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We investigate the problem of existence of solutions of fuzzy Volterra integral equations
with deviating arguments. The results are obtained by using the Darbo fixed point theo-
rem.

1. Introduction

In 1982, Dubois and Prade [4, 5] first introduced the concept of integration of fuzzy
functions. Kaleva [7] studied the measurability and integrability for the fuzzy set-valued
mappings of a real variable whose values are normal, convex, upper semicontinuous, and
compactly supported by fuzzy sets in Rn. Existence of solutions of fuzzy integral equa-
tions has been studied by several authors [1, 2, 7, 8]. Subrahmanyam and Sudarsanam
[13] proved existence theorems for fuzzy functional equations. They have used the em-
bedding theorem of Kaleva [8], which is a generalization of the classical Rådström em-
bedding theorem [11], and the Darbo fixed point theorem in the convex cone. Recently,
Balachandran and Prakash [2, 3] studied the existence of solutions of nonlinear fuzzy
Volterra-Fredholm integral equations.

In this paper, we prove the existence of solutions of fuzzy Volterra integral equations
with deviating arguments. The results, which generalize the results of [1, 2], are estab-
lished with the help of the Darbo fixed point theorem. Further, we study the maximal
solution of the fuzzy delay Volterra integral equation.

2. Preliminaries

Let PK (Rn) denote the family of all nonempty, compact, convex subsets of Rn. Addition
and scalar multiplication in PK (Rn) are defined as usual. Let A and B be two nonempty
bounded subsets of Rn. The distance between A and B is defined by the Hausdorff metric

d(A,B)=max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
, (2.1)
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where ‖ · ‖ denotes the usual Euclidean norm in Rn. Then it is clear that (PK (Rn),d)
becomes a metric space. Let I = [t0, t0 + a] ⊂ R (a > 0) be a compact interval and let En

be the set of all u : Rn→ [0,1] such that u satisfies the following conditions:

(i) u is normal, that is, there exists an x0 ∈Rn such that u(x0)= 1,
(ii) u is fuzzy and convex, that is, u(λx+ (1− λ)y)≥min{u(x),u(y)}, for any x, y ∈

Rn and 0≤ λ≤ 1,
(iii) u is upper semicontinuous,
(iv) [u]0 = cl{x ∈Rn : u(x) > 0} is compact.

If u∈ En, then u is called a fuzzy number, and En is said to be a fuzzy number space.
For 0 < α ≤ 1, denote [u]α = {x ∈ Rn : u(x) ≥ 0}. Then from (i)–(iv), it follows that the
α-level set [u]α ∈ PK (Rn) for all 0≤ α≤ 1.

If g : Rn×Rn→Rn is a function, then using Zadeh’s extension principle, we can extend
g to En×En→ En by the equation

g̃(u,v)(z)= sup
z=g(x,y)

min
{
u(x),v(y)

}
. (2.2)

It is well known that [g̃(u,v)]α = g([u]α, [v]α) for all u,v ∈ En, 0≤ α≤ 1, and continuous
function g. Further, we have [u+ v]α = [u]α + [v]α, [ku]α = k[u]α, where k ∈ R. Define
D : En×En→ [0,∞) by the relation D(u,v)= sup0≤α≤1d([u]α, [v]α), where d is the Haus-
dorff metric defined in PK (Rn). Then D is a metric in En.

Further, we know that [10]

(i) (En,D) is a complete metric space,
(ii) D(u+w,v+w)=D(u,v) for all u,v,w ∈ En,

(iii) D(λu,λv)= |λ|D(u,v) for all u,v ∈ En and λ∈R.

It can be proved that D(u+ v,w+ z)≤D(u,w) +D(v,z) for u,v,w,z ∈ En.

Definition 2.1 [7]. A mapping F : I → En is strongly measurable if for all α ∈ [0,1], the
set-valued map Fα : I → PK (Rn) defined by Fα(t)= [F(t)]α is Lebesgue-measurable when
PK (Rn) has the topology induced by the Hausdorff metric d. A mapping F : I → En is said
to be integrably bounded if there is an integrable function h(t) such that ‖x(t)‖ ≤ h(t)
for every x ∈ F0(t).

