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It is a common fact that for most classes of general insurance, many possible sources of
heterogeneity of risk exist. Premium rates based on information from a heterogeneous
portfolio might be quite inadequate. One way of reducing this danger is by grouping
policies according to the different levels of the various risk factors involved. Using mea-
sure change techniques, we derive recursive filters and predictors for the claim rates and
claim sizes for the different groups.

1. Introduction

All processes are defined on a measurable space (Ω,�), with probability measure P. Con-
sider a portfolio of L policyholders of, for instance, automobile insurance. Each policy-
holder belongs to one of a finite number G of risk level groups classified by age, sex, type
of automobile owned, and so forth.

Under the two assumptions that the initial distribution of the rate of claims is Γ (α0,β0)
and that the number of claims y and the number of policies N are Poisson random vari-
ables, it is easily seen that the posterior probability density of the rate of claims, given new
data y, N , is Γ(α0 + y,β0 +N).

More precisely, we will be using the following notation and assumptions.
(i) Let Nc

n be the total number of new policies purchased by individuals classified in
group c during the nth year and let ycn be the number of claims reported by the cth group
during the same year.

(ii) The rate of claims reported by policyholders in the cth group during the nth year,
δcn, is a random variable with conditional Γ-distribution

P
(
δcn ∈ dx | αcn−1,βcn−1, ycn−1,Nc

n−1

)= βcn
Γ
(
αcn
)(βcnx)αcn−1

e−β
c
nxdx, (1.1)

which is close to a normal distribution when αcn and βcn are large enough, where αc0, βc0 are
initial guesses and, for n≥ 1,

αcn = αcn−1 + ycn−1, βcn = βcn−1 +Nc
n−1. (1.2)
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In this paper, we assume that

P
(
δcn ∈ dx | δcn−1 = δc,αcn−1,βcn−1, ycn−1,Nc

n−1, c = 1, . . . ,G
)

= 1
σcn
√

2π
exp

−1
2

(
xc−

∑G
i=1d

c
i δ

j

σcn

)2
dx

�= ηn
(
xc,δ1, . . . ,δG,σcn

)
dx.

(1.3)

Here, dci , c, i= 1, . . . ,G, are real numbers expressing some dependence between claim sizes
from the different groups and

σcn =
αcn−1 + ycn−1(
βcn−1 +Nc

n−1

)2 =
αcn(
βcn
)2 . (1.4)

(iii) The random variables ycn, Nc
n are Poisson random variables such that

P
[
ycn = � |�n−1,δcn

]= e−δcn
(
δcn
)�

�!
,

P
[
Nc
n =m |�n−1

]= e−µcn
(
µcn
)m

m!
.

(1.5)

Here, �n = σ{δck, yck,Nc
k , c = 1, . . . ,G, Xk, k ≤ n} is a complete filtration. We assume here

that µcn is either known or �n-predictable.
(iv) Let S

c
n be the mean claim size of group c by the end of year n. It is usually assumed

that the lognormal distribution is suitable for claim sizes. (See, e.g., [4, 5].) The central
limit theorem suggests the following (conditional) normal distribution for S

c
n:

P
(
S
c
n ∈ dz | Scn−1 = s,Xn

)= 1
Σcn
√

2π
exp

−1
2

(
z− ac(Xn)s

Σcn

)2
dz

�= φcn
(
z,s,Xn

)
dx.

(1.6)

Here, ac(Xn) = 〈ac,Xn〉, where ac = (ac1, . . . ,acK ) may represent the year index [5] which,
for simplicity, belongs to the finite set of real numbers ac. The probability density func-
tion of S

c
n is modulated by an unobserved finite-state Markov chain X , that is, the mean

number of policies purchased every year is changing from year to year due to many eco-
nomical factors and the changes are modeled by a finite-state Markov chain X . Without
loss of generality, let the state space of X be the standard basis {e1, . . . ,eK} of RK .

