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We study Davis’ series of moderate deviations probabilities for Lp-bounded sequences of
random variables (p > 2). A certain subseries therein is convergent for the same range of
parameters as in the case of martingale difference or i.i.d. sequences.
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1. Introduction and main results

Let (Xn)n≥1 be a sequence of random variables on a probability space (Ω,�,P) and p ≥ 1
a fixed real number. We say that (Xn)n≥1 is Lp-bounded if it has finite pth moments,
that is, ‖Xn‖p ≤ C for some C > 0 and any n ≥ 1. Let ε > 0; finding the rate of conver-
gence of the moderate deviations probabilities P[|∑n

k=1Xk| > εan] with an = (n logn)1/2

or (n loglogn)1/2 is known in the literature as Davis’ problems. More precisely, let δ =
δ(p)≥ 0 be a function of p ≥ 1 and consider the series
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(1.1)

the convergence of series (2.1) has been studied by Davis (see [7, 8]) and Gut (see [10])
when (Xn)n≥1 are Lp-bounded i.i.d. sequences, and by Stoica (see [14, 15]) when (Xn)n≥1

are Lp-bounded martingale difference sequences.
In the sequel, we are interested in Davis’ theorems under the only assumption that

(Xn)n≥1 is Lp-bounded. Our results rely on the “subsequence principle,” that is, given
any sequence of Lp-bounded random variables, one can find a subsequence that satisfies,
together with all its further subsequences, the same type of limit laws as do i.i.d. vari-
ables (or martingale difference sequences) with similar moment bounds. This principle
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was introduced by Chatterji (see [4–6]) and unifies results by Banach and Saks, Komlòs,
Révész, Steinhaus in the context of law of large numbers, iterated logarithm, and central
limit theorem; extensions to exchangeable sequences were given by Aldous [1] and Berkes
and Péter [3]. Also note that Gut [11] and Asmussen and Kurtz [2] gave necessary and
sufficient requirements for subsequences to satisfy the famous Hsu- Robbins-Erdős com-
plete convergence result related to the law of large numbers. Our results go a step further,
that is, we replace the i.i.d. assumption by Lp-boundedness, and consider Davis normal-
izing factors

∑∞
n=2(logn)δ/n and

∑∞
n=3(1/n(logn)δ) instead of complete convergence. We

thus have the following.

Theorem 1.1. For any p > 2 and Lp-bounded sequence (Xn)n≥1, there exist 1≤ n1 < n2 ···
such that the series
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is convergent for any 0≤ δ < p/2− 1 and any ε > 0.

Theorem 1.2. For any p ≥ 2 and Lp-bounded sequence (Xn)n≥1, there exist 1≤ n1 < n2 ···
such that the series
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is convergent for any ε > 0 if either δ > 1, or δ = 1 and p > 2.

If δ = 1, Theorem 1.1 holds under the same hypotheses (i.e., p > 4), as in the case of
martingale difference sequences (see [15]). In the i.i.d case, Theorem 1.1 holds for L2-
bounded centered sequences (see [7, 10]).

Theorem 1.2 holds under the same hypotheses as in the case of martingale difference
sequences (see [14]). In the i.i.d. case, slightly less than a second moment is needed:
E[X2

n log+ log+ |Xn|−η] <∞ for some 0 < η < 1 (see [8, 10]), and for necessary moment
conditions, one may consult [13].

In the case of martingale difference sequences, Theorem 1.1 fails if δ ≥ p/2− 1 and
Theorem 1.2 fails if 0 ≤ δ < 1 (see [14]), therefore Theorems 1.1 and 1.2 are the best
results one can expect in the Lp-bounded case.

2. Proofs

Proof of Theorem 1.1. In the sequel we will make use of the so-called cr-inequality (see
[12, page 57]), which says that

E|X +Y |p ≤ 2p−1(E|X|p +E|Y |p) (2.1)

for any random variables X ,Y and p > 1. Throughout the paper, C denotes a constant
that depends on p and ε (but not on k,n,N), and may vary from line to line, even within
the same line.
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As (Xn)n≥1 is bounded in Lp, according to [9, Corollary IV.8.4], it is weakly sequentially
compact. Denote by (Yn)n≥1 a subsequence of (Xn)n≥1 that converges weakly in Lp to
some Y ∈ Lp. Subtracting Y from each element of (Yn)n≥1, we reduce the problem to a
sequence (Yn)n≥1 that converges weakly in Lp to 0. Further, for any n ≥ 1, we choose a
simple random variable Zn (i.e., Zn takes only a finite number of distinct values), such
that

∥
∥Yn−Zn

∥
∥
p <

1
2n

. (2.2)

Using Markov’s inequality and (2.1), one has
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According to (2.1), we have
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whence by iteration
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(we used that the subsequence (nk)k≥1 is strictly increasing, so nk ≥ k), therefore the last
series in (2.3) converges. To prove Theorem 1.1, it suffices to exibit a subsequence (nk)k≥1

such that
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One can see that (Zn)n≥1 also converges weakly in Lp to 0. Indeed, for any Q ∈ Lq,
where 1/p + 1/q = 1, we have E(ZnQ) = E((Zn −Yn)Q) + E(YnQ), and the first term on
the right-hand side tends to 0 by Hölder’s inequality and (2.1), while the second term
tends to 0 because Yn converges weakly in Lp to 0.
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By induction, one may choose a subsequence of natural numbers 1≤ n1 < n2 ··· such
that

E
[
Znk | Zi, i∈ I

]≤ 1
2k

for each I ⊂ {n1, . . . ,nk−1
}

, (2.8)

where E
[
Znk | Zi, i ∈ I] denotes the conditional expectation of Znk given the σ-algebra

σ(Zi, i∈ I) generated by (Zi)i∈I . This can be done because σ(Zi, i∈ I) consists of a finite
partition of Ω, and as Zn→ 0 weakly in Lp, we have

∫
AZndP→ 0 for any A in σ(Zi, i∈ I).

We now prove that (nk)k≥1 is the required subsequence in (2.7). Indeed, one can write

Znk =Vk +Wk, (2.9)

where E[Vk | V1, . . . ,Vk−1] = 0 and |Wk| ≤ 1/2k. In particular, (Vk)k≥1 is a martingale
difference sequence. Using Minkowski’s inequality, we deduce that
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According to Burkholder and Hölder’s inequalities, we have
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Using (2.9)–(2.12), we obtain
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The latter series in (2.13) is convergent if and only if δ < p/2− 1, thus (2.7) holds and
Theorem 1.1 is proved. �

Proof of Theorem 1.2. With the same notations and method as in the proof of Theorem
1.1, it suffices to prove the following analog of (2.7):
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The latter series in (2.15) is convergent if and only if either δ > 1, or δ = 1 and p > 2; thus
(2.14) holds and Theorem 1.2 is proved. �
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