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The fundamental solutions for linear fractional evolution equations are obtained. The
coefficients of these equations are a family of linear closed operators in the Banach space.
Also, the continuous dependence of solutions on the initial conditions is studied. A mixed
problem of general parabolic partial differential equations with fractional order is given
as an application.

1. Introduction

In this paper, we consider the fractional integral evolution equation

u(t)= u0− 1
Γ(α)

∫ t
0
(t− θ)α−1[A(θ)u(θ)− f (θ)

]
dθ, (1.1)

where 0 < α≤ 1, Γ(α) is the gamma function, {A(t) : t ∈ [0,T]} is a family of linear closed
operators defined on dense set D(A) in a Banach space E into E, u is the unknown E-
valued function, u0 ∈ D(A), and f is a given E-valued function defined on [0,T]. It is
assumed that D(A) is independent of t. Let B(E) denote the Banach space of all linear
bounded operators in E endowed with the topology defined by the operator norm. We
need the following conditions.

(A1) The operator [A(t) + λI]−1 exists in B(E) for any λ with Reλ≥ 0 and

∥∥∥[A(t) + λI
]−1
∥∥∥≤ C

|λ|+ 1
, (1.2)

for each t ∈ [0,T], where C is a positive constant independent of both t and λ.
(A2) For any t1, t2, s∈ [0,T],

∥∥[A(t2)−A(t1)]A−1(s)
∥∥≤ C∣∣t2− t1∣∣γ, (1.3)

where 0 < γ ≤ 1, C > 0, and the constants C and γ are independent of t1, t2, and s.
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(A3) The function f satisfies a uniform Hölder condition (with exponent β) in
[0,T], that is,

∥∥ f (t2)− f
(
t1
)∥∥≤ C∣∣t2− t1∣∣β, (1.4)

for all t1, t2 ∈ [0,T], where C and β are positive constants and 0 < β ≤ 1 (the con-
stants C and β are independent of t1 and t2).

Under condition (A1), each operator −A(s), s ∈ [0,T], generates an analytic
semigroup exp(−tA(s)), t > 0, and there exists a positive constant C independent
of both t and s such that

∥∥An(s)exp
(− tA(s)

)∥∥≤ C

tn
, (1.5)

where n= 0,1, t > 0, s∈ [0,T] [9, 10].

In Section 2, we will construct the fundamental solution of the homogeneous frac-
tional differential equation

dαv(t)
dtα

+A(t)v(t)= 0, t > 0. (1.6)

We will prove the existence and uniqueness of the solution of (1.6), with the initial con-
dition

v(0)= u0 ∈D(A). (1.7)

The continuous dependence of the solutions of (1.1) on the elements u0 and the function
f is proved.

In Section 3, we give an application to a mixed problem of a parabolic partial differen-
tial equation of fractional order.

2. The fundamental solution

We say that u is a strong solution of the fractional integral equation (1.1) if u(t)∈D(A)
for each t ∈ [0,T], u, u∗ are continuous in t ∈ [0,T], and u satisfies (1.1), where u∗(t)=
A(t)u(t).

Let h be an E-valued function defined on [0,T]. If dh(t)/dt and the integral
∫ t
τ (t −

θ)−α(dh(θ)/dθ)dθ exist in the sense of Bochner, then we use the following definition of
the fractional derivative τD

α
t h(t):

τD
α
t h(t)= 1

Γ(1−α)

∫ t
τ
(t− θ)−α

dh(θ)
dθ

dθ (2.1)

(see [7, 13, 16]).
If u is a strong solution of (1.1), then the fractional derivative

dαu

dtα
= 0D

α
t u (2.2)
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exists and is continuous in t ∈ [0,T]. In this case, we notice that

d

dt

∫ t
0
(t− θ)−αF(θ)dθ =

∫ t
0
(t− θ)−α

dF(θ)
dθ

dθ, (2.3)

where

F(t)=
∫ t

0
(t− θ)α−1[ f (θ)−u∗(θ)

]
dθ. (2.4)

Using (1.1), (2.1), and (2.3), we get

dαu(t)
dtα

= 1
Γ(α)Γ(1−α)

d

dt

∫ t
0

∫ t
θ
(t− s)−α(s− θ)α−1( f (θ)−u∗(θ)

)
dsdθ

=−A(t)u(t) + f (t),

(2.5)

u(0)= u0. (2.6)

The converse is also true. In other words, if dαu(t)/dtα is continuous in t ∈ [0,T] and
u represents a solution of the Cauchy problem (2.5), (2.6), then u represents a strong
solution of (1.1) (this means that the integral equation (1.1) is equivalent to the Cauchy
problem (2.5), (2.6)).