Definition 2.2 [10]. The integral of a fuzzy mapping F : I → En is defined levelwise by
[
∫
I F(t)dt]α = ∫I Fα(t)dt = the set of all

∫
I f (t)dt such that f : I → Rn is a measurable

selection for Fα for all α∈ [0,1].

Definition 2.3 [1]. A strongly measurable and integrably bounded mapping F : I → En is
said to be integrable over I if

∫
I F(t)dt ∈ En.

Note that if F : I → En is strongly measurable and integrably bounded, then F is inte-
grable. Further, if F : I → En is continuous, then it is integrable.

Theorem 2.4. Let F,G : I → En be integrable and c ∈ I , λ∈R. Then

(i)
∫ t0+a
t0 F(t)dt = ∫ ct0 F(t)dt+

∫ t0+a
c F(t)dt,

(ii)
∫
I(F(t) +G(t))dt = ∫I F(t)dt+

∫
I G(t)dt,

(iii)
∫
I λF(t)dt = λ

∫
I F(t)dt,
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(iv) D(F,G) is integrable,
(v) D(

∫
I F(t)dt,

∫
I G(t)dt)≤ ∫I D(F(t),G(t))dt.

Now, we state the results about the Kuratowski measure of noncompactness [9].
Let C[I ,X] denote the Banach space of abstract continuous functions from I to X , and

the norm ‖x‖ =maxt∈I ‖x(t)‖. For H ⊂ C[I ,X], we denote

H(t)= {x(t) : x ∈H
}⊂ X ,

H(I)= {x(t) : x ∈H , t ∈ I
}=⋃

t∈I
H(t)⊂ X. (2.3)

For a bounded subset A of X , the Kuratowski measure of noncompactness is defined as
α(A)= inf{ε > 0 : A can be covered by a finite number of sets, each with diameter≤ ε}.

The following results are proved in [6].

Proposition 2.5. Let α be the Kuratowski measure of noncompactness and suppose that A
and B are two arbitrary bounded subsets of X ; then

(i) α(A)= 0 if and only if A is relatively compact,
(ii) α(A)≤ α(B) if A⊆ B,

(iii) α(A)= α(co(A)), where co(A) denotes the convex hull of A,
(iv) α(A

⋃
B)=max{α(A),α(B)},

(v) α(tA)= |t|α(A), where tA= {tx : x ∈ A},
(vi) α(A+B)≤ α(A) +α(B), where A+B = {x+ y : x ∈A and y ∈ B}.

Proposition 2.6. Suppose H ⊂ C[I ,X] is bounded and equicontinuous; then α(H) =
α(H(I))=maxt∈I α(H(t)).

If A ⊂ X is bounded and the mapping f : I ×A→ X is bounded and uniformly con-
tinuous, then

α
(
f (I ×B)

)=max
t∈I

α
(
f (t,B)

) ∀B ⊂A. (2.4)

Let x ∈ C[I ,X], and x(t) is differentiable (the Fréchet derivative exists). Then x(t0 + a)−
x(t0)∈ a co{x′(t) : t ∈ I}.

3. Main results

Let C[I ,En] denote the space of continuous fuzzy set-valued mappings from I into En.
Clearly, C[I ,En] is a convex cone. Consider the following fuzzy Volterra integral equation
with deviating arguments:

x(t)= x0(t) + f
(
t,x
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds, (3.1)

where x0 ∈ C[I ,Ω], f ,g ∈ C[I ×Ω,Ω], k ∈ C[I × I ,I], σi : I → I and σi(t) < t for i= 1,2,3,
and Ω is an open subset of (En,D).

By [8, Theorem 2.1], the embedding j from (En,D) onto its range j(En) ⊂ X is an
isometric isomorphism, and so the embedding j : C[I ,En]↩C[I ,X] is also an isometric
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isomorphism. Thus, for a subset E ⊂ C[I ,En], if Φ : E→ E is a continuous operator, then
jΦ j−1 : jE→ jE is also continuous. We need the following lemma.

Lemma 3.1 [12]. Let E ⊂ C[I ,En] be a nonempty closed bounded convex subset. If Φ : E→ E
is a continuous operator with α( j(ΦB)) ≤ ρ(α( jB)) for every B ⊆ E, where ρ : [0,∞) →
[0,∞) is a right-continuous function with ρ(r) < r, for all r > 0, then Φ has a fixed point
in E.

