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We prove an existence and uniqueness result for backward stochastic differential equa-
tions whose coefficients satisfy a stochastic monotonicity condition. In this setting, we
deal with both constant and random terminal times. In the random case, the terminal
time is allowed to take infinite values. But in a Markovian framework, that is coupled with
a forward SDE, our result provides a probabilistic interpretation of solutions to nonlinear
PDEs.

1. Introduction

Backward stochastic differential equations (BSDEs), introduced by Pardoux and Peng
[10], have been intensively studied in the last years. This class of equations is a powerful
tool to give probabilistic formulas for solutions of semilinear partial differential equa-
tions (PDEs). We refer the reader to [8, 9] for a good presentation of BSDEs and their
connections to PDEs. These equations have found a broad area of applications, namely,
in stochastic optimal control (see [7]), mathematical finance (see [6]). Many existence
and uniqueness results have been proved in relaxing the uniform Lipschitz condition
on the coefficient. Among others, we refer to those with monotonicity condition (see
[1, 3, 4]). In this setting (in relaxing the Lipschitz condition), Bender and Kohlmann [2]
recently considered the so-called stochastic Lipschitz condition introduced by El Karoui
and Huang [5] and dealt with BSDEs with random terminal time. Indeed, the Lipschitz
coefficient is allowed to be an �t-adapted process. Doing so, one must reinforce the in-
tegrability conditions on the data as well as on the solutions. The interest in this type
of extension of the classical existence and uniqueness result comes from the fact that, in
many applications, the usual Lipschitz condition cannot be satisfied. For example, the
pricing of a European claim is equivalent to solving the linear BSDE

−dYt =
[
r(t)Y(t) + θ(t)Z(t)

]
dt−Z(t)dWt,

YT = ξ,
(1.1)
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where ξ is the contingent claim, r(t) is the interest rate, θ(t) is the risk premium vector,
and T is the terminal time. Both r(t) and θ(t) are not bounded in general. Therefore,
the generator satisfies the so-called stochastic Lipschitz condition which means that the
Lipschitz constant is a stochastic process.

In this paper, we continue this study by considering BSDEs with stochastic monotone
coefficients. For example, our result treats generators of the following type: f (t, y,z) =
µ(t)g(t, y) + h(t,0,z), (t, y,z) ∈ [0,T]×R×Rd, where µ(t) is a nonnegative �t-adapted
process, g satisfies a monotonicity condition in y and h is stochastic Lipschitzian in z. It is
not possible to apply the results of [2, 4]. Our aim is to prove the existence and uniqueness
of solutions for both constant and random terminal times. When the terminal time is
random, it is allowed to take values in [0,+∞].

The paper is organized as follows. In Section 2, we give some notations, state the as-
sumptions, and define the BSDEs we are concerned with. Section 3 treats the nonrandom
terminal time case, and Section 4 deals with the random one.

2. Notations, assumptions, and definitions

2.1. Notations. Let W = {Wt,�t, t ≥ 0} be an n-dimensional Brownian motion defined
on a probability space (Ω,�,P). {�t, t ≥ 0} stands for the natural filtration of W , aug-
mented with the P-nul sets of �. The inner product of Rd is denoted by 〈·,·〉 and the
Euclidean norm by | · |. The norm of Rd×n is denoted by |Z|2 = tr(ZZ∗).

Let β > 0, τ be a positive real-valued random variable and a a nonnegative �t-adapted
process. We define the increasing process A(t)= ∫ t0 a2(s)ds and consider the spaces:

L2(β,a,τ,Rd
)= {ξ;Rd-valued, �τ-measurable random variables

such that ‖ξ‖2
β = E
(
eβA(τ)|ξ|2) < +∞

}
,

L2(β,a, [0,τ],Rd
)=

Y ;Rd-valued, �t-adapted processes such that

‖Y‖2
β = E

(∫ τ
0
eβA(s)
∣∣Y(s)
∣∣2
ds
)
< +∞

 ,

L2,a(β,a, [0,τ],Rd
)=

Y ;Rd-valued, �t-adapted processes such that

‖aY‖2
β = E

(∫ τ
0
eβA(s)a2(s)

∣∣Y(s)
∣∣2
ds
)
< +∞

 ,

L2,c(β,a, [0,τ],Rd
)=

Y ;Rd-valued, continuous �t-adapted processes

such that ‖Y‖2
β,c = E

(
sup

0≤s≤τ
eβA(s)
∣∣Y(s)
∣∣2
)
< +∞

 .

(2.1)

L2(β,a, [0,τ],Rd) is a Banach space with the norm ‖ · ‖β. Consequently,

�(β,a,τ)=L2,a(β,a, [0,τ],Rd
)×L2(β,a, [0,τ],Rd×n) (2.2)

is a Banach space with the norm ‖(Y ,Z)‖2
β = ‖aY‖2

β +‖Z‖2
β. We denote by �c(β,a,τ) the

subspace of �(β,a,τ) defined as follows:

�c(β,a,τ)= (L2,a(β,a, [0,τ],Rd
)∩L2,c(β,a, [0,τ],Rd

))×L2(β,a, [0,τ],Rd×n); (2.3)

and consider the norm ‖(Y ,Z)‖2
β,c = ‖Y‖2

β,c +‖aY‖2
β +‖Z‖2

β on �c(β,a,τ).
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Remark 2.1. If a and b are two nonnegative �t-adapted processes such that b > a, then
L2(β,b, [0,τ],Rd)⊂ L2(β,a, [0,τ],Rd). Consequently, �c(β,b,τ)⊂�c(β,a,τ).

2.2. Assumptions and definitions. Let f : Ω× [0,τ]×Rd ×Rd×n→Rd be a function
such that for all (y,z) ∈ Rd ×Rd×n, f (·,·, y,z) is progressively measurable, and let ξ be
an Rd-valued �τ-measurable random variable.

For some β > 0, we assume that the triple (τ,ξ, f ) satisfies the following conditions.

(H1) There exist a �t-adapted process θ(t) and a nonnegative �t-adapted process v(t)
such that for all (y, y′,z,z′)∈Rd ×Rd ×Rd×n×Rd×n,
(i) 〈y− y′, f (t, y,z)− f (t, y′,z)〉 ≤ θ(t)|y− y′|2,

(ii) | f (t, y,z)− f (t, y,z′)| ≤ v(t)|z− z′|,
(iii) y → f (·,·, y,z) is continuous dt⊗dP a.e.

(H2) There exists ε > 0 such that a2(t) � |θ(t)|+ v2(t) > ε.

