THE FUNDAMENTAL SOLUTIONS FOR FRACTIONAL
EVOLUTION EQUATIONS OF PARABOLIC TYPE
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The fundamental solutions for linear fractional evolution equations are obtained. The
coefficients of these equations are a family of linear closed operators in the Banach space.
Also, the continuous dependence of solutions on the initial conditions is studied. A mixed
problem of general parabolic partial differential equations with fractional order is given
as an application.

1. Introduction

In this paper, we consider the fractional integral evolution equation

u(t) =uo—ﬁﬁ)(t—@)“’l[A(G)u(G)—f(@)]d@, (1.1)

where 0 < « < 1, I'(«) is the gamma function, {A(t) : t € [0, T]} is a family of linear closed
operators defined on dense set D(A) in a Banach space E into E, u is the unknown E-
valued function, uy € D(A), and f is a given E-valued function defined on [0, T]. It is
assumed that D(A) is independent of t. Let B(E) denote the Banach space of all linear
bounded operators in E endowed with the topology defined by the operator norm. We
need the following conditions.

(A}) The operator [A(t)+AI]~! exists in B(E) for any A with ReA > 0 and

[[a@y+an™"|| < (1.2)

C
Al +1°
for each t € [0, T], where C is a positive constant independent of both ¢ and A.
(Az) Forany t, t, s € [0, T],
I[A() —A(t)]A T (s)|| < Clta—t |, (1.3)

where 0 <y <1, C >0, and the constants C and y are independent of ¢, ,, and s.
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(A3) The function f satisfies a uniform Holder condition (with exponent f3) in
[0,T], that is,

||f(f2)*f(f1)||SC|t2*t1|ﬁ, (1.4)

forall t;,t, € [0, T], where C and f3 are positive constants and 0 < 8 < 1 (the con-
stants C and f are independent of ¢; and £,).

Under condition (A;), each operator —A(s), s € [0, T], generates an analytic
semigroup exp(—tA(s)), t >0, and there exists a positive constant C independent
of both t and s such that

[|[A"(s)exp (= tA(s))]| < tgn, (1.5)

wheren =0,1,t>0,s€ [0,T] [9, 10].
In Section 2, we will construct the fundamental solution of the homogeneous frac-
tional differential equation

+A(t)v(t) =0, t>0. (1.6)

We will prove the existence and uniqueness of the solution of (1.6), with the initial con-
dition

v(0) = up € D(A). (1.7)

The continuous dependence of the solutions of (1.1) on the elements 1, and the function
f is proved.

In Section 3, we give an application to a mixed problem of a parabolic partial differen-
tial equation of fractional order.

2. The fundamental solution

We say that u is a strong solution of the fractional integral equation (1.1) if u(t) € D(A)
for each t € [0, T], u, u* are continuous in t € [0, T], and u satisfies (1.1), where u*(¢t) =
A(t)u(t).

Let i be an E-valued function defined on [0, T]. If dh(t)/dt and the integral th(t -
0)~*(dh(0)/d0)d0 exist in the sense of Bochner, then we use the following definition of
the fractional derivative ;D{h(t):

dh 0)

TD(txh(t) = (2.1)

(see [7, 13, 16]).
If u is a strong solution of (1.1), then the fractional derivative

d(x

Jr =oDfu (2.2)
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exists and is continuous in t € [0, T]. In this case, we notice that

d ) LdF(0)
i (t—@) F(0)d6 = Jt— e ao, (2.3)

where
F) = | (60 1[£(8) ~u (6)]db. (2.4)

Using (1.1), (2.1), and (2.3), we get

d*u(t) 1 da bt Cear. pvae ok
dre T'(a)T(1 — ) dt Jo L(t 9 s =0) 1(f(9) u*(6))dsdf (2.5)
—A(Hu(t) + f(1)
u(0) = ug. (2.6)

The converse is also true. In other words, if d*u(t)/dt* is continuous in t € [0, T] and
u represents a solution of the Cauchy problem (2.5), (2.6), then u represents a strong
solution of (1.1) (this means that the integral equation (1.1) is equivalent to the Cauchy
problem (2.5), (2.6)).

We will consider integrals of operator-valued functions. We denote by w(t,s) the
integral

y(t,s) = och 0t 1, (0) exp (— t*0A(s))d0, (2.7)

where (, is a probability density function defined on [0, ) such that its Laplace trans-
form is given by

| e tui0ra0 i (2.8)

oc])

where 0 < & < 1, x >0 [3]. More details about this probability density function can be
found in [8].