Write P = {pj,i}, i, j = 1, . . . ,K , where
∑K

j=1 pj,i = 1 and

pj,i = P
[
Xn = ej | Xn−1 = ei

]
. (1.7)

Then, we have the following dynamical representation [3]:

Xn = PXn−1 +Vn, (1.8)

whereVn is a martingale increment with respect to the complete filtration generated byX .
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(v) Credibility theory deals with adjusting insurance premiums as claim experience is
obtained [4]. The technique consists of using a credibility factor Z ∈ (0,1) to obtain a
convex linear combination of some data obtained from past experience, which may not
be very reliable, and data from recently reported claims. In this paper, we propose the
following (conditional) normal distribution for S

c
n:

P
(
S
c
n ∈ ds | Scn−1 = s1,S

c
n−2 = s2

)
= 1

Ψc
n

√
2π

exp

−1
2

(
s−Zcs1−

(
1−Zc)s2

Ψc
n

)2
dz

�= χcn
(
s,s1,s2

)
dx.

(1.9)

The parameter Z is reestimated in Section 6.
In Sections 3 and 4, recursive estimates for the rates of claims are derived under a

suitable “reference” probability measure.
In Sections 4 and 5, recursive estimates of the claim sizes are derived under a different

“reference” probability measure. The reason was to separate between the distributions of
the claim rates and the claim sizes. Note that the changes in the economical environment,
expressed by the jumps of the Markov chain X , link the claim sizes of the whole portfolio,
therefore creating some dependence between the different risk groups.

In Section 6, the expectation maximization (EM) is used to update the parameters of
the model.

2. Recursive estimation

In this section, we choose a probability measure P†, on the measurable space (Ω,�),
under which the processes yc,Nc, c = 1, . . . ,G, are sequences of stochastically independent
and identically distributed (i.i.d.) random variables. The probability measure P is referred
to as the “real world” measure, that is, under this measure, (1.5), (1.6), and (1.8) hold.

Suppose that under the measure P†, processes yc, Nc, c = 1, . . . ,G, are sequences of
i.i.d. Poisson random variables with rate 1 independent of everything else. Further, under
the measure P†, (1.3) and (1.8) hold.

Define

Λn =
n∏

m=0

λm, (2.1)

where λ0 = 1 and

λm =
G∏
c=1

exp
{

1− δcm
}(
δcm

)ycm exp
{

1−µcm
}(
µcm

)Nc
m . (2.2)

Define the “real world” measure P in terms of P† by setting dP/dP†|�n

∆= Λn. Define the
measure-valued process

gn
(
x1, . . . ,xG

)
dx1 ···dxG = E†

[
ΛnI

(
δcn ∈ dx1, . . . ,δGn ∈ dxG

) |�n
]
. (2.3)

Here, �n = σ{yck,Nc
k , c = 1, . . . ,G, k ≤ n}.
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Remark 2.1. By Bayes’ theorem [3],

P
(
δ1
n ∈ dx1, . . . ,δGn ∈ dxG |�n

)= gn
(
x1, . . . ,xG

)
dx1 ···dxG∫

R
G
+
gn
(
u1, . . . ,uG

)
du1 ···duG . (2.4)

Theorem 2.2. Denote by g0(x) the initial probability density function of δ. The unnormal-
ized probability density functions gn(·)∈R+ satisfy the recursion

gn
(
x1, . . . ,xG

)= G∏
c=1

exp
{

1−µcn
}(
µcn
)Nc

n exp
{

1− xc
}(
xc
)ycn

σcn
√

2π

×
∫

R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn

)2
gn−1(u)du.

(2.5)

Proof. Let f be a “test” function, δn = (δ1, . . . ,δG), and write

E†
[
f
(
δn
)
Λn |�n

]= ∫
R
G
+

f
(
x1, . . . ,xG

)
gn
(
x1, . . . ,xG

)
dx1 ···dxG. (2.6)

However, in view of (2.1), (2.2), (1.8), and (1.3),

E†
[
Λn

G∏
c=1

f
(
δn
) |�n

]

= E†
[
Λn−1

G∏
c=1

exp
{

1− δcn
}(
δcn
)ycn exp

{
1−µcn

}(
µcn
)Nc

n f
(
δn
) |�n

]

= E†
[
E†
[
Λn−1

G∏
c=1

exp
{

1− δcn
}(
δcn
)ycn

× exp
{

1−µcn
}(
µcn
)Nc

n f
(
δn
) |�n,δcn−1, c = 1, . . . ,G

]
|�n

]

=
G∏
c=1

exp
{

1−µcn
}(
µcn
)Nc

nE†
[
Λn−1

∫
R
G
+

G∏
c=1

ηn
(
xc,δ1

n−1, . . . ,δGn−1,σcn
)

× exp
{

1− xc
}(
xc
)ycn f (x1, . . . ,xG

)
dx1 ···dxG |�n−1

]

=
G∏
c=1

exp
{

1−µcn
}(
µcn
)Nc

n

∫
R
G
+

∫
R
G
+

G∏
c=1

ηn
(
x,u1, . . . ,uG,σcn

)
× exp

{
1− xc

}(
xc
)ycngn−1

(
u1, . . . ,uG

)
× f

(
x1, . . . ,xG

)
dx1 ···dxGdu1 ···duG by (2.6).