If (H2) is not fulfilled, replace v(t) by v(t) +
√
ε.

(H3) (i) ξ ∈ L2(β,a,τ,Rd),
(ii) f (·,0,0)/a∈ L2(β,a, [0,τ],Rd),

(iii) E(eβA(τ)) < +∞.
(H4) There exists a positive �t-adapted process η(t) and a positive constant K such

that
(i) η ∈ L2(β,a, [0,τ],Rd),

(ii) | f (t, y,z)| ≤ | f (t,0,z)|+η(t) +K(1 + |y|).

We end this section by specifying what we call a solution of our BSDE.

Definition 2.2. If τ is constant, then a solution of the BSDE with data (τ,ξ, f ) is a pair of
�t-adapted processes {(Yt,Zt); t ≥ 0} with values in Rd ×Rd×n such that

(J1) (Y ,Z)∈�c(β,a,τ), that is,

E

(
sup

0≤t≤τ
eβA(t)
∣∣Yt

∣∣2
+
∫ τ

0
eβA(s)a2(s)

∣∣Ys

∣∣2
ds+
∫ τ

0
eβA(s)
∣∣Zs

∣∣2
ds

)
< +∞, (2.4)

(J2) Yt = ξ +
∫ τ
t f (s,Ys,Zs)ds−

∫ τ
t ZsdWs.

Definition 2.3. If τ is a random time, then a solution of the BSDE with data (τ,ξ, f ) a pair
of �t-adapted processes {(Yt,Zt), t ≥ 0}, taking values in Rd ×Rd×n such that

(J3) (Y ,Z)∈�c(β,a,τ),
(J4) for all T ≥ t ≥ 0,

Yt∧τ = YT∧τ +
∫ T∧τ
t∧τ

f
(
s,Ys,Zs

)
ds−
∫ T∧τ
t∧τ

ZsdWs, (2.5)

(J5) Yt = ξ, on the set {t ≥ τ}.

3. Existence and uniqueness on fixed time interval

Throughout this section, τ is a fixed positive real number and C will denote a positive
constant which may vary from line to line.
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3.1. Uniqueness. We first state a priori estimates on the solutions.

Proposition 3.1. Under (H1), (H2), (H3), and (H4), let (Y ,Z) (resp., (Y ′,Z′)) be a solu-
tion of the BSDE with data (τ,ξ, f ) (resp., (τ,ξ′, f ′)). Put∆ f (t)= f (t,Y ′t ,Z′t )− f ′(t,Y ′t ,Z′t ),
∆Yt = Yt −Y ′t , ∆Zt = Zt −Z′t , ∆ξ = ξ − ξ′, and

Γ= E

(
eβA(τ)|∆ξ|2 +

2
β

∫ τ
0
eβA(s)

∣∣∆ f (s)
∣∣2

a2(s)
ds

)
. (3.1)

Then, for β sufficiently large, the following holds:

(i) E(
∫ τ

0 e
βA(s)(|∆ f (s)|2/a2(s))ds) < +∞,

(ii) (a) E(
∫ τ

0 e
βA(s)|∆Zs|2ds)≤ 2Γ,

(b) E(
∫ τ

0 e
βA(s)a2(s)|∆Ys|2ds)≤ (2/(β− 4))Γ,

(iii) E(sup0≤t≤τ e
βA(t)|∆Yt|2)≤ C(β)Γ,

where C(β) is a constant which depends on β.

Proof. We assume without loss of generality that the coefficients θ(s) and v(s) are the
same for f and f ′. Then, (i) follows from (H1)(ii), (H3), and (H4).

By virtue of Itô’s formula, we have

eβA(t)
∣∣∆Yt

∣∣2
+β
∫ τ
t
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds+
∫ τ
t
eβA(s)
∣∣∆Zs

∣∣2
ds

= eβA(τ)|∆ξ|2 + 2
∫ τ
t
eβA(s)〈∆Ys, f

(
s,Ys,Zs

)− f ′
(
s,Y ′s ,Z′s

)〉
ds

− 2
∫ τ
t
eβA(s)〈∆Ys,∆ZsdWs

〉
.

(3.2)

Therefore, (H1)(i), (H1)(ii), and Young’s inequality, 2uv ≤ (α/2)u2 + (2/α)v2 for α > 0,
lead to

2
〈
∆Ys, f
(
s,Ys,Zs

)− f ′
(
s,Y ′s ,Z′s

)〉
≤ 2θ(s)

∣∣∆Ys

∣∣2
+ 2
∣∣∆Ys

∣∣[v(s)
∣∣∆Zs

∣∣+
∣∣∆ f (s)

∣∣]
≤
(

2 +
β

2

)
a2(s)
∣∣∆Ys

∣∣2
+

1
2

∣∣∆Zs

∣∣2
+

2
β

∣∣∆ f (s)
∣∣2

a2(s)
.

(3.3)

It follows that

eβA(t)
∣∣∆Yt

∣∣2
+
(
β

2
− 2
)∫ τ

t
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds+

1
2

∫ τ
t
eβA(s)
∣∣∆Zs

∣∣2
ds

≤ eβA(τ)|∆ξ|2 +
2
β

∫ τ
t
eβA(s)

∣∣∆ f (s)
∣∣2

a2(s)
ds− 2
∫ τ
t
eβA(s)〈∆Ys,∆ZsdWs

〉
.

(3.4)
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In view of (3.4), we deduce that(
β

2
− 2
)
E

(∫ τ
t
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds
)

+
1
2

E

(∫ τ
t
eβA(s)
∣∣∆Zs

∣∣2
ds
)

≤ E

(
eβA(τ)
∣∣∆ξ∣∣2

+
2
β

∫ τ
t
eβA(s)

∣∣∆ f (s)
∣∣2

a2(s)
ds

)
,

(3.5)

which leads to (ii).
Now, taking sup0≤t≤τ(·) in (3.4), applying Burkhölder-Davis-Gundy’s inequality and

using (ii)(a), we obtain (iii). �

Corollary 3.2. Under (H1), (H2), (H3), and (H4), the BSDEs (J1) and (J2) have at most
one solution.

Proof. It is an immediate consequence of Proposition 3.1. �

3.2. Existence. To reach our goal, we need first to establish the following technical result.

Proposition 3.3. Under (H1), (H2), (H3), and (H4), let {Vt : 0 ≤ t ≤ τ} be an �t-
adapted process satisfying E(

∫ τ
0 e

βA(s)|Vs|2ds) < +∞. Assume moreover that there exists δ > 0
such that

(H5) E[e(1+δ)βA(τ)(1 + |ξ|2(1+δ)) + (
∫ τ

0 e
βA(s)η2(s)ds)(1+δ)] < +∞.