Lemma 2.1. The improper integral [, 0(,(0)A(t) exp(—n*0A(s))d0 exists for n >0, t,s €
[0, T], and represents a uniformly continuous function in the uniform topology (i.e., in the
norm of B(E)) in the variables t, n, s, where t,s € [0,T], € < < T, and € is any positive
number.

Proof. The existence of the considered improper integral is clear for 4 >0, t,s € [0, T]. If
O0<h<th+AtH=6<T,

esm<m+Am=m=T, (2.9)
0<s;1<s1+As1=5=<T,
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then
[, 600(0)A (1) exp (— 1564 (52))d6 — [ " 08 (0)A (1) exp (~ n0A (1)) o
= [0 (OP (11 1,52)As2) exp (— 7504 (52) 6
+ [ 00O exp (~ 204 () —exp (= mBA(s)) T exp (~ 164 (s2))do

+j0 0L (O)A () [exp (— n0A(ss)) — exp (— 1%0A(s1))]d6,

(2.10)
where P(t1, 6, 15) = [A(2) — A(E)]A=1 (1), v1 = 12/2, and v, = & — /2.
It can be proved under conditions (A;) and (A;) that
IA®[exp (~ 7A(s)) — exp (~ qAMD)]]] < %Hv, (2.11)
A exp (- nAE) - exp (- TAE) A (9] < T (2.12)

Min(n,1)’

for all # >0, 7 >0, t,s € [0,¢], where the positive constant C is independent of t, s, 7,
and 7. We estimate the norm of the first term on the right-hand side of (2.10) by using
condition (A,) and (1.5). We estimate also the norms of the second term and the last term
of the right-hand side of (2.10) by using (2.12), (1.5), and (2.11), respectively. We thus
find that the norm of the left-hand side of (2.10) is bounded by

At) 1 « -
C[(Ei)+€2a (m+Am)" — 3} +€! “(Asl)y}. (2.13)
This completes the proof. U

CoROLLARY 2.2. The operator-valued functions y(t —n,n) and A(t)y(t — n,n) are contin-
uous in the uniform topology in the variables t, 1, where 0 <y <t—¢€,0<t < T, for any
€ > 0. Clearly,

lly(t—nm|l < Clt—n)*T, (2.14)

where C is a positive constant independent of t, 1.

LemMmA 2.3. If

wtn) = [ ye-nfodn >, (2.15)

then

Dfwi(t,T) = f(t) - LA(n)w(t —n,n) f(n)dn. (2.16)
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Proof. Let { f,} be a sequence of functions defined by

-1
fult) = [1+ %A(t)] FB), tel0,T)n=1.2... (2.17)

We consider the integrals

t
win(t,7) = L y(t—n,n) fu(n)dy,

Lt (2.18)
— o _ a—1
walt) = ) = s | =0 A want. )
Since f,(t) € D(A) for all t € [0, T1], it follows from [9] that
menﬂ)=.LfQAQHeXp(—(t—ﬁﬁ“ﬂA(ﬂD]ﬁAﬂ)d& (2.19)
where 0 <y < t.
Thus
f dwa(s,
WD;XWZn(tr’//) = I‘(ll_a) Jq(t_S)_a W2d§5 ’1) ds
- L [RCEER I AONE (2.20)
X [exp (= (s=n)*0A(n))] fu(n)dOds
= —A(n)wa(t,n).
Using (2.19) and (2.20), we get
d [t o
Dian(tr) = | | G@)lexp(— (0= m0am)] fitndody
rJ0 (2.21)

= ()~ [ A= fulpd

According to Lemma 2.1, we notice that A()y(t — #,%) is a uniformly continuous func-
tion in the uniform topology in variables ¢, € [0,T], where t — > €. Since f satisfies
condition (A3), it follows that the integral thA(n)w(t —1,1) f (n)dn exists (cf. [2]).

