ+ i

∫ ξ

0

(
α(x)− λ

)−1
dζ
)
dλ.

(2.9)
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The problem now is to represent the function Λα(t,ξ). It is clear that the critical points
of the integrating function are the values taken by α(·) over (0,ξ).

If the spectrum of A contains only the point zero, then

Φ(t)=
∫ l

0
f0(ξ)J0

(
2
√
tξ
)
dξ, (2.10)

where J0(·) is the Bessel function of the first kind of zero order. It is proved that in this
case the process Z(t) is asymptotically damped, that is, V∞(t− s)= 0, so

V0(t,s)=
∫ +∞

0
Φ(t+ τ)Φ(t+ τ)dτ. (2.11)

Theorem 2.4. Let Z(t) be a Gaussian complex process and MZ(t) = 0; then the CF is a
positive semidefinite selfadjoint kernel. Conversely, a given positive semidefinite selfadjoint
kernel is the CF of some Gaussian complex process [6].

3. Correlation function of a process with real spectrum not equal to zero

3.1. σ(A) contains a unique point different from zero. Let σ(A)= {c}, c �= 0; then Â=
cI +B, where I is the identity in L2(0, l) and B is defined in the same space by

(B f )(x)= i
∫ l

x
f (ξ)dξ. (3.1)

We have

exp(itÂ)= exp(itc)exp(itB), (3.2)

so

V(t,s)= exp
(
ic(t− s)

)
V0(t,s), (3.3)

where V0(t,s) is given by (2.11), (2.10).

3.2. σ(A) finite. Let σ(A)= {c1,c2, . . . ,cm/ck ∈R, k = 1,2, . . . ,m}, c1 < c2 < ··· < cm.
In this case, α(·) is a simple function and is given by

α(ξ)=
m∑
j=1

cjχ j(ξ), (3.4)

where χj = χ[ξj−1,ξj [ is the characteristic function of the interval [ξj−1,ξj[.
Applying the residue theorem, we find that

∀ξ ∈ [ξk−1,ξk
[
, Λα(t,ξ)=

k∑
β=1

Λ
(β)
α (t,ξ), (3.5)
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where

Λ(k)
α (t,ξ)=

[
exp

(
itck + i

k−1∑
j=1

(
ck − cj

)−1
l j

)]

×

J0(2
√
tlk
)

+
+∞∑
n=1

((− lkt
−1)n/2Jn(2

√
tlk
))

×
∑

k1+···+nkn=n

1
k1!···kn!

n∏
γ=1

(
i
k−1∑
j=1

(
ck − cj

)−γ−1
l j

)kγ
 ,

(3.6)

Λ
(β)
α (t,ξ)=

[
exp

(
itcβ + i

k∑
j=1, j �=β

(
cβ− cj

)−1
l j

)]

×


+∞∑
n=1

−(cβ− ck
)−n(− lβ

t

)n/2
Jn
(

2
√
tlβ
)

−
+∞∑
n=1

(
cβ− ck

)−n−1(− lβt
−1)(n+1)/2

Jn+1

(
2
√
tlβ
)

×
n∑

ν=1

∑
k1+···+νkν=ν

((
cβ− ck

)ν

k1!···kν!

) ν∏
γ=1

(
i

k∑
j=1, j �=β

l j
(
cβ− cj

)−γ−1
)kγ
 for β<k,

(3.7)

l j =
ξ − ξk−1, for j = k,

ξj − ξj−1, otherwise.
(3.8)

The functions jn(x)=∑+∞
k=0((−1)k(x)2k+n/k!(k +n)!) and j−n(x)= (−1)n jn(x), n≥ 0,

are the Bessel functions of the first kind of orders n and −n, respectively.

3.3. σ(A) arbitrary real.