Then, there exists an �t-adapted processes (Y ,Z) with values in Rd ×Rd×n such that

(J6) (Y ,Z)∈�c(β,a,τ),
(J7) Yt = ξ +

∫ τ
t f (s,Ys,Vs)ds−

∫ τ
t ZsdWs.

Proof. In what follows, we put h(s, y) � f (s, y,Vs) for every s ∈ [0,τ] and we split the
proof in two parts.

Part I. We set ξ = e(β/2)A(τ)|ξ| and assume that

|ξ|2 + sup
0≤t≤τ

∣∣h(t,0)
∣∣2 ≤ C. (3.6)

Let ϕq be a smooth function from Rd to R+ such that 0≤ ϕq ≤ 1 and ϕq(x)= 1 if |x| ≤ q,
ϕq(x)= 0 as soon as |x| ≥ q+ 1. We set q(n)= [(C+ (6τ/βε)(nC+n3 + 4K2n))1/2], where
[r] is the integer part of r. Define

hn(t, y)= 1{η(t)+eβA(t)≤n}

∫
Rd
ϕq(n)+2(y−u)h(t, y−u)ρn(u)du, (3.7)

where ρn : Rd → R+ is a sequence of smooth functions with compact support in the ball
B(0,1) which approximate the Dirac measure at 0 and satisfy

∫
Rd ρn(u)du = 1. Clearly,

hn(t,·) is a sequence of smooth functions with compact support satisfying the following:

(a) hn(t,·) converges towards h(t,·) on compact sets,
(b) hn(t,·) is globally stochastic Lipschitz with the coefficient K(n, t) = a2(t) + Cn,

where Cn = (1/4)α2
nC+αn(n+K(2 + q(n) + 3)) and αn =

∫
Rd |∇ρn(u)|du,
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(c) for |y|,|y′| ≤ q(n) + 1,〈y− y′,hn(t, y)−hn(t, y′)〉 ≤ 1{η(t)+eβA(t)≤n}θ(t)|y− y′|2,
(d) |hn(t, y)| ≤ 1{η(t)+eβA(t)≤n}[|h(t,0)|+η(t) +K(2 + |y|)].

Now, set a2
n(t) � K(n, t) and An(t) �

∫ t
0 a

2
n(s)ds= A(t) +Cnt. One can easily check that

E
(
eβAn(τ)|ξ|2) < +∞, E

(∫ τ
0
eβAn(s)

∣∣hn(s,0)
∣∣2

a2
n(s)

ds

)
< +∞. (3.8)

Thus, in light of El Karoui and Huang [5], the equation

Yn
t = ξ +

∫ τ
t
hn
(
s,Yn

s

)
ds−
∫ τ
t
Zn
s dWs (3.9)

has a unique solution (Yn,Zn) which belongs to the space �c(β,an,τ). But, in view of
Remark 2.1, one has (Yn,Zn)∈�c(β,a,τ).

Now, we note that for all y, 2〈y,hn(t, y)〉≤(2+β/2)a2(t)|y|2+(2/β)(|hn(t,0)|2/a2(t)).
Consequently, for a fixed t∈ [0,τ], by applying Itô’s formula to eβ[A(s)−A(t)]|Yn

s |2 for ev-
ery s ∈ [t,τ], taking conditional expectation E(· |�t) and choosing β large enough, we
obtain

∣∣Yn
t

∣∣2 ≤ E

(
eβ[A(τ)−A(t)]|ξ|2 +

2
βε

∫ τ
t
eβ[A(u)−A(t)]

∣∣hn(u,0)
∣∣2
du |�t

)
. (3.10)

But, in view of (3.6) and (d), we have∫ τ
t
eβ[A(s)−A(t)]

∣∣hn(s,0)
∣∣2
ds≤ (3τCn+n3 + 4K2n

)
. (3.11)

It follows that

∀t ∈ [0,τ]
∣∣Yn

t

∣∣2 ≤ C+
6τ
βε

(
nC+n3 + 4K2n

)
, (3.12)

which justifies the choice of the integer q(n). The rest of this part is based on the following
two lemmas.

Lemma 3.4. Under (H1), (H2), (H3), (H4), and (H5), for β sufficiently large, the following
holds:

(i) supn∈N∗ E(
∫ τ

0 e
βA(s)a2(s)|Yn

s |2ds+
∫ τ

0 e
βA(s)|Zn

s |2ds) < +∞,
(ii) supn∈N∗ E(

∫ τ
0 e

βA(s)|hn(s,Yn
s )|2ds) < +∞,

(iii) supn∈N∗ E(sup0≤t≤τ e
(1+δ)βA(t)|Yn

t |2(1+δ)) < +∞.

Proof. By virtue of Itô’s formula, we have

eβA(t)
∣∣Yn

t

∣∣2
+β
∫ τ
t
eβA(s)a2(s)

∣∣Yn
s

∣∣2
ds+
∫ τ
t
eβA(s)
∣∣Zn

s

∣∣2
ds

≤ eβA(τ)|ξ|2 + 2
∫ τ
t
eβA(s)
∣∣Yn

s

∣∣∣∣hn(s,Yn
s

)∣∣ds− 2
∫ τ
t
eβA(s)〈Yn

s ,Zn
s dWs
〉
.

(3.13)
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By using Young’s inequality and (d), one can check that

2
∣∣Yn

s

∣∣∣∣hn(s,Yn
s

)∣∣≤ (β
2

+ 2 +
K

ε

)
a2(s)
∣∣Yn

s

∣∣2
+

2
β

∣∣h(s,0)
∣∣2

a2(s)
+
η2(s) + 4K2

a2(s)
. (3.14)

If we take β sufficiently large such that β/2− 2−K/ε > 0, (3.13) becomes

eβA(t)
∣∣Yn

t

∣∣2
+
(
β

2
− 2− K

ε

)∫ τ
t
eβA(s)a2(s)

∣∣Yn
s

∣∣2
ds+
∫ τ
t
eβA(s)
∣∣Zn

s

∣∣2
ds

≤ eβA(τ)|ξ|2 +
2
β

∫ τ
t
eβA(s)

∣∣h(s,0)
∣∣2

a2(s)
ds+

1
ε

∫ τ
t
eβA(s)η(s)2ds

+
4K2

ε

∫ τ
t
eβA(s)ds− 2

∫ τ
t
eβA(s)〈Yn

s ,Zn
s dWs
〉
.