We will consider integrals of operator-valued functions. We denote by ψ(t,s) the
integral

ψ(t,s)= α
∫∞

0
θtα−1ζα(θ)exp

(− tαθA(s)
)
dθ, (2.7)

where ζα is a probability density function defined on [0,∞) such that its Laplace trans-
form is given by

∫∞
0
e−θxζα(θ)dθ =

∞∑
j=0

(−x) j

Γ(1 +αj)
, (2.8)

where 0 < α ≤ 1, x > 0 [3]. More details about this probability density function can be
found in [8].

Lemma 2.1. The improper integral
∫∞

0 θζα(θ)A(t)exp(−ηαθA(s))dθ exists for η > 0, t,s ∈
[0,T], and represents a uniformly continuous function in the uniform topology (i.e., in the
norm of B(E)) in the variables t, η, s, where t,s ∈ [0,T], ε ≤ η ≤ T , and ε is any positive
number.

Proof. The existence of the considered improper integral is clear for η > 0, t,s∈ [0,T]. If

0≤ t1 < t1 +∆t1 = t2 ≤ T ,

ε ≤ η1 < η1 +∆η1 = η2 ≤ T ,

0≤ s1 < s1 +∆s1 = s2 ≤ T ,

(2.9)
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then∫∞
0
θζα(θ)A

(
t2
)

exp
(−ηα2θA(s2))dθ−

∫∞
0
θζα(θ)A

(
t1
)

exp
(−ηα1θA(s1))dθ

=
∫∞

0
θζα(θ)P

(
t1, t2,s2

)
A
(
s2
)

exp
(−ηα2θA(s2))dθ

+
∫∞

0
θζ(θ)αA(t1)

[
exp

(− ν2θA
(
s2
))− exp

(− ν1θA
(
s2
))]

exp
(− ν1θA

(
s2
))
dθ

+
∫∞

0
θζα(θ)A

(
t1
)[

exp
(−ηα1θA(s2))− exp

(−ηα1θA(s1))]dθ,

(2.10)

where P(t1, t2, t3)= [A(t2)−A(t1)]A−1(t3), ν1 = ηα1 /2, and ν2 = ηα2 −ηα1 /2.
It can be proved under conditions (A1) and (A2) that

∥∥A(t)
[

exp
(−ηA(s)

)− exp
(−ηA(τ)

)
]
∥∥≤ C

η
|s− τ|γ, (2.11)

∥∥A(t)
[

exp
(−ηA(s)

)− exp
(− τA(s)

)]
A−1(s)

∥∥≤ C|η− τ|
Min(η,τ)

, (2.12)

for all η > 0, τ > 0, t,s ∈ [0, t], where the positive constant C is independent of t, s, η,
and τ. We estimate the norm of the first term on the right-hand side of (2.10) by using
condition (A2) and (1.5). We estimate also the norms of the second term and the last term
of the right-hand side of (2.10) by using (2.12), (1.5), and (2.11), respectively. We thus
find that the norm of the left-hand side of (2.10) is bounded by

C

[(
∆t1
)γ

εα
+

1
ε2α

{(
η1 +∆η1

)α−ηα1}+ ε1−α(∆s1)γ
]
. (2.13)

This completes the proof. �

Corollary 2.2. The operator-valued functions ψ(t−η,η) and A(t)ψ(t−η,η) are contin-
uous in the uniform topology in the variables t, η, where 0 ≤ η ≤ t− ε, 0 ≤ t ≤ T , for any
ε > 0. Clearly,

∥∥ψ(t−η,η)
∥∥≤ C(t−η)α−1, (2.14)

where C is a positive constant independent of t, η.