Lemma 3.2 [8]. Let F : I → En be a fuzzy set-valued mapping provided that jF : I → j(En)⊂
X is Bochner-integrable on t ∈ I . Then

∫
I F(t)dt ∈ En and j

∫
I F(t)dt = ∫I jF(t)dt.

Now, we prove the existence theorem for the fuzzy delay Volterra integral equation
(3.1).

Theorem 3.3. Assume that

(i) there exists a constant K > 0 such that K =maxt,s∈I |k(t,s)|;
(ii) for any bounded subset B ⊆Ω, f and g are bounded and uniformly continuous on

I ×B and there exist constants N > 0 and M > 0 such that D( f (t,x(σ1(t))), 0̂)≤N
and D(g(s,x(σ3(s))), 0̂) ≤M for all t,s ∈ I , x ∈Ω, σ ∈ I , where 0̂ denotes the zero
fuzzy number;

(iii) α( j f (I ×B))≤ ρ1(α( jB)) and α( jg(I ×B))≤ ρ2(α( jB)), where ρi : [0,∞)→[0,∞),
i= 1,2, is a right-continuous and monotone nondecreasing function with ρi(r) < r/2,
for all r > 0, and B ⊆Ω is a bounded subset.

Then there exists a solution to (3.1) on [t0, t0 + ε] for some ε > 0.

Proof. Choose η > 0 such that B0 = {y ∈ En : D(y,x0(t0))≤ η} ⊂Ω. Since x0(t) is contin-
uous, there is a δ > 0 such that t0 ≤ t ≤ t0 + δ implies D(x0(t),x0(t0)) < η/2.

Let ε =min{a,δ, (η− 2N)/2MK ,1/K}, I0 = [t0, t0 + ε], and define E ⊆ C[I0,Ω] by

E =
{
x ∈ C

[
I0,Ω

]
: sup
t∈I0

D
(
x(t),x0(t)

)≤ η

2

}
. (3.2)

Clearly, E is a bounded closed convex subset of C[I0,Ω] and x0 ∈ E. We define the opera-
tor Φ : C[I0,Ω]→ C[I0,Ω] by

(Φx)(t)= x0(t) + f
(
t,x
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds ∀t,s∈ I0. (3.3)

Then

D
(
(Φx)(t),x0(t)

)=D
(
x0(t) + f

(
t,x
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds,x0(t)

)

=D
(
f
(
t,x
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds, 0̂

)

≤D
(
f
(
t,x
(
σ1(t)

))
, 0̂
)

+
∫ σ2(t)

t0
D
(
k(t,s)g

(
s,x
(
σ3(s)

))
, 0̂
)
ds
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≤D
(
f
(
t,x
(
σ1(t)

))
, 0̂
)

+K
∫ σ2(t)

t0
D
(
g
(
s,x
(
σ3(s)

))
, 0̂
)
ds

≤N +KεM

≤ η

2
for x ∈ E, t,s∈ I0.

(3.4)

Thus, we have ΦE ⊆ E and ΦE is uniformly bounded on I0.
If {xn} ⊆ E satisfies that supt∈I0

D(xn(t),x(t)) → 0 as n→∞, then x ∈ E and by the
uniform continuity of f and g, we have

sup
t∈I0

D
(
f
(
t,xn

(
σ1(t)

))
, f
(
t,x
(
σ1(t)

)))−→ 0 as n−→∞,

sup
s∈I0

D
(
g
(
s,xn

(
σ3(s)

))
,g
(
s,x
(
σ3(s)

)))−→ 0 as n−→∞.
(3.5)

Thus, from Theorem 2.4(v), it follows that Φ is a continuous operator. Further, by
Proposition 2.6, we have

α
(
j f
(
I0×B

))=max
t∈I0

α
(
j f (t,B)

)
, α

(
jg
(
I0×B

))=max
s∈I0

α
(
jg(s,B)

)
, (3.6)

for any bounded subset B ⊆Ω. Now, for x ∈ E, t,τ ∈ I0, and τ < t, we have

D
(
Φx(t),Φx(τ)

)=D
(
x0(t) + f

(
t,x
(
σ1(t)

))

+
∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds,x0(τ) + f

(
τ,x
(
σ1(τ)

))

+
∫ σ2(τ)

t0
k(τ,s)g

(
s,x
(
σ3(s)