(3.15)

Therefore, by using (H3), (H4), and (3.6), we derive (i).
In view of (d), (3.6), and (i), (ii) is obvious.
By taking the conditional expectation in (3.15) and using (3.6), one obtains that

eβA(t)
∣∣Yn

t

∣∣2 ≤ E

{
eβA(τ)(C1 + |ξ|2)+ 1

ε

∫ τ
0
eβA(s)η(s)2ds |�t

}
, (3.16)

where C1 = 2C/βε2 + 4K2/ε2. Then, by Doob’s maximal inequality (setting p = 1 + δ), we
derive that

E

(
sup

0≤t≤τ
epβA(t)
∣∣Yn

t

∣∣2p
)
≤ CpE

[
epβA(τ)(1 + |ξ|2p)+ 1

εp

(∫ τ
0
eβA(s)η(s)2ds

)p]
, (3.17)

which ensures (iii). �

Lemma 3.5. Under (H1), (H2), (H3), (H4), and (H5), (Yn,Zn) is a Cauchy sequence in
�c(β,a,τ).

Proof. Let m≥ n, and put ∆Yt = Ym
t −Yn

t , ∆Zt = Zm
t −Zn

t . By Itô’s formula, we have

eβA(t)
∣∣∆Yt

∣∣2
+β
∫ τ
t
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds+
∫ τ
t
eβA(s)
∣∣∆Zs

∣∣2
ds

= 2
∫ τ
t
eβA(s)〈∆Ys,hm

(
s,Ym

s

)−hn
(
s,Yn

s

)〉
ds− 2
∫ τ
t
eβA(s)〈∆Ys,∆ZsdWs

〉
.

(3.18)

We have

2
〈
∆Ys,hm

(
s,Ym

s

)−hn
(
s,Yn

s

)〉
= 2
〈
∆Ys,hm

(
s,Ym

s

)−hm
(
s,Yn

s

)〉
+ 2
〈
∆Ys,hm

(
s,Yn

s

)−hn
(
s,Yn

s

)〉
.

(3.19)

But in view of (3.12), |Ym
s | ≤ q(m) + 1, |Yn

s | ≤ q(n) + 1≤ q(m) + 1. Therefore,

〈
∆Ys,hm

(
s,Ym

s

)−hm
(
s,Yn

s

)〉≤ 1{η(s)+eβA(s)≤n}θ(s)
∣∣∆Ys

∣∣2 ≤ 2a2(s)
∣∣∆Ys

∣∣2
. (3.20)
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It follows that

eβA(t)
∣∣∆Yt

∣∣2
+ (β− 2)

∫ τ
t
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds+
∫ τ
t
eβA(s)
∣∣∆Zs

∣∣2
ds

≤ 2
∫ τ
t
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣ds− 2
∫ τ
t
eβA(s)〈∆Ys,∆ZsdWs

〉
.

(3.21)

Since β is chosen sufficiently large, we deduce that

E

(∫ τ
0
eβA(s)
∣∣∆Zs

∣∣2
ds
)
≤ 2E

(∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣ds). (3.22)

On the other hand, Burkhölder-Davis-Gundy inequality leads to

2E

(
sup

0≤t≤τ
eβA(t)
∣∣∣∣∫ τ

t
eβA(s)〈∆Ys,∆ZsdWs

〉∣∣∣∣
)

≤ 1
2

E

(
sup

0≤t≤τ
eβA(t)
∣∣∆Yt

∣∣2
)

+ 2C2
E

(∫ τ
0
eβA(s)
∣∣∆Zs

∣∣2
ds
)
.

(3.23)

Therefore, taking sup0≤t≤τ(·) in (3.21), in view of (3.22) and (3.23), we obtain

E

(
sup

0≤t≤τ
eβA(t)
∣∣∆Yt

∣∣2
)

+ (2β− 4)E
(∫ τ

0
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds
)

+E

(∫ τ
0
eβA(s)
∣∣∆Zs

∣∣2
ds
)

≤ CE

(∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣ds).
(3.24)

Now, to reach our goal, it remains to show that

Im,n = E

(∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣ds) (3.25)

tends to zero as m,n→ +∞.
For every M > 0, set BM

m,n = {(s,ω) : |Ym
s |+ |Yn

s | >M} and B
M
m,n =Ω \BM

m,n. Let C(δ,τ)
denote a positive constant which may vary from line to line. We have

Im,n = I1
m,n + I2

m,n, (3.26)

where

I1
m,n = E

(∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣1BM
m,n
ds
)

,

I2
m,n = E

(∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣1BM
m,n
ds
)
.

(3.27)
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We first estimate I2
m,n. We use Holder’s inequality and Young’s inequality to obtain

I2
m,n ≤

1
Mδ

E

{∫ τ
0
eβA(s)
∣∣∆Ys

∣∣∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣(∣∣Ym
s

∣∣+
∣∣Yn

s

∣∣)δds}
≤ 1

Mδ
E

{∫ τ
0
eβA(s)(∣∣Ym

s

∣∣+
∣∣Yn

s

∣∣)1+δ∣∣hm(s,Yn
s

)−hn
(
s,Yn

s

)∣∣ds}

≤ 1
Mδ

E

{(∫ τ
0
eβA(s)(∣∣Ym

s

∣∣+
∣∣Yn

s

∣∣)2+2δ
ds
)1/2

×
(∫ τ

0
eβA(s)
∣∣hm(s,Yn

s

)−hn
(
s,Yn

s

)∣∣2
ds
)1/2
}

≤ 1
2Mδ

E

{∫ τ
0
eβA(s)(∣∣Ym

s

∣∣+
∣∣Yn

s

∣∣)2+2δ
ds+
∫ τ

0
eβA(s)
∣∣hm(s,Yn

s

)−hn
(
s,Yn

s

)∣∣2
ds
}

≤ C(τ,δ)
Mδ

E

{
sup

0≤t≤τ
eβA(t)
∣∣Yn

t

∣∣2+2δ
+
∫ τ

0
eβA(s)
∣∣hm(s,Yn

s

)−hn
(
s,Yn

s

)∣∣2
ds

}

≤ C(τ,δ)
Mδ

sup
n∈N∗

E

(
sup

0≤t≤τ
eβA(t)
∣∣Yn

t

∣∣2(1+δ)
)

+
C(τ,δ)
Mδ

sup
n∈N∗

E

(∫ τ
0
eβA(s)
∣∣hm(s,Yn

s

)−hn
(
s,Yn

s

)∣∣2
ds
)
.