(2.7)

Since f is an arbitrary test function, this finishes the proof. �
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3. Predicting future claim rates

In this section, we wish to derive predictors for the rates of claims within the subgroups
of policyholders. That is, we wish to compute the conditional probability of δcn+1 given
the history up to the nth year. Define the process

hn+1,n
(
x1, . . . ,xG

)
dx1 ···dxG = E†

[
Λn+1I

(
δ1
n+1 ∈ dx1, . . . ,δGn+1 ∈ dxG

) |�n
]
. (3.1)

Let f be a “test” function and write

E†
[
Λn+1 f

(
δn+1

) |�n
]= ∫

R
G
+

f
(
x1, . . . ,xG

)
hn+1,n

(
x1, . . . ,xG

)
dx1 ···dxG. (3.2)

Lemma 3.1.

hn+1,n
(
x1, . . . ,xG

)
=

G∏
c=1

exp
{− xc}exp

{−µcn+1

} ∞∑
k=0

(
xc
)k(

µn+1
)k 1

(k!)2

×
∫

R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn+1

)2
gn(u1, . . . ,uG

)
du1 ···duG.

(3.3)

Proof.

E†
[
Λn+1 f

(
δn+1

) |�n
]

= E†
[
Λn f

(
δn+1

) G∏
c=1

exp
{

1− δcn+1

}(
δcn+1

)ycn+1 exp
{

1−µcn
}(
µcn
)Nc

n+1 |�n

]
(
since ycn+1, Nc

n+1 are not in �n, therefore we use their distributions under P†
)

= E†
[
E†
[
Λn f

(
δn+1

) G∏
c=1

exp
{

1− δcn+1

}(
δcn+1

)ycn+1

× exp
{

1−µcn+1

}(
µn+1

)Nc
n+1 |�n,δcn+1,µn+1

]
|�n

]

= E†
[
Λn f

(
δn+1

) G∏
c=1

exp
{

1− δcn+1

}
exp

{
1−µcn+1

} ∞∑
k=0

(
δcn+1

)k(
µn+1

)k e−2

(k!)2
|�n

]

= E†
[
Λn

∫
R
G
+

f
(
x1, . . . ,xG

) G∏
c=1

ηn+1
(
xc,δ1

n, . . . ,δGn ,σcn+1

)
exp

{− xc}

× exp
{−µcn+1

} ∞∑
k=0

(
xc
)k(

µn+1
)k 1

(k!)2
dx1 ···dxG |�n

]
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assuming here that µcn+1 is either known or predictable with respect to �n and using

(3.2), this is
)

=
∫

R
G
+

∫
R
G
+

G∏
c=1

f
(
x1, . . . ,xG

)
ηn+1

(
xc,u1, . . . ,uG,σcn+1

)
exp

{− xc−µcn+1

}

×
∞∑
k=0

(
xc
)k(

µn+1
)k 1

(k!)2
gn
(
u1, . . . ,uG

)
dx1 ···dxGdu1 ···duG.

(3.4)

The unnormalized density gn(u1, . . . ,uG) is given recursively in (2.5). Since f is arbitrary,
the result follows. �

4. A second change of measure

In this section, we choose a probability measure P, on the measurable space (Ω,�), under

which the processes S
1
, . . . ,S

G
are sequences of stochastically i.i.d. random variables with

the standard normal distribution.
Define

Γn =
n∏

m=0

γm, (4.1)

where γ0 = 1 and

γm =
K∏
i=1

[ G∏
c=1

φcm
(
S
c
m,S

c
m−1, i

)
ψc
(
S
c
m

) ]〈Xn,ei〉
. (4.2)

Here, ψc is the density function of the standard normal distribution and 〈·,·〉 is the inner
product of two vectors in RK .