We notice that

A (t=n,n)|| < % (2.22)

forallt,n € [0,T], t — 5 = €. Clearly,

1 -1
H[I+—A(t)] “lll<c+1, (2.23)
n
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whereas for x € D(A),

H[I+ %A(t)]ilx—x

< %||A(t)x||. (2.24)

Using (2.23) and noticing that f satisfies condition (A3), we deduce that the sequence
{fu} uniformly converges to f with respect to t € [0,T]. Using (2.22), we get, for any
positive number €, the inequality

H J:_EA(n)w(t =, fu(n) = f()]dn|| < Ce[ln(t — 1) — In€], (2.25)
for a sufficiently large n. Consequently,
lim - Dfwin(t,7) = f(t) = J:A(n)v/(t —1>m) f (n)dn (2.26)
uniformly with respect to t € [0,T], t > 7.
This completes the proof. O

Let
¢1(t,7) = [A(t) — A(D) Jy(t - 1,7),

t (2.27)
k1 (8, 7) =J ok(t,s)i(s,T)ds, k=1,2,....

Using condition (A;), we get
||‘Pl(taT)|| = J;) ||S(t7T70)||||A(T) eXp ( - (t - T)aGA(T))HdO = C(t - T)y_1> (228)
where

S(t,7,0) = ab(t — 1) 1{(0)P(t,T,T). (2.29)

Using Lemma 2.1, we conclude that ¢; is uniformly continuous in ¢, 7 in the uniform
topology provided that t — 7 > € > 0. Now one verifies, by induction, that all the functions
¢k, k =1,2,..., are uniformly continuous in #, 7 in the uniform topology for t — 7 > €,
t,7 € [0,T], and

k(t _ T)ykfl

C
llpx(t,7)|| < Ok (2.30)

Using inequalities (2.30), one can justify the relation

J o(t,8)1(s,7)ds = ZJ ok (t,8)@1(s,7)ds, (2.31)
T =177
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where
o(t,7) = > gr(t,7). (2.32)
k=1
It is easy to see that
llot,7)|| < C(t—1)". (2.33)

The function ¢ is uniformly continuous in the uniform topology in t, T provided that
0<t<t—¢€,€e=<t=<Tforany e >0. Using Fubini’s theorem, we deduce that ¢ is the
unique solution of the integral equation

t
0(,7) = o1(1,7) +J 0(1,5)¢1 (5, 7)ds. (2.34)

LEMMA 2.4. Forany0<8<y,0<t<ti<t, <T,

lo(t27) — @(t1,7) || = Clta — 1) (1 — 7)° 7, (2.35)

where the positive constant C does not depend on ti, t,, or T.
Proof. From (2.28), we get

o1 (t2,7) — g1 (11, 7) || <2C(1 — 7). (2.36)

Writing
¢1(t2,7) — @1 (t1,7) = P(t1, 10, 7) A7)y (2 — 7,7)

+P(t,T,1)A(D) (b —1,7) —y(th —1,7) ], (2.37)

A(tlath) = P(tl)TiT)A(T)[V/(tZ - T)T) - 1//(tl - TaT)]>
we get
||P(t1,t2,T)A(T)W(t2 - T,T)” < C(tz — tl)y(tl — T)il,
. (2.38)
||A(l’1,t2,T)|| < ZC(tl —T)y .

We can write
A(tl,tz,‘l') = J Pl(tl,tz,l},‘l',e)de-f—J Pz(fl,tz,fg,,‘[,e)de, (2.39)
0 0

where

Pl (tlatZ)T)e) = (X@Ca(e) [A(tl) _A(T)]P3(t1)t2)t3)T>9) exp [ - (tl - T)“QA(T)])

a—1

Pi(ti,t,15,1,0) = (b —7) exp[ - {(b—1)" = (- 7)“}0A(1)] - (b — 1) 'I.
(2.40)
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We can find t3 and t; such that t; < t3 < t, t; < t4 < b, and

a—1

Py(ti,tr,t5,7,0) = (s = 7)* Texp[ —a(ta— 1) (8 - 1) ' OAD) | - (- 1)L,
Py (t1,t2,13,7,0) = afla(O)[A (1) — A [ (2= 1)* = (1 = 1)* " exp[— (1 —7)0A(7)]
=ala— 1)9(a(6)(t2—t1)(t4—T)“_2[A(t1) —A(t)]exp[ — (t; — 1) 0A(1)].
(2.41)
We notice that