(3.28)

Now, in view of (d), (ii), (iii) in Lemma 3.4, we deduce that

I2
m,n ≤

C(τ,δ)
Mδ

. (3.29)

Since M is arbitrary, I2
m,n can be made arbitrarily small by choosing M large enough.

Now, we estimate I1
m,n:

I1
m,n ≤ME

(∫ τ
0
eβA(s)
∣∣hm(s,Yn

s

)−hn
(
s,Yn

s

)∣∣1{|Yn
s |≤M}ds

)

≤ME

(∫ τ
0

sup
|y|≤M

eβA(s)
∣∣hm(s, y)−hn(s, y)

∣∣ds). (3.30)

Since hn(t,·) converges towards h(t,·) on compact sets and sup|y|≤M eβA(s)|hn(s, y)| ≤
{|h(s,0)| + η(s) + K(2 + M)}eβA(s), Lebesgue’s dominated convergence theorem ensures
that the right-hand side of (3.30) tends to zero as m,n→ +∞.

Hence, in view of (3.24), we conclude that

E

(
sup

0≤t≤τ
eβA(t)
∣∣∆Yt

∣∣2
)

+(2β− 4)E
(∫ τ

0
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds
)

+ E

(∫ τ
0
eβA(s)
∣∣∆Zs

∣∣2
ds
)

(3.31)

tends to zero as m,n→ +∞. �



326 BSDEs with stochastic monotone coefficients

Now, set Y = limn Yn, Z = limn Zn; we will end this part by showing that (Y ,Z) is a
solution of the BSDE with data (τ,ξ,h). In view of the definition of the space �c(β,a,τ),
we have

lim
n→+∞E

(
sup

0≤t≤τ
eβA(t)
∣∣Yn

t −Yt

∣∣2
)
= 0, (3.32)

lim
n→+∞E

(∫ τ
0
eβA(s)
∣∣Zn

s −Zs

∣∣2
ds
)
= 0. (3.33)

By virtue of (3.33), we have for all t ∈ [0,τ],
∫ τ
t Z

n
s dWs→

∫ τ
t ZsdWs in P-probability. Thus,

to reach our purpose, we only need to show that

∀t ∈ [0,τ],
∫ τ
t
hn
(
s,Yn

s

)
ds−→

∫ τ
t
h
(
s,Ys
)
ds (in probability). (3.34)

From (3.32), we deduce that there exists a subsequence (Ynk ) such that

∀t ∈ [0,τ], Ynk
t −→ Yt, P-a.s. (3.35)

For simplicity, we assume that (3.35) holds without extracting a subsequence.
We have

E

(∣∣∣∣∫ τ
t
hn
(
s,Yn

s

)
ds−
∫ τ
t
h
(
s,Ys
)
ds
∣∣∣∣)

≤ E

(∫ τ
t

∣∣hn(s,Yn
s

)−h
(
s,Yn

s

)∣∣ds)+ E

(∫ τ
t

∣∣h(s,Yn
s

)−h
(
s,Ys
)∣∣ds)

= I1 + I2.

(3.36)

The fact that I1 tends to zero is obtained by a similar argument as in the proof of
Lemma 3.5.

Let Xn
s = |h(s,Yn

s )−h(s,Ys)|. We have

I2 = E

(∫ τ
t
Xn
s ds
)

≤ E

(∫ τ
0
eβA(s)Xn

s ds
)

≤ E

(∫ τ
0
eβA(s)Xn

s 1{Xn
s ≤r}ds
)

+ E

(∫ τ
0
eβA(s)Xn

s 1{Xn
s >r}ds
)
.

(3.37)

By virtue of Fubini’s theorem and Chebychev’s inequality, we have

I2 ≤
∫ τ

0
E
(
eβA(s)Xn

s (s)1{Xn
s ≤r}
)
ds+

E
(∫ τ

0 e
βA(s)
(
Xn
s

)2
ds
)

r
. (3.38)

Moreover, in view of (H4) and Lemma 3.4, it is clear that

sup
n∈N∗

E

(∫ τ
0
eβA(s)(Xn

s

)2
ds
)
< +∞. (3.39)
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Therefore, the second term on the right-hand side of (3.38) can be made arbitrarily small
by choosing r large enough. Now, since y → h(·, y) is continuous, we deduce from (3.35)
that for fixed s, Xn

s → 0 almost surely as n→∞. So, it follows from (H2), (H3)(ii), Fubini’s
theorem, and Lebesgue dominated convergence theorem that the first term of (3.38) goes
to zero as n→∞.

Hence,
∫ τ
· hn(s,Yn

s )ds→ ∫ τ· h(s,Ys)ds (in probability), which leads to the conclusion of
this part.

Part II. Let

ξn = inf
(
n,eβA(τ)/2|ξ|)
eβA(τ)/2|ξ| ξ,

hn(t, y)=


h(t, y)−h(t,0) +

inf
(
n,
∣∣h(t,0)

∣∣)∣∣h(t,0)
∣∣ h(t,0), if h(t,0) �= 0,

h(t, y), if h(t,0)= 0.

(3.40)

We have E(eβA(τ)|ξn− ξ|2)→ 0, E(
∫ τ

0 e
βA(s)(|hn(s,0)− h(s,0)|2/a2(s))ds)→ 0, as n→ +∞,

and (ξn,hn) satisfies (3.6). Hence, for each n ∈ N∗, there exists (Yn,Zn) which satisfies
(J3) and

Yn
t = ξn +

∫ τ
t
hn
(
s,Yn

s

)
ds−
∫ τ
t
Zn
s dWs, 0≤ t ≤ τ. (3.41)

One can easily prove that for every n,m∈N∗,

E

(
sup

0≤t≤τ
eβA(t)
∣∣Yn

t −Ym
t

∣∣2
+
(
β

2
− 2
)∫ τ

0
eβA(s)a2(s)

∣∣Yn
s −Ym

s

∣∣2
ds

)

+ E

(∫ τ
0
eβA(s)
∣∣Zn

s −Zm
s

∣∣2
ds
)

≤ CE

(
eβA(τ)
∣∣ξn− ξm

∣∣2
+
∫ τ

0
eβA(s)

∣∣hn(s,0)−hm(s,0)
∣∣2

a2(s)
ds

)
.

(3.42)

The right-hand side tends to zero as n,m→ +∞. Hence, there exists (Y ,Z) a pair of �t-
adapted processes such that

lim
n

∥∥(Yn,Zn
)− (Y ,Z)

∥∥2
β,c = 0, (3.43)

which satisfies (J3) and (J4). The proof of Proposition 3.3 is complete. �

Now, we state the main result of this section.