Now set dP/dP|�n

∆= Γn, where

�n = σ
{
δck, yck,Nc

k ,Xk,S
c
k, c = 1, . . . ,G, k ≤ n}. (4.3)

Define the measure-valued process

ζn( j)= E[Γn〈Xn,ej
〉 |�n

]
. (4.4)

Here, �n = σ{Sck, c = 1, . . . ,G, k ≤ n}.
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Theorem 4.1. Denote by ζ0( j) the initial joint probability density function of X . The un-
normalized probability ζn( j)∈R+ satisfies the recursion

ζn( j)=
G∏
c=1

1
Σcn

exp

−1
2

(
S
c
n− acjScn−1

Σcn

)2

+
1
2

(
S
c
n

)2


K∑
i=1

pjiζn−1(i). (4.5)

Proof. In view of (4.1), (4.2), and (1.8), we have

E
[
Γn
〈
Xn,ej

〉 |�n
]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) E
[
Γn−1

〈
Xn,ej

〉 |�n
]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) K∑
i=1

pjiE
[
Γn−1

〈
Xn−1,ei

〉 |�n−1
]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) K∑
i=1

pji,ζn−1(i) by (4.4).

(4.6)

�

5. Predicting future claim sizes

In this section, we wish to derive one-year-ahead predictors for the claim size. That is, we

wish to compute the joint conditional probability of S
1
n+1, . . . ,S

G
n+1 given the history up to

the nth year. Define the process

ξn+1,n
(
x1, . . . ,xG

)
dx1 ···dxG = E

[
Γn+1I

(
S

1
n+1 ∈ dx1, . . . ,S

G
n+1 ∈ dxG

)
|�n

]
. (5.1)

Let f be a “test” function, Sn+1 = (S
1
n+1, . . . ,S

G
n+1), and write

E†
[
Γn+1 f

(
Sn+1

) |�n
]= ∫

R
G
+

f
(
x1, . . . ,xG

)
ξn+1,n

(
x1, . . . ,xG

)
dx1 ···dxG. (5.2)

Lemma 5.1. The one-step (unnormalized) predictor for the claim sizes is given by the mea-
sure

ξn+1,n
(
x1, . . . ,xG

)= K∑
j=1

G∏
c=1

1
Σcn+1

√
2π

exp

−1
2

(
xc− acjScn
Σcn+1

)2


K∑
i=1

pjiζn(i). (5.3)

The unnormalized density ζn(i) is given recursively in Theorem 4.1.
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Proof.

E
[
Γn+1 f

(
Sn+1

) |�n
]

=
K∑
j=1

E
[
Γn+1

〈
Xn+1,ej

〉
f
(
Sn+1

) |�n
]

=
K∑
j=1

E

[
Γn
〈
Xn+1,ej

〉
f
(
Sn+1

) G∏
c=1

φcn+1

(
S
c
n+1,S

c
n, j

)
ψc
(
S
c
n+1

) |�n

]

=
K∑
j=1

K∑
i=1

pjiE

[
Γn
〈
Xn,ei

〉∫
R
G
+

f
(
x1, . . . ,xG

) G∏
c=1

ψc
(
xc
)φcn+1

(
xc,S

c
n, j

)
ψc(x)

dx1 ···dxG |�n

]

=
K∑
j=1

∫
R
G
+

f
(
x1, . . . ,xG

) G∏
c=1

φcn+1

(
xc,S

c
n, j

)
dx1 ···dxG

K∑
i=1

pjiE
[
Γn
〈
Xn,ei

〉 |�n
]

=
K∑
j=1

∫
R
G
+

f
(
x1, . . . ,xG

) G∏
c=1

φcn+1

(
xc,S

c
n, j

)
dx1 ···dxG

K∑
i=1

pjiζn(i).

(5.4)

This finishes the proof. �

6. The EM algorithm

The EM algorithm (see [1, 2]) is a widely used iterative numerical method for computing
maximum likelihood parameter estimates (MLEs) of partially observed models such as
linear Gaussian state-space models. For such models, direct computation of the MLE is
difficult. The EM algorithm has the appealing property that successive iterations yield
parameter estimates with nondecreasing values of the likelihood function.