Theorem 3.1. Let Z(t)= exp(itA)Z0, Z0 ∈HZ , be a Hilbertian linearly representable pro-
cess such that MZ(t)= 0 and A is a simple, dissipative, and nonselfadjoint operator of rank 1
with real spectrum not concentrated in zero. Then there exists a sequence of linearly repre-
sentable Gaussian complex processes Zn(t) = exp(itAn)Zn0, where Zn0 ∈ HZnand An is a
simple, dissipative, and nonselfadjoint operator of rank 1, defined in HZn with finite real
spectrum such that

(1) the CF of Z(t) is a simple limit of the sequence of CFs corresponding to the sequence
of the processes Zn(t);

(2) the ICF of Z(t) is a simple limit of the sequence of ICFs corresponding to the sequence
of the processes Zn(t);
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(3) the CF and the ICF of Zn(t) are given by

Vn(t,s)=Vn
∞(t− s) +

∫ +∞

0
Φn(t+ τ)Φn(s+ τ)dτ, (3.9)

Wn(t,s)=Φn(t)Φn(s), (3.10)

where the functions Φn are given by

Φn(t)=
∫ l

0
f0(ξ)Λαn(t,ξ)dξ, (3.11)

and Vn∞(t− s) is a positive semidefinite selfadjoint kernel, where Λαn(t,ξ) is the func-

tion given by (3.4), (3.5), (3.6), (3.7), and (3.8), with c(n)
j =( j/2n)αsup+(1− j/2n)αinf

and αsup = sup{α(ξ), ξ ∈ (0, l)}, αinf = inf{α(ξ), ξ ∈ (0, l)}, ξ(n)
j , j = 0,1, . . . ,2n, are

points of (0, l) defined by

ξ(n)
j−1 = inf

{
ξ∈(0, l)\ j2−nαsup +

(
1− j

2n

)
αinf ≤ α(ξ)≤ ( j + 1)

2n
αsup +

(
1− ( j + 1)

2n

)
αinf

}
,

σ
(
An
)⊆ {c(n)

j , j = 1,2, . . . ,mn
}
.

(3.12)

Proof. We construct a sequence of operators Ân, n≥ 1, defined in L2(0, l) by

(
Ân f

)
(x)= αn(x) f (x) + i

∫ l

x
f (ξ)dξ, (3.13)

where αn(·) is a sequence of bounded simple functions uniformly converging to α(·).
The operator Ân is bounded, dissipative, and nonselfadjoint of rank 1 and has finite

spectrum spanned by the values taken by αn(·).
We will prove that the sequences of operators {Ân}, {exp(itÂn)} converge uniformly

to Â, exp(itÂ), respectively. In fact,

∥∥Â f − Ân f
∥∥2 =

∫ l

0

∣∣α(x)−αn(x)
∣∣2∣∣ f (x)

∣∣2
dx

≤ Supx∈(0,l)

∣∣α(x)−αn(x)
∣∣2∥∥ f (x)

∥∥2
,

(3.14)

so ‖Â− Ân‖ ≤ Supx∈(0,l) |α(x)−αn(x)|.
Let B̂n = Ân− Â; then the sequence {B̂n} converges uniformly to the null operator and

we have ∥∥exp
(
itÂn

)− exp
(
itÂ
)∥∥= ∥∥exp

(
it
(
Â+ B̂n

))− exp
(
itÂ
)∥∥

≤
+∞∑
k=0

|t|k
k!

((∥∥B̂n

∥∥+
∥∥Â∥∥)k −∥∥Â∥∥k)

≤ exp
(|t|∥∥Â∥∥)(exp

(|t|∥∥B̂n

∥∥)− 1
)
.

(3.15)
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Let h(t) = exp(itÂ) f0, where Â is the triangular model of A and f0 is the image of
Z0 by the isometric operator of the unitary equivalence between the colligation and the
principal component of Θ̂, and let hn(t)= exp(itÂn) f0.