))
ds
)

≤D
(
x0(t),x0(τ)

)
+D

(
f
(
t,x
(
σ1(t)

))
, f
(
τ,x
(
σ1(τ)

)))

+D
(∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds,
∫ σ2(τ)

t0
k(τ,s)g

(
s,x
(
σ3(s)

))
ds
)

≤D
(
x0(t),x0(τ)

)
+D

(
f
(
t,x
(
σ1(t)

))
, f
(
τ,x
(
σ1(τ)

)))

+
∫ σ2(t)

σ2(τ)
D
(
k(t,s)g

(
s,x
(
σ3(s)

))
, 0̂
)
ds

+
∫ σ2(τ)

t0
D
(
k(t,s)g

(
s,x
(
σ3(s)

))
,k(τ,s)g

(
s,x
(
σ3(s)

)))
ds

−→ 0 as t −→ τ.
(3.7)

Hence, {Φx(t) : x ∈ E} is uniformly bounded and equicontinuous on I0. Further, condi-
tion (ii) implies that ‖ jg(s,x(σ3(s)))‖ is Lebesgue-integrable and jg(s,x(σ3(s))) is strongly
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measurable for all s∈ I0. Therefore, it follows that jg(s,x(σ3(s))) is Bochner-integrable for
all s∈ I0. Hence, by Lemma 3.2 and Proposition 2.6, we have

j
(
f
(
t,x
(
σ1(t)

)))= j f
(
t,x
(
σ1(t)

))∈ co
{
j f
(
t,x
(
σ1(t)

))
: t ∈ [t0, t

]}
, (3.8)

j
(∫ σ2(t)

t0
g
(
s,x
(
σ3(s)

))
ds
)
=
∫ σ2(t)

t0
jg
(
s,x
(
σ3(s)

))
ds∈ εco

{
jg
(
s,x
(
σ3(s)

))
: s∈ [t0, t

]}
.

(3.9)

From (3.6), (3.7), (3.8), (3.9), and condition (iii), we get

α
(
j
{

(ΦB)(t)
})= α

(
jx0(t) + j f

(
t,x
(
σ1(t)

))
+ j
{∫ σ2(t)

t0
k(t,s)g

(
s,x
(
σ3(s)

))
ds
}

: x ∈ B
)

≤ α
(
j
{
f
(
t,x
(
σ1(t)

))
: x ∈ B

})

+α
(
j
{∫ σ2(t)

t0
Kg
(
s,x
(
σ3(s)

))
ds : x ∈ B, σi ∈ I0

})

= α
(
j f
(
t,x
(
σ1(t)

))
: x ∈ B

)
+Kα

(∫ σ2(t)

t0
jg
(
s,x
(
σ3(s)

))
ds : x ∈ B

)

≤ α
(
j f
(
t,x
(
σ1(t)

))
: t ∈ I0, x ∈ B

)

+Kεα
(
co
{
jg
(
s,x
(
σ3(s)

))
: s∈ I0, x ∈ B

})

= α
(
j f
(
I0×B

))
+Kεα

({
jg
(
s,x
(
σ3(s)

))
: s∈ I0, x ∈ B

})

≤ α
(
j f
(
I0×B

))
+Kεα

(
jg
(
I0×B

))

≤ ρ1
(
α( jB)

)
+Kερ2

(
α( jB)

)

≤ ρ1
(
α( jB)

)
+ ρ2

(
α( jB)

)

= ρ
(
α( jB)

)
,

(3.10)

where ρ = ρ1 + ρ2. So, by Lemma 3.1, Φ has a fixed point in E and the fixed point of Φ is
a solution to (3.1). �

4. Maximal solution

In this section, we prove the maximal solution of the fuzzy delay Volterra integral equa-
tion (3.1). En constitutes a convex cone for the addition and the nonnegative multiplica-
tion in En, hence the partial ordering in En can be introduced by x ≤ y if and only if there
exists a z ∈ En such that y = x+ z for x, y ∈ En.