Suppose that we have observations y1, . . . , yK available, where K is a fixed positive in-
teger. Let {Pθ ,θ ∈Θ} be a family of probability measures on (Ω,�), all absolutely con-
tinuous with respect to a fixed probability measure P0. The log-likelihood function for
computing an estimate of the parameter θ based on the information available in �K is

�K (θ)= E0

[
log

dPθ
dP0

|�K

]
(6.1)

and the MLE is defined by

θ̂ ∈ argmax
θ∈Θ

�K (θ). (6.2)

Let θ̂0 be the initial parameter estimate. The EM algorithm generates a sequence of pa-
rameter estimates {θ̂ j}, j ≥ 1, as follows.

Each iteration of the algorithm consists of two steps.
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Step 1 (E-step). Set θ̃ = θ̂ j and compute �(θ, θ̃), where

�
(
θ, θ̃

)= Eθ̃
[

log
dPθ
dPθ̃

|�K

]
. (6.3)

Step 2 (M-step). Find θ̂ j+1 ∈ argmaxθ∈Θ�(θ, θ̂ j).
Using Jensen’s inequality, it can be shown (see [2, Theorem 1]) that the sequence of

model estimates {θ̂ j , j ≥ 1} from the EM algorithm is such that the sequence of likeli-

hoods {�K (θ̂ j)}, j ≥ 1, is monotonically increasing with equality if and only if θ̂ j+1 = θ̂ j .
Sufficient conditions for convergence of the EM algorithm are given in [6]. We briefly

summarize them here: assume that

(i) the parameter space Θ is a subset of some finite-dimensional Euclidean space Rr ;
(ii) {θ ∈Θ : �K (θ)≥�K (θ̂0)} is compact for any �K (θ̂0) >−∞;

(iii) �K is continuous in Θ and differentiable in the interior of Θ (as a consequence
of (i), (ii), and (iii), clearly �K (θ̂ j) is bounded from above);

(iv) the function �(θ, θ̂ j) is continuous in both θ and θ̂ j .

Then, by [6, Theorem 2], the limit of the sequence of EM estimates {θ̂ j} has a stationary

point θ̄ of �K . Also, {�K (θ̂ j)} converges monotonically to �̄t =�t(θ̄) for some station-
ary point θ̄. To make sure that �̄t is a maximum value of the likelihood, it is necessary to
try different initial values θ̂0.

Here, we wish to update the parameters from θ̃ = {d̃ci , i,c = 1, . . . ,G} to a set θ(n) =
{dci (n), i,c = 1, . . . ,G}.

Let D = {dci }, c, i= 1, . . . ,G, be a G×G nonsingular matrix and δn = (δ1
n, . . . ,δGn ).

Definition 6.1. Given two (column) vectors X and Y , the tensor or Kronecker product
X ⊗Y is the (column) vector obtained by stacking the rows of the matrix XY ′, where ′

is the transpose, with entries obtained by multiplying the ith entry of X by the jth entry
of Y .

For instance, if {e1,e2} is the standard basis of R2,

e1⊗ e1 = (1,0,0,0)′, e1⊗ e2 = (0,1,0,0)′,

e2⊗ e1 = (0,0,1,0)′, e2⊗ e2 = (0,0,0,1)′.
(6.4)

Maximum likelihood estimation of the parameters via the EM algorithm requires
computation of the filtered estimates of quantities such as

�(1)
n =

n∑
m=1

δm⊗ δm−1, �(2)
n =

n∑
m=1

δm−1⊗ δm−1. (6.5)

Let fi, f j ∈RG denote unit vectors with 1 in the ith and jth positions, respectively.
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For i, j ∈ {1, . . . ,G},

�
i j(1)
n =

n∑
m=1

〈
δm, fi

〉〈
δm−1, f j

〉
, �

i j(2)
n =

n∑
m=1

〈
δm−1, fi

〉〈
δm−1, f j

〉
; (6.6)

here, 〈·,·〉 denotes the scalar product.

Note that �
i j(1)
n and �

i j(2)
n are merely the elements of the matrices �(1)

n and �(2)
n , re-

spectively.

Now the expression for �(θ, θ̃) is derived.
To update the set of parameters from θ̃ to θ, we introduce the density dPθ/dPθ̃|�n =∏n
m=0 γm, where γ0 = 1 and, for m ≥ 1, γm = ψ(σ−1

n (δm−Dδm−1))/ψ(σ−1
n (δm− D̃δm−1)).