Lemma 2.3. If

w1(t,τ)=
∫ t
τ
ψ(t−η,η) f (η)dη, t > τ, (2.15)

then

τD
α
t w1(t,τ)= f (t)−

∫ t
τ
A(η)ψ(t−η,η) f (η)dη. (2.16)
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Proof. Let { fn} be a sequence of functions defined by

fn(t)=
[
I +

1
n
A(t)

]−1

f (t), t ∈ [0,T], n= 1,2, . . . . (2.17)

We consider the integrals

w1n(t,τ)=
∫ t
τ
ψ(t−η,η) fn(η)dη,

w2n(t,η)= fn(η)− 1
Γ(α)

∫ t
η
(t− θ)α−1A(η)w2n(θ,η)dθ.

(2.18)

Since fn(t)∈D(A) for all t ∈ [0,T], it follows from [9] that

w2n(t,η)=
∫∞

0
ζα(θ)

[
exp

(− (t−η)αθA(η)
)]
fn(η)dθ, (2.19)

where 0≤ η ≤ t.
Thus

ηD
α
t w2n(t,η)= 1

Γ(1−α)

∫ t
η
(t− s)−α dw2n(s,η)

ds
ds

= −α
Γ(1−α)

∫ t
η

∫∞
0

(t− s)−α(s−η)α−1θζα(θ)A(η)

× [exp
(− (s−η)αθA(η)

)]
fn(η)dθds

=−A(η)w2n(t,η).

(2.20)

Using (2.19) and (2.20), we get

τD
α
t ωn(t,τ)= d

dt

∫ t
τ

∫∞
0
ζα(θ)

[
exp

(− (t−η)αθA(η)
)]
fn(η)dθdη

= fn(t)−
∫ t
τ
A(η)ψ(t−η,η) fn(η)dη.

(2.21)

According to Lemma 2.1, we notice that A(η)ψ(t− η,η) is a uniformly continuous func-
tion in the uniform topology in variables t,η ∈ [0,T], where t− η ≥ ε. Since f satisfies
condition (A3), it follows that the integral

∫ t
τ A(η)ψ(t−η,η) f (η)dη exists (cf. [2]).

We notice that

∥∥A(η)ψ(t−η,η)
∥∥≤ C

t−η , (2.22)

for all t,η ∈ [0,T], t−η ≥ ε. Clearly,

∥∥∥∥∥
[
I +

1
n
A(t)

]−1

− I
∥∥∥∥∥≤ C+ 1, (2.23)
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whereas for x ∈D(A),

∥∥∥∥∥
[
I +

1
n
A(t)

]−1

x− x
∥∥∥∥∥≤ C

n

∥∥A(t)x
∥∥. (2.24)

Using (2.23) and noticing that f satisfies condition (A3), we deduce that the sequence
{ fn} uniformly converges to f with respect to t ∈ [0,T]. Using (2.22), we get, for any
positive number ε, the inequality

∥∥∥∥∥
∫ t−ε
τ

A(η)ψ(t−η,η)
[
fn(η)− f (η)

]
dη

∥∥∥∥∥≤ Cε[ln(t− τ)− lnε
]
, (2.25)

for a sufficiently large n. Consequently,

lim
n→∞ τD

α
t w1n(t,τ)= f (t)−

∫ t
τ
A(η)ψ(t−η,η) f (η)dη (2.26)

uniformly with respect to t ∈ [0,T], t > τ.
This completes the proof. �

Let

ϕ1(t,τ)= [A(t)−A(τ)
]
ψ(t− τ,τ),

ϕk+1(t,τ)=
∫ t
τ
ϕk(t,s)ϕ1(s,τ)ds, k = 1,2, . . . .