Theorem 3.6. Under (H1), (H2), (H3), (H4), and (H5), for β sufficiently large, the BSDEs
(J1) and (J2) have a unique solution.
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Proof. For a fixed (U ,V) ∈�(β,a,τ), thanks to Proposition 3.3 and Corollary 3.2, the
BSDE

Yt = ξ +
∫ τ
t
f
(
s,Ys,Vs

)
ds−
∫ τ
t
ZsdWs (3.44)

has a unique solution. So, we can define the mapping

Π : �(β,a,τ)−→�(β,a,τ),

(U ,V) −→Π(U ,V)
(3.45)

such that Π(U ,V) is the unique solution of the corresponding BSDE. Let (U ,V ,U ′,V ′)∈
�(β,a,τ)×�(β,a,τ) and Π(U ,V) = (Y ,Z), Π(U ′,V ′) = (Y ′,Z′). We combine (ii)(a)
and (ii)(b) of Proposition 3.1 to obtain that

E

(∫ τ
0
eβA(s)a2(s)

∣∣Ys−Y ′s
∣∣2
ds
)

+ E

(∫ τ
0
eβA(s)
∣∣Zs−Z′s

∣∣2
ds
)

≤
(

4
β

+
4

β2− 4β

)
E

(∫ τ
0
eβA(s)
∣∣Vs−V ′

s

∣∣2
ds
)
.

(3.46)

In others words,

∥∥(Y ,Z)− (Y ′,Z′)
∥∥2
β ≤
(

4
β

+
4

β2− 4β

)∥∥(U ,V)− (U ′,V ′)
∥∥2
β. (3.47)

Hence, if β is sufficiently large, Π is a contracting mapping and its unique fixed point
solves our BSDE. �

4. Random terminal time

In the sequel, we assume that (H1) to (H5) hold with τ being a random terminal time,
which is allowed to take values in [0,+∞].

The following lemma is an important result for both the construction and the conver-
gence of the approximation scheme.

Lemma 4.1. Let ξ satisfy (H3)(i). Then,
(i) there exists {γt, t ≥ 0}, an L2-integrable process such that ξ = E(ξ) +

∫ τ
0 γ(s)dWs,

(ii) the process {ξt, t≥0} defined by setting ξt=E(ξ/�t) is such that (ξt,γt)∈�c(β,a,τ).

Proof. (i) Since L2(β,a,τ)⊂ L2(0,0,τ), γ is given by Itô’s representation theorem.
(ii) Since e(β/2)A(t∧τ)|ξt∧τ| ≤ E(e(β/2)A(t∧τ)|ξ|/�t∧τ), Doob’s inequality and Jensen’s in-

equality yield

E

(
sup

0≤t≤τ
eβA(t)
∣∣ξt∣∣2
)
≤ 4E
(
eβA(τ)|ξ|2). (4.1)
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Now, in view of Itô’s formula, Burkhölder-Davis-Gundy inequality, and Young’s inequal-
ity, 2ab ≤ α2a2 + b2/α2, one obtains that for any T ≥ t ≥ 0,

βE

(∫ T∧τ
0

eβA(s)a2(s)
∣∣ξs∣∣2

ds

)
+ E

(∫ T∧τ
0

eβA(s)
∣∣γs∣∣2

ds

)

≤ E

(
eβA(T∧τ)

∣∣ξT∧τ∣∣2
)

+α2
E

(
sup

0≤t≤T∧τ
eβA(t)
∣∣ξt∣∣2
)

+
C2

α2
E

(∫ T∧τ
0

eβA(s)
∣∣γs∣∣2

ds

)
.

(4.2)

Then, taking α2 > 2C2, letting T → +∞, and using Fatou’s lemma and Lebesque’s domi-
nated convergence theorem, we derive that

2βE

(∫ T∧τ
0

eβA(s)a2(s)
∣∣ξs∣∣2

ds

)
+ E

(∫ T∧τ
0

eβA(s)
∣∣γs∣∣2

ds

)

≤ 2E
(
eβA(τ)|ξ|2)+α2

E

(
sup

0≤t≤τ
eβA(t)
∣∣ξt∣∣2
)
.

(4.3)

Therefore, (4.1) and (H3)(i) lead to (ii). �

The main result of this section is the following.

Theorem 4.2. Under (H1), (H2), (H3), (H4), and (H5), the BSDEs (J3), (J4), and (J5)
have a unique solution.

The existence result is based on the following sequence.
For each n∈N∗, we know by Theorem 3.6 that the BSDE with data (n,ξn,1[0,τ] f ) has

a unique solution (Yn,Zn) on [0,n]. We have

Yn
t = ξn +

∫ n∧τ
t∧τ

f
(
s,Yn

s ,Zn
s

)
ds−
∫ n∧τ
t∧τ

Zn
s dWs, for 0≤ t ≤ n. (4.4)

We extend the sequence (Yn,Zn) by setting Yn
t = ξt; Zn

t = γt, for t > n.
Hence, (Yn,Zn) solves the BSDE

Yn
t = ξ +

∫ τ
t∧τ

1[0,n](s) f
(
s,Yn

s ,Zn
s

)
ds−
∫ τ
t∧τ

Zn
s dWs, t ≥ 0. (4.5)

We turn to convergence of the sequence {(Yn,Zn) : n≥ 0}. To this end, we need the fol-
lowing lemmas.

Lemma 4.3. Put

Γ= E

(
eβA(τ)|ξ|2 +

2
β

∫ τ
0
eβA(s)

∣∣ f (s,0,0)
∣∣2

a2(s)
ds

)
. (4.6)
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Then,

sup
n∈N∗

[
1
2

E

(∫ τ∧n
t∧τ

eβA(s)
∣∣Zn

s

∣∣2
ds
)

+
(
β

2
− 2
)∫ τ∧n

t∧τ
eβA(s)a2(s)

∣∣Yn
s

∣∣2
ds
]
≤ Γ, (4.7)

sup
n∈N∗

E

(
sup

0≤t≤n∧τ
eβA(t∧τ)

∣∣Yn
t

∣∣2
)
≤ 2Γ. (4.8)

Proof. We apply Itô’s formula to the process eβA(t)|Yn
t |2 to obtain

eβA(t∧τ)
∣∣Yn

t

∣∣2
+

1
2

∫ τ∧n
t∧τ

eβA(s)
∣∣Zn

s

∣∣2
ds+
(
β

2
− 2
)∫ τ∧n

t∧τ
eβA(s)a2(s)

∣∣Yn
s

∣∣2
ds

≤ eβA(n∧τ)
∣∣Yn

n

∣∣2
+

2
β

∫ τ∧n
t∧τ

eβA(s)

∣∣ f (s,0,0)
∣∣2

a2(s)
ds− 2
∫ τ∧n
t∧τ

eβA(s)〈Yn
s ,Zn

s dWs
〉
.