Here, ψ(·) is the standard multivariate normal distribution N(01×G,IG×G) and σn is a
G×G diagonal matrix with diagonal entries σ1

n , . . . ,σGn , where σcn is given in (1.4). Now

Eθ̃

[
log

dPθ
dPθ̃

∣∣∣∣
�n

|�n

]
= 1

2
Eθ̃

[ n∑
m=1

(
δm−Dδm−1

)′
σ−2
n

(
δm−Dδm−1

) |�n

]
+R

(
θ̃
)

=�
(
θ, θ̃

)
,

(6.7)

where R(θ̃) does not involve θ.
To implement the M-step, set the derivatives ∂�/∂θ = 0. This yields

D(n)= Eθ̃
[ n∑
m=1

δm⊗ δm−1 |�n

](
Eθ̃

[ n∑
m=1

δm−1⊗ δm−1 |�n

])−1

. (6.8)

Define the measure-valued processes

β
i j(1)
n (x)= E†

[
Λn�

i j(1)
n I

(
δn ∈ dx

) |�n

]
,

β
i j(2)
n (x)= E†

[
Λn�

i j(2)
n I

(
δn ∈ dx

) |�n

]
.

(6.9)

Then, for any “test” function g : RG→R, write

E†
[
Λn�

i j(1)
n g

(
δn
) |�n

]
=
∫

RG
β
i j(1)
n (x)g(x)dx,

E†
[
Λn�

i j(2)
n g

(
δn
) |�n

]
=
∫

RG
β
i j(2)
n (x)g(x)dx.

(6.10)
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Theorem 6.2. Denote by β
i j(1)
0 (x), β

i j(2)
0 (x) the initial probability density functions of �i j(1)

and �i j(1), respectively. The unnormalized probability densities β
i j(i)
n (x)∈ R+, i= 1,2, sat-

isfy the recursions

β
i j(1)
n

(
x1, . . . ,xG

)
=

G∏
c=1

exp
{

1−µcn
}(
µcn
)Nc

n exp
{

1− xc
}(
xc
)ycn

σcn
√

2π

×
∫

R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn

)2
βi j(1)

n−1 (u)du

+
〈
x, f j

〉∫
R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn

)2
〈u, fi

〉
gn−1(u)du

 ,

β
i j(2)
n

(
x1, . . . ,xG

)
=

G∏
c=1

exp
{

1−µcn
}(
µcn
)Nc

n exp
{

1− xc
}(
xc
)ycn

σcn
√

2π

×
∫

R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn

)2
βi j(2)

n−1 (u)du

+
∫

R
G
+

exp

−1
2

G∑
c=1

(
xc−

∑G
i=1d

c
i u

i

σcn

)2
〈u, fi

〉〈
u, f j

〉
gn−1(u)du

 .

(6.11)

Proof. The proof is similar to that of Theorem 4.1. �

To update the parameters in (1.6), let A(Xn) be a G×G diagonal matrix with diago-
nal entries a1(Xn), . . . ,aG(Xn), that is, on the event [Xn = ej], A(ej)= diag(a1

j , . . . ,a
G
j ). We

assume that acj �= 0 for all c and all j.

Write Sn = (S
1
n, . . . ,S

G
n ) and Σ= diag(Σ1, . . . ,ΣG).

To update the set of parameters from θ̃ = {Ã j , j = 1, . . . ,K , Σ̃} to θ(n) = {Aj(n), j =
1, . . . ,K ,Σ(n)}, introduce dPθ/dPθ̃|�n =

∏k
m=0 εm, where ε0 = 1 and

εm =
K∏
j=1

[∣∣Σ̃ j
∣∣ψ((Σ j

)−1(
Sm−AjSm−1

))∣∣Σ j
∣∣ψ((Σ̃ j

)−1(
Sm− Ã jSm−1

))]〈Xm,ej〉
. (6.12)

Here, ψ(·) is the standard multivariate normal distribution N(01×G,IG×G).
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Now recall that �n = σ{Sck, c = 1, . . . ,G, k ≤ n}; therefore

Eθ̃

[
log

dPθ
dPθ̃

∣∣∣∣∣
�n

|�n

]