P3(t1,t2,t3,‘l’,0) = —(XG(tz - T)a71 (t3 - T)a71 J

A(1)exp [ —nab(t; — T)ailA(T)]dﬂ.
0

(2.42)
Now it is easy to see that
At t,7) || = C(H = 1) (1 — 11). (2.43)
Using the two bounds of [|A(t1,%,,7) ||, we get
A (2,0 = (A (0, 12, D) | A (11,12, 7) | (2.44)
<Ch-1)"(ta-t)" '
Consequently,
g1 (,7) — @1 (11,7)]| < C(1 —7) " (2 —11). (2.45)
Using (2.36) and (2.45), we get
(1) — @1 (0, 7) |77 < O (£ — 1) (1 — 1) 700, (2.46)
% %
where §; >0, 8, >0.
Thus
o1 (t2,7) — @1 (11, 7) || < Clta = 1) (11 = 7)° 7, (2.47)
where 6 = 8,y/(8; +62) < y. O
Using (2.34), we get
¢(t2,7) = @(t1,7) = @1 (t2,7) — 91 (11,7)
(2.48)

t t
+J [@1(t2,5) — @1 (t1,5) 9(s,T)ds + t @1(t2,5) @(s,7)ds.
We estimate the norm of the first term on the right-hand side of (2.48) by using (2.47)
and the norm of the second term by using (2.28) and (2.33). After simple calculations,
the required result follows.
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We will make use of the inequality
JA(DA (9)]] = C, (2.49)

which follows from condition (A;), where t,s € [0,T] and C is a positive constant inde-
pendent of both ¢ and s.

THEOREM 2.5. There exists an operator-valued function Q(t) in B(E), defined and strongly
continuous in t for 0 <t < T, such that
(B1) the fractional derivative d*Q(t)/dt* exists in the strong topology, belongs to B(E) for
0 <t <T, andis strongly continuous int for0 <t < T,
(B,) the range of Q(t) is included in D(A) for0 <t < T,
(Bs3) for any ug € E, Q(t)uy satisfies the fractional differential equation
%MQ +A(t)Q(t)uo =0, 0<t<T, (250)
(Bs) Q(0) = A71(0),
(Bs) a solution of the Cauchy problem (1.6), (1.7) is given by v(t) = Q(t)A(0)uo, for any
ug € D(A).

Proof. We set
QD) = A7)+ |yt~ n UG (251)

We will determine the operator-valued function U(t) such that Q(#)u, satisfies (2.50).
Using formally Lemma 2.3, we get

t
U(t)ug + Jo o1 (t,n)U(n)updn = —ADAT(0)uy (2.52)

(cf. [11, 14, 15]).
The operator-valued function U(t) can be obtained by successive approximations, that
is, we put

Ut) = > Uk(t), (2.53)
k=0
where Up(t) = —A(t)A~1(0),
Ui (®) = = | p1(t.9)UL (s (2.54)

Using the properties of ¢ and Fubini’s theorem, one easily shows, by induction, that

UL(t) = — JO (5 A(5) A1 (0)ds, (2.55)
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Using (2.33), (2.54), and (2.55), we deduce that the series >.;_, Uk () uniformly converges
on [0, T].
It is clear that U(¢) is given by

U(t) = —A(HA1(0) - Jt(p(t,s)A(s)A’l(O)ds. (2.56)
0

Using (2.33), we get
[|lU@®)|| < C+cCr. (2.57)
It is easy to see that
U(t) = U(t) = [A(t) - A(t2) JA1(0)

- | o9~ p(tis) )44 0)ds (2.58)

0

- jtz 0 (12,5) A(s) A1 (0)ds.
t

1

Using condition (A;) and Lemma 2.4, we find that
c - c
||U(t2)—U(t1)||SC(tz—tl)y'f'g(tz—tl)y 5tf+;(t2—t1)y, (259)

where t, > 1, t1,t, € [0,T], and C is a positive constant independent of ¢y, ,.

Recalling that y(t — #,7) is uniformly continuous in ¢, #, provided that t — 7 > € >0,
and using (2.14), (2.59), one can verify without difficulty that [; w(t — 7,17) U()dy is uni-
formly continuous (in the norm of B(E)) in t € [0, T]. Using (2.57), we get [|Q(t)|| < C
for all t € [0, T], where C is a positive constant independent of t. It is also obvious that
Q(0) = A~1(0) and Q(t)uy is contiguous in ¢ € [0, T] for every uy € E. We prove now that
the range of Q(¢) is included in D(A) forO<t < T.