(4.9)

Therefore,

E

(
eβA(t∧τ)

∣∣Yn
t

∣∣2
)

+
1
2

E

{∫ τ∧n
t∧τ

eβA(s)
∣∣Zn

s

∣∣2
ds+
(
β

2
− 2
)∫ τ∧n

t∧τ
eβA(s)a2(s)

∣∣Yn
s

∣∣2
ds
}

≤ E

(
eβA(n∧τ)

∣∣Yn
n

∣∣2
)

+
2
β

E

(∫ τ∧n
t∧τ

eβA(s)

∣∣ f (s,0,0)
∣∣2

a2(s)
ds

)

≤ E
(
eβA(τ)|ξ|2)+ 2

β
E

(∫ τ
0
eβA(s)

∣∣ f (s,0,0)
∣∣2

a2(s)
ds

)
,

(4.10)

which gives (4.7). To prove (4.8), it suffices to apply Burkhölder-Davis-Gundy inequality.
�

Lemma 4.4. Under (H1), (H2), (H3), (H4), and (H5), (Yn,Zn)n∈N∗ is a Cauchy sequence
in �c(β,a,τ).

Proof. Let (m,n)∈N∗2 such that m> n. We put

∆Yt = Ym
t −Yn

t ; ∆Zt = Zm
t −Zn

t . (4.11)

(i) For n≤ t ≤m, one has

Yn
t = ξt = E

(
ξ |�t
)= ξm−

∫ τ∧m
t∧τ

γ(s)dWs,

Ym
t = ξm +

∫ τ∧m
t∧τ

f
(
s,Ym

s ,Zm
s

)
ds−
∫ τ∧m
t∧τ

Zm
s dWs.

(4.12)

This leads to

∆Yt =
∫ τ∧m
t∧τ

f
(
s,Ym

s ,Zm
s

)
ds−
∫ τ∧m
t∧τ

∆ZsdWs. (4.13)
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We have

∣∣∆Yt

∣∣2
eβA(t∧τ) +

∫ τ∧m
t∧τ

eβA(s)
∣∣∆Zs

∣∣2
ds+β
∫ τ∧m
t∧τ

eβA(s)
∣∣∆Ys

∣∣2
ds

= 2
∫ τ∧m
t∧τ

eβA(s)〈∆Ys, f
(
s,Ym

s ,Zm
s

)〉
ds− 2
∫ τ∧m
t∧τ

eβA(s)〈∆Ys,∆ZsdWs
〉
.

(4.14)

Since

2
〈
∆Ys, f
(
s,Ym

s ,Zm
s

)〉
= 2
〈
∆Ys, f
(
s,Ym

s ,Zm
s

)− f
(
s,ξs,Zm

s

)〉
+ 2
〈
∆Ys, f
(
s,ξs,Zm

s

)− f
(
s,ξs,γs
)〉

+ 2
〈
∆Ys, f
(
s,ξs,γs
)〉

,

(4.15)

we get

∣∣∆Yt

∣∣2
eβA(t∧τ) +

1
2

∫ τ∧m
t∧τ

eβA(s)
∣∣∆Zs

∣∣2
ds+
(
β

2
− 2
)∫ τ∧m

t∧τ
eβA(s)a2(s)

∣∣∆Ys

∣∣2
ds

≤ 2
β

∫ τ∧m
t∧τ

eβA(s)

∣∣ f (s,ξs,γs)∣∣2

a2(s)
ds− 2
∫ τ∧m
t∧τ

eβA(s)〈∆Ys,∆ZsdWs
〉
.

(4.16)

Now, in view of Burkhölder-Davis-Gundy inequality,

E

(
sup

n≤t≤m

∣∣∆Yt

∣∣2
eβA(t∧τ)

)
+E

(∫ τ∧m
n∧τ

eβA(s)
∣∣∆Zs

∣∣2
ds
)

+CE

(∫ τ∧m
n∧τ

eβA(s)a2(s)
∣∣∆Ys

∣∣2
ds
)

≤ CE

(∫ τ
n∧τ

eβA(s)

∣∣ f (s,ξs,γs)∣∣2

a2(s)
ds

)
.

(4.17)

By virtue of Lemma 4.1, the last term of this inequality tends to 0 as n goes to infinity.

(ii) For t ≤ n≤m, one has

∆Yt = ∆Yn +
∫ τ∧n
t

[
f
(
s,Ym

s ,Zm
s

)− f
(
s,Yn

s ,Zn
s

)]
ds−
∫ τ∧n
t

∆ZsdWs. (4.18)

We repeat the same calculation as in the previous case and we obtain

E

(
sup

0≤t≤τ∧n

∣∣∆Yt

∣∣2
eβA(t)

)
+E

(∫ τ∧n
0

eβA(s)
∣∣∆Zs

∣∣2
ds
)

+CE

(∫ τ∧n
0

eβA(s)a2(s)
∣∣∆Ys

∣∣2
ds
)

≤ E

(∣∣∆Yn

∣∣2
eβA(n∧τ)

)
.

(4.19)

In view of (4.17), we deduce that the right-hand side tends to zero as n goes to infinity.
�



332 BSDEs with stochastic monotone coefficients

Proof of Theorem 4.2

Uniqueness. Let (Y ,Z) and (Y ′,Z′) be two solutions of our BSDE. We set ∆Yt = Yt −Y ′t ;
∆Zt = Zt −Z′t . One has

∆Yt∧τ = ∆Yt∧T +
∫ T∧τ
t∧τ

[
f
(
s,Ys,Zs

)− f
(
s,Y ′s ,Z′s

)]
ds−
∫ T∧τ
t∧τ

∆ZsdWs, T ≥ t ≥ 0.

(4.20)

Itô’s formula yields

eβA(t∧τ)
∣∣∆Yt∧τ

∣∣2
+
∫ T∧τ
t∧τ

eβA(s)a2(s)
∣∣∆Ys

∣∣2
ds+
∫ T∧τ
t∧τ

eβA(s)
∣∣∆Zs

∣∣2
ds

= eβA(T∧τ)
∣∣∆YT∧τ

∣∣2
+ 2
∫ T∧τ
t∧τ

eβA(s)〈∆Ys, f
(
s,Ys,Zs

)− f
(
s,Y ′s ,Z′s

)〉
ds

− 2
∫ T∧τ
t∧τ

eβA(s)〈∆Ys,∆ZsdWs
〉
.