=−
K∑
i=1

Eθ̃

[ n∑
m=1

〈
Xm,ej

〉 |�n

]
log

∣∣Σ̃ j
∣∣

+
1
2

K∑
i=1

Eθ̃

[ n∑
m=1

〈
Xm,ej

〉 |�n

](
Sm−AjSm−1

)′(
Σ j
)−2(

Sm−AjSm−1
)

+R
(
θ̃
)=�

(
θ, θ̃

)
,

(6.13)

where R(θ̃) does not involve θ.
To implement the M-step, set the derivatives ∂�/∂θ = 0. This yields

Aj(n)= Eθ̃
[∑n

m=1

〈
Xm,ej

〉 |�n
]
Sm⊗ Sm−1

Eθ̃
[∑n

m=1

〈
Xm,ej

〉 |�n
]
Sm−1⊗ Sm−1

,

(
Σ j
)2

(n)= Eθ̃
[∑n

m=1

〈
Xm,ej

〉 |�n
](
Sm−AjSm−1

)⊗ (
Sm−AjSm−1

)
Eθ̃
[∑n

m=1

〈
Xm,ej

〉 |�n
] .

(6.14)

Let T
j
n =∑n

m=1〈Xm,ej〉 and define the process Υ
j
n = E[ΛnT

j
n |�n].

Remark 6.3. The following recursive filters are derived under P which is defined in
Section 4. A closed-form finite-dimensional recursion is only possible for the condi-

tional joint distributions of T
j
n and Xn. That is, we will consider recursive filters for

E[ΓnT
j
nXn |�n]

�= εin. However, Υ
j
n =∑

�〈ε jn,e�〉.
Theorem 6.4. Let ε

j
0 be the initial joint density function of T

j
0, X0 and, for n≥ 1,

ε
j
n =

G∏
c=1

1
Σcn

exp

−1
2

(
S
c
n− acjScn−1

Σcn

)2

+
1
2

(
S
c
n

)2


×

K∑
t,�=1

p�te�
〈
ε
j
n−1,et

〉
+ ejζn( j).

(6.15)

Proof. Note that T
j
n = T

j
n−1 + 〈Xn,ej〉. Hence

E
[
ΓnT

j
nXn |�n

]= E[ΓnT
j
n−1Xn |�n

]
+E

[
Γn
〈
Xn,ej

〉
Xn |�n

]
. (6.16)
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However, in view of (1.8), (2.1), and (2.2),

E
[
ΓnT

j
n−1Xn |�n

]
=

K∑
�=1

e�E
[
ΓnT

j
n−1

〈
Xn,e�

〉 |�n
]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) K∑
�=1

e�E
[
Λn−1T

j
n−1

〈
PXn−1,e�

〉 |�c
n

]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) K∑
t,�=1

p�te�E
[
Λn−1T

j
n−1

〈
Xn−1,et

〉 |�c
n−1

]

=
G∏
c=1

φcm
(
S
c
n,S

c
n−1, j

)
ψc
(
S
c
n

) K∑
t,�=1

p�te�
〈
ε
j
n−1,et

〉
,

E
[
Γn
〈
Xn,ej

〉
Xn |�n

]= ejE[Γn〈Xn,ej
〉 |�n

]= ejζn( j),

(6.17)

where ζn(r) is given recursively in Theorem 4.1. This finishes the proof. �

To update the parameters in (1.9) from θ̃ = {Z̃c,Ψ̃c} to θ(n) = {Zc(n),Ψc(n)}, set
dPθ/dPθ̃|�n =

∏n
m=0 κm, where κ0 = 1 and

κm = Ψ̃cψ
((
Ψ̃c

)−1(
Sm−ZcSm−1−

(
1−Zc)Sm−2

))
Ψcψ

((
Ψ̃c

)−1(
Sm− Z̃cSm−1−

(
1− Z̃c)Sm−2

)) . (6.18)

Here, ψ(·) is the standard normal distribution N(01×G,IG×G).
Now

log
dPθ
dPθ̃

=−n logΨ̃c +
1
2

n∑
m=1

(
S
c
m−ZcScm−1−

(
1−Zc)Scm−2

)2
+R

(
θ̃
)

=�
(
θ, θ̃

)
,

(6.19)

where R(θ̃) does not involve θ.
To implement the M-step, set the derivatives ∂�/∂θ = 0. This yields

Zc(n)=
∑n

m=1

(
S
c
m−2− Scm−1

)(
S
c
m−2− Scm

)∑n
m=1

(
S
c
m−2− Scm−1

)2 ,

(
Ψc

)2
(n)= 1

n

n∑
m=1

(
S
c
m−ZcScm−1−

(
1−Zc)Scm−2

)2
.