(2.27)

Using condition (A2), we get

∥∥ϕ1(t,τ)
∥∥≤

∫∞
0

∥∥S(t,τ,θ)
∥∥∥∥A(τ)exp

(− (t− τ)αθA(τ)
)∥∥dθ ≤ C(t− τ)γ−1, (2.28)

where

S(t,τ,θ)= αθ(t− τ)α−1ζα(θ)P(t,τ,τ). (2.29)

Using Lemma 2.1, we conclude that ϕ1 is uniformly continuous in t, τ in the uniform
topology provided that t− τ ≥ ε > 0. Now one verifies, by induction, that all the functions
ϕk, k = 1,2, . . ., are uniformly continuous in t, τ in the uniform topology for t− τ ≥ ε,
t,τ ∈ [0,T], and

∥∥ϕk(t,τ)
∥∥≤ Ck(t− τ)γk−1

Γ(γk)
. (2.30)

Using inequalities (2.30), one can justify the relation

∫ t
τ
ϕ(t,s)ϕ1(s,τ)ds=

∞∑
k=1

∫ t
τ
ϕk(t,s)ϕ1(s,τ)ds, (2.31)
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where

ϕ(t,τ)=
∞∑
k=1

ϕk(t,τ). (2.32)

It is easy to see that

∥∥ϕ(t,τ)
∥∥≤ C(t− τ)γ−1. (2.33)

The function ϕ is uniformly continuous in the uniform topology in t, τ provided that
0 ≤ τ ≤ t− ε, ε ≤ t ≤ T for any ε > 0. Using Fubini’s theorem, we deduce that ϕ is the
unique solution of the integral equation

ϕ(t,τ)= ϕ1(t,τ) +
∫ t
τ
ϕ(t,s)ϕ1(s,τ)ds. (2.34)

Lemma 2.4. For any 0 < δ < γ, 0≤ τ < t1 < t2 ≤ T ,

∥∥ϕ(t2,τ
)−ϕ(t1,τ

)∥∥≤ C(t2− t1)γ−δ(t1− τ)δ−1
, (2.35)

where the positive constant C does not depend on t1, t2, or τ.

Proof. From (2.28), we get

∥∥ϕ1
(
t2,τ

)−ϕ1
(
t1,τ

)∥∥≤ 2C
(
t1− τ

)γ−1
. (2.36)

Writing

ϕ1
(
t2,τ

)−ϕ1
(
t1,τ

)= P(t1, t2,τ
)
A(τ)ψ

(
t2− τ,τ

)
+P
(
t1,τ,τ

)
A(τ)

[
ψ
(
t2− τ,τ

)−ψ(t1− τ,τ
)]

,

Λ
(
t1, t2,τ

)= P(t1,τ,τ
)
A(τ)

[
ψ
(
t2− τ,τ

)−ψ(t1− τ,τ
)]

,

(2.37)

we get

∥∥P(t1, t2,τ
)
A(τ)ψ

(
t2− τ,τ

)∥∥≤ C(t2− t1)γ(t1− τ)−1
,∥∥Λ(t1, t2,τ

)∥∥≤ 2C
(
t1− τ

)γ−1
.

(2.38)

We can write

Λ
(
t1, t2,τ

)=
∫∞

0
P1
(
t1, t2, t3,τ,θ

)
dθ +

∫∞
0
P2
(
t1, t2, t3,τ,θ

)
dθ, (2.39)

where

P1
(
t1, t2,τ,θ

)= αθζα(θ)
[
A
(
t1
)−A(τ)

]
P3
(
t1, t2, t3,τ,θ

)
exp

[− (t1− τ)αθA(τ)
]
,

P3
(
t1, t2, t3,τ,θ

)= (t2− τ)α−1
exp

[− {(t2− τ)α− (t1− τ)α}θA(τ)
]− (t2− τ)α−1

I.
(2.40)
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We can find t3 and t4 such that t1 < t3 < t2, t1 < t4 < t2, and

P3
(
t1, t2, t3,τ,θ

)= (t2− τ)α−1
exp

[
−α(t2− t1)(t3− τ)α−1

θA(τ)
]
− (t2− τ)α−1

I ,

P2
(
t1, t2, t3,τ,θ

)= αθζα(θ)
[
A
(
t1
)−A(τ)

][(
t2− τ

)α− − (t1− τ)α−1
]

exp
[−(t1−τ)θA(τ)

]
= α(α− 1)θζα(θ)

(
t2−t1

)(
t4−τ

)α−2[
A
(
t1
)−A(τ)

]
exp

[− (t1− τ)θA(τ)
]
.