(4.21)

By using condition (H1) and taking the expectation, we get for β sufficiently large

E

(
eβA(t∧τ)

∣∣∆Yt∧τ
∣∣2
)
≤ E

(
eβA(T∧τ)

∣∣∆YT∧τ
∣∣2
)
. (4.22)

Since (∆Y ,∆Z) ∈�c(β,a,τ), we obtain by letting T → +∞ and using Lebesgue’s domi-
nated convergence theorem that

E

(
eβA(t∧τ)

∣∣∆Yt∧τ
∣∣2
)
= 0. (4.23)

Therefore,

∆Yt∧τ = 0, ∆Zt∧τ = 0. (4.24)

Existence. We denote the limit of (Yn
t ,Zn

t ) by (Yt,Zt) and prove that (Yt,Zt) solves the
BSDE (τ,ξ, f ).

By virtue of Theorem 3.6, for each T > 0, the BSDE (T ,YT ,1[0,τ] f ) has a unique solu-
tion (Yt,Zt). For our purpose, it suffices to prove that (Yt,Zt)= (Yt,Zt) for all t ≤ T .

One has

Yt = YT +
∫ T
t

1[0,τ](s) f
(
s,Ys,Zs

)
ds−
∫ T
t
ZsdWs,

Yn
t = Yn

T +
∫ T
t

1[0,τ](s) f
(
s,Yn

s ,Zn
s

)
ds−
∫ T
t
Zn
s dWs.

(4.25)

After extracting a subsequence still denoted by Yn
t , it holds that

E

(
eβA(t∧τ)

∣∣Yt −Yt

∣∣2
)
= lim

n→∞E

(
eβA(t∧τ)

∣∣Yt −Yn
t

∣∣2
)
. (4.26)
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Therefore, we have to show that the right-hand side is zero. We denote ∆̂Yt = Yt −Yn
t ;

∆̂Zt = Zt −Zn
t . One has

∆̂Yt = ∆̂YT +
∫ T
t

1[0,τ](s)
[
f
(
s,Ys,Zs

)− f
(
Yn
s ,Zn

s

)]
ds−
∫ T
t
∆̂ZsdWs. (4.27)

By using an analogous argument as in the proof of uniqueness, we have

E

(
eβA(t∧τ)

∣∣∆̂Yt

∣∣2
)
≤ E

(
eβA(t∧τ)

∣∣∆̂YT

∣∣2
)
. (4.28)

Hence, E(eβA(t∧τ)|Yt −Yt|2)≤ limn→∞E(eβA(t∧τ)|YT −Yn
T |2)= 0.

Consequently, for all t ≤ T , we have (Yt,Zt)= (Yt,Zt). �

We now state a comparison result.

Proposition 4.5 (a comparison theorem). Assume d=1. Under (H1), (H2), (H3), (H4),
and (H5), let (Y ,Z) (resp., (Y ′,Z′)) be a solution of the BSDE (τ,ξ, f ) (resp., (τ,ξ′, f ′))
such that ξ ≤ ξ′ a.s., f (t,Y ′t ,Z′t ) ≤ f ′(t,Y ′t ,Z′t )dt × dP a.e. Then Yt ≤ Y ′t a.s. on the set
{t ≤ τ}.
Proof. We put ∆Y+

t = (Yt −Y ′t )+, ∆Zt = Zt −Z′t . Itô’s formula yields

eβA(t∧τ)
∣∣∆Y+

t∧τ
∣∣2

+
∫ T∧τ
t∧τ

eβA(s)a2(s)
∣∣∆Y+

s

∣∣2
ds+
∫ T∧τ
t∧τ

eβA(s)
∣∣∆Zs

∣∣2
ds

= eβA(T∧τ)
∣∣∆YT∧τ

∣∣2
+ 2
∫ T∧τ
t∧τ

eβA(s)〈∆Y+
s , f
(
s,Ys,Zs

)− f ′
(
s,Y ′s ,Z′s

)〉
ds

− 2
∫ T∧τ
t∧τ

eβA(s)〈∆Y+
s ,∆ZsdWs

〉
, ∀0≤ t ≤ T ,〈

∆Y+
s , f
(
s,Ys,Zs

)− f ′
(
s,Y ′s ,Z′s

)〉
≤
(

2 +
β

2

)
a2(s)
∣∣∆Y+

s

∣∣2
+

1
2

∣∣∆Zs

∣∣2
+
〈
∆Y+

s , f
(
s,Y ′s ,Z′s

)− f ′
(
s,Y ′s ,Z′s

)〉
.

(4.29)

By analogous calculus as in the proof of uniqueness, one can prove that

E

(
eβA(t∧τ)

∣∣∆Y+
t∧τ
∣∣2
)
= 0, (4.30)

which leads to ∆Y+
t∧τ = 0. �

Remark 4.6. When the uncertainty comes from a solution of a forward SDE, Theorem
4.2 provides a representation of the viscosity solution for elliptic PDE. More precisely, let

Xx
s = x+

∫ s
0
b
(
Xx
r

)
dr +
∫ s

0
σ
(
Xx
r

)
dWr (4.31)

be a diffusion process with the infinitesimal generator

�=1
2

(
σσt
)
i, j(x)

∂2

∂xi∂xj
+ bi(x)

∂

∂xi
. (4.32)
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Let (Yx,Zx) be the unique solution of the BSDE

Yx
s = l
(
Xx
τx

)
+
∫ τx
s∧τx

f
(
r,Xx

r ,Yx
r ,Zx

r

)
dr−
∫ τx
s∧τx

Zx
r dWr , t ≥ 0, (4.33)

where (y,z) → f (·,Xx· , y,z) satisfies (H1)–(H5),

sup
x∈G

E

(∫ τx
0
eβA(t)

∣∣ f (t,Xx
t ,0,0
)∣∣2

a2(t)
dt

)
< +∞, (4.34)

and supx∈GE(eβA(τx)) < +∞. Then, u(x)= Yx
0 is continuous on G and is a viscosity solu-

tion of the semilinear system

�ui + fi
(
x,u(x),

(∇uiσ)(x)
)= 0, x ∈G, i= 1, . . . ,d,

ui(x)= li(x), x ∈ ∂G, i= 1, . . . ,d,
(4.35)

where G is an open bounded subset of Rd, whose boundary ∂G is of class C1, l ∈ C(G,Rd)
and τx = inf{t ≥ 0, Xx

t /∈G} finite P-a.s.
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