(6.20)
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Remark 6.5. Since Z ∈ (0,1), it is clear that S
c
m is between S

c
m−1 and S

c
m−2. Therefore,

S
c
m−2 − Scm−1 and S

c
m−2 − Scm have the same sign. So we may assume that they are both

positive. Hence we can use the Cauchy-Schwartz inequality to see that

0 < Zc(n)=
∑n

m=1

(
S
c
m−2− Scm−1

)(
S
c
m−2− Scm

)∑n
m=1

(
S
c
m−2− Scm−1

)2

≤
[∑n

m=1

(
S
c
m−2− Scm−1

)2
]1/2[∑n

m=1

(
S
c
m−2− Scm

)2
]1/2

∑n
m=1

(
S
c
m−2− Scm−1

)2

≤
[ ∑n

m=1

(
S
c
m−2− Scm

)2∑n
m=1

(
S
c
m−2− Scm−1

)2

]1/2

< 1

(6.21)

because (S
c
m−2− Scm)2 < (S

c
m−2− Scm−1)2.

To replace the parameters pji by p̂ ji(n) in the Markov chain X , we define

�n =
n∏

m=1

K∏
i, j=1

(
p̂ ji(n)

pji

)〈Xm,ej〉〈Xm−1,ei〉
(6.22)

and set dPθ̂/dPθ|�n =�n.
Then one can show [3] that the new estimates of the parameter p̂ ji(n), given the ob-

servations up to time n, are given by

p̂ ji(n)= E
[
Γn�

i j
n |�n

]∑K
j=1E

[
Γn�

i j
n |�n

] �= γn
(
�
i j
n
)∑K

j=1 γn
(
�
i j
n
) , (6.23)

where �
i j
n =∑n

m=1〈Xm−1,ei〉〈Xm,ej〉.
Remark 6.6. The following recursive filters are derived under P which is defined in
Section 4. A closed-form finite-dimensional recursion is only possible for the condi-

tional joint distributions of �
i j
n and Xn. That is, we will consider recursive filters for

E[Γn�
i j
n Xn |�n]

�= ρi j(n). However, γn(�
i j
n )=∑

�〈ρi j(n),e�〉.
Lemma 6.7. Let ρ

i j
0 be the initial joint density function of �

i j
0 , X0 and, for n≥ 1,

ρ
i j
n =

G∏
c=1

1
Σcn

exp

−1
2

(
S
c
n− acjScn−1

Σcn

)2

+
1
2

(
S
c
n

)2


×
[ K∑
t,�=1

p�te�
〈
ρ
i j
n−1,et

〉
+ pjie jζn−1(i)

]
.

(6.24)

Proof. The proof is similar to that of Theorem 4.1. �



Lakhdar Aggoun 259

7. Conclusion

In this paper, using hidden Markov model techniques, recursive filters for various quan-
tities of interest related to an insurance model were derived. Formulae to predict future
claims were established. The EM algorithm was used to update the parameters of the
discussed model.

References

[1] L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov
chains, Ann. Math. Statist. 37 (1966), 1554–1563.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the
EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 1–38.

[3] R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov Models. Estimation and Control, Ap-
plications of Mathematics, vol. 29, Springer-Verlag, New York, 1995.

[4] J. H. Hossak, J. H. Pollard, and B. Zehnwirth, Introductory Statistics with Applications in General
Insurance, 2nd ed., Cambridge University Press, Cambridge, 1999.

[5] T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels, Stochastic Processes for Insurance and Finance,
Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, 1999.

[6] C.-F. J. Wu, On the convergence properties of the EM algorithm, Ann. Statist. 11 (1983), no. 1,
95–103.

Lakhdar Aggoun: Department of Mathematics and Statistics, College of Science, Sultan Qaboos
University, P.O. Box 36, Al-Khod 123, Sultanate of Oman

E-mail address: laggoun@squ.edu.om

mailto:laggoun@squ.edu.om