(2.41)

We notice that

P3
(
t1, t2, t3,τ,θ

)=−αθ(t2− τ)α−1(
t3− τ

)α−1
∫ t2−t1

0
A(τ)exp

[
−ηαθ(t3− τ)α−1

A(τ)
]
dη.

(2.42)

Now it is easy to see that

∥∥Λ(t1, t2,τ
)∥∥≤ C(t1− τ)γ−2(

t2− t1
)
. (2.43)

Using the two bounds of ‖Λ(t1, t2,τ)‖, we get

∥∥Λ(t1, t2,τ
)∥∥= ∥∥Λ(t1, t2,τ

)∥∥γ∥∥Λ(t1, t2,τ
)∥∥1−γ

≤ C(t1− τ)−1(
t2− t1

)γ
.

(2.44)

Consequently,

∥∥ϕ1
(
t2,τ

)−ϕ1
(
t1,τ

)∥∥≤ C(t1− τ)−1(
t2− t1

)γ
. (2.45)

Using (2.36) and (2.45), we get

∥∥ϕ1
(
t2,τ

)−ϕ1
(
t1,τ

)∥∥δ1+δ2 ≤ Cδ1+δ2
(
t2− t1

)γδ1
(
t1− τ

)δ2γ−δ1−δ2 , (2.46)

where δ1 > 0, δ2 > 0.
Thus

∥∥ϕ1
(
t2,τ

)−ϕ1
(
t1,τ

)∥∥≤ C(t2− t1)γ−δ(t1− τ)δ−1
, (2.47)

where δ = δ2γ/(δ1 + δ2) < γ. �

Using (2.34), we get

ϕ
(
t2,τ

)−ϕ(t1,τ
)= ϕ1

(
t2,τ

)−ϕ1
(
t1,τ

)
+
∫ t1
τ

[
ϕ1
(
t2,s
)−ϕ1

(
t1,s
)]
ϕ(s,τ)ds+

∫ t2
t1
ϕ1
(
t2,s
)
ϕ(s,τ)ds.

(2.48)

We estimate the norm of the first term on the right-hand side of (2.48) by using (2.47)
and the norm of the second term by using (2.28) and (2.33). After simple calculations,
the required result follows.
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We will make use of the inequality

∥∥A(t)A−1(s)
∥∥≤ C, (2.49)

which follows from condition (A2), where t,s∈ [0,T] and C is a positive constant inde-
pendent of both t and s.

Theorem 2.5. There exists an operator-valued function Q(t) in B(E), defined and strongly
continuous in t for 0≤ t ≤ T , such that

(B1) the fractional derivative dαQ(t)/dtα exists in the strong topology, belongs to B(E) for
0≤ t ≤ T , and is strongly continuous in t for 0≤ t ≤ T ,

(B2) the range of Q(t) is included in D(A) for 0≤ t ≤ T ,
(B3) for any u0 ∈ E, Q(t)u0 satisfies the fractional differential equation

dαQ(t)
dtα

u0 +A(t)Q(t)u0 = 0, 0 < t ≤ T , (2.50)

(B4) Q(0)= A−1(0),
(B5) a solution of the Cauchy problem (1.6), (1.7) is given by v(t)=Q(t)A(0)u0, for any

u0 ∈D(A).

Proof. We set

Q(t)= A−1(0) +
∫ t

0
ψ(t−η,η)U(η)dη. (2.51)

We will determine the operator-valued function U(t) such that Q(t)u0 satisfies (2.50).
Using formally Lemma 2.3, we get

U(t)u0 +
∫ t

0
ϕ1(t,η)U(η)u0dη =−A(t)A−1(0)u0 (2.52)

(cf. [11, 14, 15]).
The operator-valued functionU(t) can be obtained by successive approximations, that

is, we put

U(t)=
∞∑
k=0

Uk(t), (2.53)

where U0(t)=−A(t)A−1(0),

Uk+1(t)=−
∫ t

0
ϕ1(t,s)Uk(s)ds. (2.54)

Using the properties of ϕk and Fubini’s theorem, one easily shows, by induction, that

Uk(t)=−
∫ t

0
ϕk(t,s)A(s)A−1(0)ds. (2.55)
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Using (2.33), (2.54), and (2.55), we deduce that the series
∑∞

k=0Uk(t) uniformly converges
on [0,T].