If x ≤ y and x �= y, then we write x < y; if x ≤ y and j(y − x) ∈ Int( j(En)), then we
write x� y, where Int( j(En))⊆ X denotes the set constructed by all the interior points
of j(En). It is easy to see that j(En) is also a closed convex cone in X , and the conjugate
cone of j(En) is represented by ( j(En))∗ = {ϕ ∈ X∗ : ϕ(ω) ≥ 0, for all ω ∈ j(En)}, and
Int( j(En))∗ = {ϕ∈ X∗ : ϕ(ω) > 0, for all ω ∈ j(En)}.
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Lemma 4.1 [12]. (i) ω ∈ j(En) if and only if for all ϕ∈ ( j(En))∗, ϕ(ω)≥ 0.
(ii) Let ω ∈ ∂( j(En)); then there exists ϕ ∈ Int( j(En))∗ such that ϕ(ω) = 0, where

∂( j(En))⊆ X denotes the boundary of j(En).

Definition 4.2 [12]. Let f : En→ En be a fuzzy set-valued operator if x ≤ y implies f (x)≤
f (y) for any x, y ∈ En. Then f is said to be fuzzy monotone nondecreasing.

Theorem 4.3. Assume that

(i) for any fixed t,s∈ I , f ,g ∈ C[I ×En,En], σi : I → I and x0,u,v ∈ C[I ,En];
(ii) f (t,u(σ1(t))) and g(t,u(σ3(t))) are fuzzy monotone nondecreasing in u∈ En;

(iii) for any fixed t ∈ I , the real functions h1(s) = D(g(s,u(σ3(s))), 0̂) and h2(s) =
D(g(s,v(σ3(s))), 0̂) are Lebesgue-integrable.

Then

u(t)≤ x0(t) + f
(
t,u
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,u
(
σ3(s)

))
ds,

v(t)� x0(t) + f
(
t,v
(
σ1(t)

))
+
∫ σ2(t)

t0
k(t,s)g

(
s,v
(
σ3(s)

))
ds,

u(t)� v
(
t0
)

(4.1)

imply that u(t)� v(t), t ∈ I .

Proof. Suppose that the conclusion is not true, then the set

Z = {t ∈ I : u(t)� v(t) does not hold
}

= {t ∈ I : ju(t)� jv(t) does not hold
} �= ∅.

(4.2)

Let t1 = inf Z; it is easy to see that t1 > t0, and for any t ∈ [t0, t1), jv(t)− ju(t)∈ Int( j(En))
and jv(t1)− ju(t1)∈ ∂( j(En)). So, by Lemma 4.1, there exists F ∈ Int( j(En))∗ such that

F
(
jv
(
t1
)− ju

(
t1
))= 0. (4.3)

The functions j f (t,u(σ1(t))), j f (t,v(σ1(t))), k(t,s) are continuous for fixed t ∈ I , and
hence they are strongly measurable. Further, by (iii), it follows that jg(s,u(σ3(s))) and
jg(s,v(σ3(s))) are Bochner-integrable in s∈ I . From (3.9) and (ii) and by Lemma 3.2, we
have

F
(
ju
(
t1
))≤ F

[
jx0
(
t1
)

+ j f
(
t,u
(
σ1
(
t1
)))

+ j
{∫ σ2(t1)

t0
k
(
t1,s
)
g
(
s,u
(
σ3(s)

))
ds
}]

= F
[
jx0
(
t1
)

+ j f
(
t,u
(
σ1
(
t1
)))

+
∫ σ2(t1)

t0
k
(
t1,s
)
jg
(
s,u
(
σ3(s)

))
ds
]

≤
[
jx0
(
t1
)

+ j f
(
t,v
(
σ1
(
t1
)))

+
∫ σ2(t1)

t0
k
(
t1,s
)
jg
(
s,v
(
σ3(s)

))
ds
]

= F
[
jx0
(
t1
)

+ j
(
f
(
t,v
(
σ1
(
t1
))))

+ j
{∫ σ2(t1)

t0
k
(
t1,s
)
g
(
s,v
(
σ3(s)

))
ds
}]

< F
(
jv
(
t1
))
.

(4.4)

This is a contradiction to (4.3), and hence the proof. �
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Theorem 4.4. Let f , g, and k be as in Theorem 3.3, and for any fixed t,s∈ I , f (t,u) and
g(t,u) are monotone nondecreasing on u∈Ω. Then there exists an ε > 0 so that the maximal
solution to (3.1) exists on [t0, t0 + ε].

The proof is similar to that of [12, Theorem 4.2] and hence omitted.
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