From the convergence of {Ân} and {exp(itÂn)}, the sequences {hn(t)} and {Φn(t) =
〈hn(t), ĝ〉} converge, respectively, to h(t) and Φ(t). We know that

∣∣Vn(t,s)−V(t,s)
∣∣= ∣∣〈hn(t),hn(s)

〉− 〈h(t),h(s)
〉∣∣

≤ ∣∣〈hn(t),hn(s)−h(s)
〉− 〈hn(t)−h(t),h(s)

〉∣∣
≤ ∥∥hn(t)

∥∥∥∥hn(s)−h(s)
∥∥+

∥∥h(s)
∥∥∥∥hn(t)−h(t)

∥∥,∣∣Wn(t,s)−W(t,s)
∣∣= ∣∣Φn(t)Φn(s)−Φ(t)Φ(s)

∣∣
≤ ∣∣Φn(t)

∣∣∣∣Φn(s)−Φ(s)
∣∣+

∣∣Φ(s)
∣∣∣∣Φn(t)−Φ(t)

∣∣,

(3.16)

so Vn(t,s)→V(t,s) and Wn(t,s)→W(t,s), for all t,s∈R.
The function Vn(t,s) = 〈hn(t),hn(s)〉 is a continuous positive semidefinite selfadjoint

kernel and from Theorem 2.4 there exists a complex Gaussian process Zn(t) that has
Vn(t,s) as the CF. Vn(t,s) and Wn(t,s) are given by the formulas (3.5), (3.6), (3.7), (3.8),
(3.9), (3.10), and (3.11).

The processZn(t) is linearly representable. In fact, let Ĥn = Ĥhn (the subspace of L2(0, l)
spanned by the vectors hn(t), t ∈R); this subspace is invariant under Ân; it is sufficient to
prove that Ânhn(t)∈ Ĥn.

Let Un be the continuous extension of the operator U0
n defined in the linear span of all

variables Zn(t), t ∈R, by

U0
n

( m∑
k=1

ckZn
(
tk
))= m∑

k=1

ckhn
(
tk
)
, (3.17)

so f0 =UnZn0 and Zn(t)=U−1
n hn(t).

Letting An =U−1
n ÂnUn, we have

Zn(t)= exp
(
itAn

)
Zn0. (3.18)

The restriction of Ân on Ĥn is a bounded, dissipative, and nonselfadjoint operator of
rank 1 and has finite real spectrum contained in the image of the function α. Since the
operators An and Ân are unitary-equivalent, then they have the same properties. �

Remark 3.2. If the process Z(t), t ∈R, is asymptotically damped, that is, the kernel van-
ishes, then the CF is represented by

V(t,s)=
∫ +∞

0
Φ(t+ τ)Φ(s+ τ)dτ, (3.19)

where Φ(t) is calculated previously.
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A generalization is given in [4] to represent an ICF of the linearly representable field:

Z(x)= exp

(
i

2∑
k=1

xkAk

)
Z0, (3.20)

where x = (x1,x2)∈R2, Z0∈H0=2ImA12ImA2HZ with dimH0 = 1 andA1,A2 bounded,
simple, dissipative, and nonselfadjoint operators such that A1A2−A2A1 = 0 and A∗1 A2−
A2A

∗
1 = 0; the ICF is given by

W(x, y)= ∂V
(
x1 + τ1,x2 + τ2, y1 + τ1, y2 + τ2

)
∂τ1∂τ2

∣∣∣∣
τ1=τ2=0

. (3.21)

We use the triangular model of a pair of operators, and by approximating these models,
we represent the ICF in the case when at least one of the operators has real spectrum. As
a consequence, we obtain the CF of asymptotically damped fields [4].

This result can also be generalized to stochastic fields:

Z(x)= exp

(
i

p∑
k=1

xkAk

)
Z0, (3.22)

where x = (x1,x2, . . . ,xp) and Ak (k = 1,2, . . . , p) are commuting bounded linear operators
defined in HZ .
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