It is clear that U(t) is given by

U(t)=−A(t)A−1(0)−
∫ t

0
ϕ(t,s)A(s)A−1(0)ds. (2.56)

Using (2.33), we get

∥∥U(t)
∥∥≤ C+Ctγ. (2.57)

It is easy to see that

U
(
t2
)−U(t1)= [A(t1)−A(t2)]A−1(0)

−
∫ t1

0

[
ϕ
(
t2,s
)−ϕ(t1,s

)]
A(s)A−1(0)ds

−
∫ t2
t1
ϕ
(
t2,s
)
A(s)A−1(0)ds.

(2.58)

Using condition (A2) and Lemma 2.4, we find that

∥∥U(t2)−U(t1)∥∥≤ C(t2− t1)γ +
c

δ

(
t2− t1

)γ−δ
tδ1 +

c

γ

(
t2− t1

)γ
, (2.59)

where t2 > t1, t1, t2 ∈ [0,T], and C is a positive constant independent of t1, t2.
Recalling that ψ(t− η,η) is uniformly continuous in t, η, provided that t− η ≥ ε > 0,

and using (2.14), (2.59), one can verify without difficulty that
∫ t

0 ψ(t−η,η)U(η)dη is uni-
formly continuous (in the norm of B(E)) in t ∈ [0,T]. Using (2.57), we get ‖Q(t)‖ ≤ C
for all t ∈ [0,T], where C is a positive constant independent of t. It is also obvious that
Q(0)= A−1(0) andQ(t)u0 is contiguous in t ∈ [0,T] for every u0 ∈ E. We prove now that
the range of Q(t) is included in D(A) for 0 < t ≤ T .

Using (2.59) and Lemma 2.1, we deduce that A(t)ψ(t−η,η)U(η) is uniformly contin-
uous in the uniform topology in the variables t,η ∈ [0,T], provided that t−η ≥ ε, where
ε is any positive number.

The operator-valued function A(t)ψ(t−η,η)U(η) can be written in the form

A(t)ψ(t−η,η)U(η)= A(t)
[
ψ(t−η,η)−ψ(t−η, t)

]
U(η)

+A(t)ψ(t−η, t)
[
U(η)−U(t)

]
+A(t)ψ(t−η, t)U(t).

(2.60)

By using (2.11) and (2.57), we find that the norm of the first term on the right-hand side
of (2.60) is bounded by C(t− η)γ−1. By using (1.5) and (2.59), we find that the norm of
the second term on the right-hand side of (2.60) is bounded by C(t− η)γ−δ−1 (where C
is a generic positive constant independent of both t and η). Using these estimations and
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noticing that

∫ t
0
A(t)ψ(t−η,η)U(η)u0dη

=
∫ t

0
A(t)

[
ψ(t−η,η)−ψ(t−η, t)

]
U(η)u0dη

+
∫ t

0
A(t)ψ(t−η, t)

[
U(η)−U(t)

]
u0dη

−
∫∞

0
ζα(θ)

[
exp

(− tαθA(t)
)]
U(t)u0dθ +U(t)u0,

(2.61)

one can deduce that the integral
∫ t

0 A(t)ψ(t− η,η)U(η)u0dη is continuous in t ∈ [0,T],
for every u0 ∈ E. Consequently, the range of Q(t) is included in D(A) for every t ∈ [0,T].
It can be proved that there are two positive constants C and δ such that

∥∥A(t)Q(t)u0
∥∥≤ C+Ctδ , t ∈ [0,T], (2.62)

where 0 < δ < 1 and C is independent of t,u0 ∈ E. Using (2.51), (2.59), and Lemma 2.3,
one can easily show that (dαQ(t)/dtα)u0 exists and represents a continuous function in
t ∈ [0,T] for every u0 ∈ E.