Using (2.59) and Lemma 2.1, we deduce that A(t)y(t — #,%) U(5) is uniformly contin-
uous in the uniform topology in the variables t,7 € [0, T], provided that t — 5 > €, where
€ is any positive number.

The operator-valued function A(t)y(t —#,7)U(y) can be written in the form

Ayt =n,mU(n) = AW [y(t—n.n) —y(t—n,0)]U(y)

(2.60)
+AM Yt —n)[UMm) - U@D ]+ Ayt —n,0)U(1).

By using (2.11) and (2.57), we find that the norm of the first term on the right-hand side
of (2.60) is bounded by C(t — 1)?~!. By using (1.5) and (2.59), we find that the norm of
the second term on the right-hand side of (2.60) is bounded by C(t — #)?~%~! (where C
is a generic positive constant independent of both ¢ and #). Using these estimations and
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noticing that

t
LA(t)l//(t —1,m)U(n)uodn

=jAunwa—mm—wu—n¢ﬂwamn
0 (2.61)

+ JO At — DU - UMD uodn

- J: (a(0) [ exp (= t*0A(1)) |U()uiod6 + U(£) o,

one can deduce that the integral JOtA(t)W(t —1,1)U(n)updn is continuous in ¢ € [0,T],
for every ug € E. Consequently, the range of Q(t) is included in D(A) for every t € [0, T].
It can be proved that there are two positive constants C and § such that

[[A()Q(Huo|| < C+Ct, te]0,T], (2.62)

where 0 < § < 1 and C is independent of t,uy € E. Using (2.51), (2.59), and Lemma 2.3,
one can easily show that (d*Q(t)/dt*)u, exists and represents a continuous function in
t € [0, T] for every uy € E.

It is also clear that Q(t)uy satisfies (2.50). The function v(t) = Q(t)A(0)u represents a
solution of the Cauchy problem (1.6), (1.7) if up € D(A). This completes the proof of the
properties B1—Bs. g

THEOREM 2.6. A solution of the Cauchy problem (2.5), (2.6) is given by

t t
Mﬂ=W+Lwﬁ—mmmemme+Lw0—mmeMﬂ

t (2.63)
1
+ J J y(t—n,n)e(n,s) f(s)dsdy
0JO
or
t try
u(t) = up — L y(t—n,n)An)uodn — L L v(t—n,m)e(n,s)A(s)uo dsdn
(2.64)
t trn
+I y(t—n,n) f(n)dn+ J J y(t—n,me(n,s) f(s)dsdn,
0 0Jo
where uy € D(A) and f satisfies condition (As); t € [0,T].
Proof. We set
u(t) :A‘I(O)u0+J0 w(t = mm)Vindn. (2.65)

Then we determine the function V such that u satisfies (2.5). The proof is carried out
similar to that of Theorem 2.5. O

THEOREM 2.7. The strong solution of the Cauchy problem (1.6), (1.7) is unique.
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Proof. We introduce the bounded operators A, (t) = A(t)[I + (1/n)A(t)]~!. It is known
that

-1 C
[|(An(t) — An(1)) A (s)|| < Clt— 77, (2.67)
where s,t,7 € [0, T] and C is a positive constant independent of ¢, 7, s, and n.
Consider the following Cauchy problem:
d*v,(t)
A, (t)v,(t) =0, =12,...,
dre A0 g (2.68)
v, (0) = u.
The function w,(t) = v(t) — v,(t) then satisfies
d“w,(t)
+Aﬂt nt:nt, t O:T)
I (O)wn(t) = gu(t), t€[0,T] (2.69)

Wn(o) = 03

where g, (t) = [A,(t) — A(t)]v(t).
The solution of the Cauchy problem (2.69) is unique. To prove this fact, suppose
gn(t) = 0. Then wy,(¢) satisfies

I a,
llwn<t)||s@j0<t—e> 1A (0)wa(6)]|46 .