It is also clear that Q(t)u0 satisfies (2.50). The function v(t)=Q(t)A(0)u0 represents a
solution of the Cauchy problem (1.6), (1.7) if u0 ∈D(A). This completes the proof of the
properties B1–B5. �

Theorem 2.6. A solution of the Cauchy problem (2.5), (2.6) is given by

u(t)= u0 +
∫ t

0
ψ(t−η,η)U(η)A(0)u0dη+

∫ t
0
ψ(t−η,η) f (η)dη

+
∫ t

0

∫ η
0
ψ(t−η,η)ϕ(η,s) f (s)dsdη

(2.63)

or

u(t)= u0−
∫ t

0
ψ(t−η,η)A(η)u0dη−

∫ t
0

∫ η
0
ψ(t−η,η)ϕ(η,s)A(s)u0dsdη

+
∫ t

0
ψ(t−η,η) f (η)dη+

∫ t
0

∫ η
0
ψ(t−η,η)ϕ(η,s) f (s)dsdη,

(2.64)

where u0 ∈D(A) and f satisfies condition (A3); t ∈ [0,T].

Proof. We set

u(t)= A−1(0)u0 +
∫ t

0
ψ(t−η,η)V(η)dη. (2.65)

Then we determine the function V such that u satisfies (2.5). The proof is carried out
similar to that of Theorem 2.5. �

Theorem 2.7. The strong solution of the Cauchy problem (1.6), (1.7) is unique.
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Proof. We introduce the bounded operators An(t) = A(t)[I + (1/n)A(t)]−1. It is known
that

∥∥(An(t)− λI)−1∥∥≤ C

|λ|+ 1
, (2.66)∥∥(An(t)−An(τ)

)
A−1
n (s)

∥∥≤ C|t− τ|γ, (2.67)

where s, t,τ ∈ [0,T] and C is a positive constant independent of t, τ, s, and n.
Consider the following Cauchy problem:

dαvn(t)
dtα

+An(t)vn(t)= 0, n= 1,2, . . . ,

vn(0)= u0.
(2.68)

The function wn(t)= v(t)− vn(t) then satisfies

dαwn(t)
dtα

+An(t)wn(t)= gn(t), t ∈ [0,T],

wn(0)= 0,
(2.69)

where gn(t)= [An(t)−A(t)]v(t).
The solution of the Cauchy problem (2.69) is unique. To prove this fact, suppose

gn(t)= 0. Then wn(t) satisfies

∥∥wn(t)
∥∥≤ 1

Γ(α)

∫ t
0
(t− θ)α−1

∥∥An(θ)wn(θ)
∥∥dθ

≤ Cn
Γ(α)

∫ t
0
(t− θ)α−1

∥∥wn(θ)
∥∥dθ,

(2.70)

for every n, where Cn is a positive constant. It follows that wn(t) = 0 for all t ∈ [0,T].
Noticing that gn is continuous in t ∈ [0,T] for every n = 1,2, . . . and An(t) is a bounded
operator that varies continuously in t ∈ [0,T] (in the uniform topology), then it is easy
to see, with the help of (2.5), that the unique solution of the Cauchy problem (2.69) is
given by

wn(t)=
∫ t

0
ψn(t−η,η)gn(η)dη+

∫ t
0

∫ η
0
ψn(t−η,η)ϕ(n)(η,s)gn(s)dsdη, (2.71)

where

ψn(t−η,η)= α
∫ t

0
θ(t−η)α−1ζα(θ)exp

[− (t−η)αθAn(η)
]
dθ, (2.72)

ϕ(n)(t,τ) is the unique solution of the integral equation

ϕ(n)
1 (t,τ)= ϕ(n)

1 (t,τ) +
∫ t
τ
ϕ(n)(t,s)ϕ(n)

1 (s, t)ds,

ϕ(n)
1 (t,τ)= [An(t)−An(τ)

]
ψn(t− τ,τ).

(2.73)
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It can be shown that the sequence {gn} uniformly converges to zero in E with respect to
t ∈ [0,T].

Consequently, by using (2.14), (2.33), (2.51), (2.67), and (2.71), we get v(t) =
limn→∞ vn(t) uniformly with respect to t ∈ [0,T]. Since vn(t) is uniquely defined as a
solution of the Cauchy problem (2.68), v(t) is also unique.