< C" ! _ a—1
=105 ] =0 Ima@iao,

for every n, where C, is a positive constant. It follows that w,(¢) = 0 for all ¢ € [0, T].
Noticing that g, is continuous in ¢ € [0, T] for every n = 1,2,... and A,(t) is a bounded
operator that varies continuously in t € [0, T] (in the uniform topology), then it is easy
to see, with the help of (2.5), that the unique solution of the Cauchy problem (2.69) is
given by

t t rn
wa(t) = jo Ul — mmgn(n)dy + jo jo Valt = e (g S)gn()dsdy,  (2.71)
where
t
vt —n,n) = ocJ0 ot — 17)"‘_1(0‘(6) exp[ — (t—1)“0A,(n)]d0, (2.72)

9™ (t,7) is the unique solution of the integral equation

t
0" (t,7) = 9\ (t,7) +J 0" (1,5)9\" (s,0)ds,

0" (t,7) = [An(t) = An(T) Jyn(t — 7,7).

(2.73)



Mahmoud M. El-Borai 209

It can be shown that the sequence {g,} uniformly converges to zero in E with respect to
te[0,T].

Consequently, by using (2.14), (2.33), (2.51), (2.67), and (2.71), we get v(t) =
lim,,— o v,,(t) uniformly with respect to t € [0, T]. Since v,(t) is uniquely defined as a
solution of the Cauchy problem (2.68), v(t) is also unique.

The continuous dependence of the solution of the Cauchy problem (2.5), (2.6) on f
and uy is established from formula (2.64) (cf. [1]). O

It must be noticed that the fractional differential equations have many important ap-
plications in different areas of applied mathematics (see [5, 6, 12]).

3. Application

Let Q be a bounded domain in the real n-dimensional Euclidean space R". For any 0 <
T < o0, denote by Qr the cylinder {(x,t) : x € Q,0 < t < T'} and by 9Q) the boundary of Q.
We consider the differential operator

i * = ﬁ q
o tA (D) = oo+ > ay(x,t)DA, (3.1)

lgl<2m

where A*(x,t,D) is said to be uniformly elliptic in Qr if the coefficients aq(x,t) are
bounded in Qr and (=1)"Re X ;j_m aq(x,1)E9 = CIE|*™, for all (x,t) € Qr and for all
real &, where C is a positive constant independent of x, t, &, and

=&+ +& (Qr={(x1):x€QUIQ, 0=t =<T})

(Dq =p!...Dl, Dj= %, gl =qi+ - +qn q=(q1>---»qn) isamulti-index).
j

(3.2)

We consider the Cauchy problem of the fractional evolution equation
‘Zi‘ +A*(u=f(), 0<t<T, (3.3)
u(0) = ug, (3.4)

in the Hilbert space L?(Q), where for each t, f(t) is the function f(x,t) belonging to
Ly(Q), A*(¢) is the operator with domain D(A*) = H*"(Q)(H{'(Q) given by A*(t) =
A*(x,t,D), and uq is a function in H?>"(Q) " H{ (Q) (see [2, 4]).

(H™(Q)) is the completion of the space C™(Q)) with respect to the norm

1/2
1 f = [Di ()]Zd] , (3.5)
f [qzsmjﬂ flx X

C™(Q) is the set of all continuous functions defined on Q which have continuous partial
derivatives of order less than or equal to m, Hy*(Q) is the completion of Cj'(Q)) with
respect to the norm || f ||, and Cy'(Q) is the set of all functions f € C"(Q) with compact
supports in Q.
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It is assumed that
(I) all the coefficients a4(x,t) are continuous in Qr and lag(x,ty) — aq(x,t1)] <
Clt,—t1”,0<y =<1, 1,1, € [0,T], C is a positive constant independent of ¢,
t, and x € Q;
(o | f(x8) = f(x,t1)|?dx]V? < Clt, — t;1P;0 < B < 1 and C is a positive constant
independent of t; and t,.

THEOREM 3.1. Assume that A*(x,t,D) is uniformly elliptic in Qr, that (I) and (II) hold,
and that 9Q) is of class C*™. Then there exists a unique strong solution of problem (3.3), (3.4).

Proof. Writing (3.3) in the form

‘Z;‘ +[A* () + kI u = £(£) +ku, (3.6)

we see that for some constant k, the operator A*(t) + kI satisfies conditions (A;) and
(A;). Using formula (2.64), we get

t trn
u(t) = uy — L y(t—n,n)AM) uodn — Jo Jo y(t—n,n)e(y,s)A(s)updsdy
# [ e o+ kutpldy
j J Wit = ) p(n ) [f () + kus) ldsdn,

(3.7)

A(t) = )+ kL
It can be proved that the last integral equation has the unique required solution u(t). This
completes the proof. O
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