The continuous dependence of the solution of the Cauchy problem (2.5), (2.6) on f
and u0 is established from formula (2.64) (cf. [1]). �

It must be noticed that the fractional differential equations have many important ap-
plications in different areas of applied mathematics (see [5, 6, 12]).

3. Application

Let Ω be a bounded domain in the real n-dimensional Euclidean space Rn. For any 0 <
T <∞, denote byQT the cylinder {(x, t) : x ∈Ω, 0 < t < T} and by ∂Ω the boundary of Ω.

We consider the differential operator

∂α

∂tα
+A∗(x, t,D)= ∂α

∂tα
+
∑

|q|≤2m

aq(x, t)Dq, (3.1)

where A∗(x, t,D) is said to be uniformly elliptic in QT if the coefficients aq(x, t) are
bounded in QT and (−1)mRe

∑
|q|=2maq(x, t)ξq ≥ C|ξ|2m, for all (x, t) ∈ QT and for all

real ξ, where C is a positive constant independent of x, t, ξ, and

|ξ|2 = ξ2
1 + ···+ ξ2

n

(
QT =

{
(x, t) : x ∈Ω∪ ∂Ω, 0≤ t ≤ T})(

Dq =Dq1

1 ···Dqn
n , Dj = ∂

∂xj
, |q| = q1 + ···+ qn, q = (q1, . . . ,qn

)
is a multi-index

)
.

(3.2)

We consider the Cauchy problem of the fractional evolution equation

dαu

dtα
+A∗(t)u= f (t), 0 < t ≤ T , (3.3)

u(0)= u0, (3.4)

in the Hilbert space L2(Ω), where for each t, f (t) is the function f (x, t) belonging to
L2(Ω), A∗(t) is the operator with domain D(A∗)=H2m(Ω)

⋂
Hm

0 (Ω) given by A∗(t)=
A∗(x, t,D), and u0 is a function in H2m(Ω)

⋂
Hm

0 (Ω) (see [2, 4]).
(Hm(Ω)) is the completion of the space Cm(Ω) with respect to the norm

‖ f ‖m =

 ∑
|q|≤m

∫
Ω

[
Dq f (x)

]2
dx




1/2

, (3.5)

Cm(Ω) is the set of all continuous functions defined on Ω which have continuous partial
derivatives of order less than or equal to m, Hm

0 (Ω) is the completion of Cm0 (Ω) with
respect to the norm ‖ f ‖m, and Cm0 (Ω) is the set of all functions f ∈ Cm(Ω) with compact
supports in Ω.
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It is assumed that

(I) all the coefficients aq(x, t) are continuous in QT and |aq(x, t2) − aq(x, t1)| ≤
C|t2 − t1|γ, 0 < γ ≤ 1, t1, t2 ∈ [0,T], C is a positive constant independent of t1,
t2, and x ∈Ω;

(II) [
∫
Ω | f (x, t2)− f (x, t1)|2dx]1/2 ≤ C|t2− t1|β; 0 < β ≤ 1 and C is a positive constant

independent of t1 and t2.

Theorem 3.1. Assume that A∗(x, t,D) is uniformly elliptic in QT , that (I) and (II) hold,
and that ∂Ω is of class C2m. Then there exists a unique strong solution of problem (3.3), (3.4).

Proof. Writing (3.3) in the form

dαu

dtα
+
[
A∗(t) + kI

]
u= f (t) + ku, (3.6)

we see that for some constant k, the operator A∗(t) + kI satisfies conditions (A1) and
(A2). Using formula (2.64), we get

u(t)= u0−
∫ t

0
ψ(t−η,η)A(η)u0dη−

∫ t
0

∫ η
0
ψ(t−η,η)ϕ(η,s)A(s)u0dsdη

+
∫ t

0
ψ(t−η,η)

[
f (η) + ku(η)

]
dη

+
∫ t

0

∫ η
0
ψ(t−η,η)ϕ(η,s)

[
f (s) + ku(s)

]
dsdη,

A(t)= A∗(t) + kI.

(3.7)

It can be proved that the last integral equation has the unique required solution u(t). This
completes the proof. �
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