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Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex
Banach space E with P as a nonexpansive retraction. Let T : K → E be an asymptoti-
cally nonexpansive mapping with {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞ and F(T)

is nonempty, where F(T) denotes the fixed points set of T . Let {αn}, {α′n}, and {α′′n } be
real sequences in (0,1) and ε ≤ αn,α′n,α′′n ≤ 1− ε for all n ∈N and some ε > 0. Starting
from arbitrary x1 ∈ K , define the sequence {xn} by x1 ∈ K , zn = P(α′′n T(PT)n−1xn + (1−
α′′n )xn), yn = P(α′nT(PT)n−1zn + (1−α′n)xn), xn+1 = P(αnT(PT)n−1yn + (1−αn)xn). (i) If
the dual E∗ of E has the Kadec-Klee property, then {xn} converges weakly to a fixed point
p ∈ F(T); (ii) if T satisfies condition (A), then {xn} converges strongly to a fixed point
p ∈ F(T).
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Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Let E be a real Banach space, let K be a nonempty subset of X and F(T) denote the set of
fixed points of T . A mapping T : K → K is said to be asymptotically nonexpansive if there
exists a sequence {kn} of positive real numbers with kn→ 1 as n→∞ such that

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖ ∀x, y ∈ K. (1.1)

This class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [4]. They proved that if K is a nonempty bounded closed convex subset of a uni-
formly convex Banach space E, then every asymptotically nonexpansive self-mapping T
of K has a fixed point. Moreover, the fixed points set F(T) of T is closed and convex.

Many authors have contributed their efforts to investigate the problem of finding a
fixed point of asymptotically nonexpansive mapping. In [8, 9], Schu introduced a modi-
fied Mann iteration process to approximate fixed points of asymptotically nonexpansive
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2 Asymptotically nonexpansive mappings

self-maps defined on nonempty closed convex and bounded subsets of a Hilbert space H .
More precisely, he proved the following theorems.

Theorem 1.1 (see [8]). Let H be a Hilbert space, K a nonempty closed convex and bounded
subset of H , and let T : K → K be a completely continuous asymptotically nonexpansive with
sequence {kn} ⊂ [1,∞), kn → 1, and

∑∞
n=1(k2

n − 1) <∞. Let {αn}∞n=1 be a real sequence in
[0,1] satisfying the condition ε ≤ αn ≤ 1− ε for all n ≥ 1 and for some ε > 0. Then the
sequence {xn} generated from arbitrary x1 ∈ K by

xn+1 =
(
1−αn

)
xn +αnT

nxn, n≥ 1, (1.2)

converges strongly to a fixed point of T .

Theorem 1.2 (see [9]). Let E be a uniformly convex Banach space satisfying Opial’s condi-
tion, K a nonempty closed convex and bounded subset of E, and T : K → K an asymptotically
nonexpansive with sequence {kn} ⊂ [1,∞), kn → 1, and

∑∞
n=1(k2

n− 1) <∞. Let {αn}∞n=1 be
a real sequence in [0,1] satisfying the condition 0 < a ≤ αn ≤ b < 1 for all n ≥ 1 and some
a,b ∈ (0,1). Then the sequence {xn} generated from arbitrary x1 ∈ K by

xn+1 =
(
1−αn

)
xn +αnT

nxn, n≥ 1, (1.3)

converges weakly to a fixed point of T .

Subsequently, Tan and Xu [13] first proved that Schu’s theorem remains true if the
assumption that E satisfies Opial’s condition is replaced by the one that E has a Fréchet
differential norm. Meantime, Tan and Xu [13] proved the weak convergence of the mod-
ified Ishikawa iterative scheme in a uniformly convex Banach space which either satisfies
Opial’s condition or has a Fréchet differential norm. In [7], Rhoades extended [8, Theo-
rem 1.1] to uniformly convex Banach space using a modified Ishikawa iteration method.
In [6], Osilike and Aniagbosor proved that the theorems of Schu and Rhoades remain
true without the boundedness condition imposed on K , provided that F(T) = {x ∈ K :
Tx = x} �=∅.

In [12], Tan and Xu introduced a modified Ishikawa process to approximate fixed
points of nonexpansive mappings defined on nonempty closed convex bounded subsets
of a uniformly convex Banach space E. More precisely, they proved the following theorem.

Theorem 1.3 (see [12]). Let E be a uniformly convex Banach space which satisfies Opial’s
condition or has a Fréchet differentiable norm and C a nonempty closed convex bounded
subset of E, T : C → C a nonexpansive mapping and let {αn}, {βn} be real sequences in
[0,1] such that

∑∞
n=1αn(1− αn) = ∞ and

∑∞
n=1βn(1− αn) =∞. Then the sequence {xn}

generated from arbitrary x1 ∈ C by

xn+1 =
(
1−αn

)
xn +αnT

[(
1−βn

)
xn +βnTxn

]
, n≥ 1, (1.4)

converges weakly to a fixed point of T .

In the above results, T remains a self-mapping of a nonempty closed convex subset K
of a uniformly convex Banach space if, however, the domain K of T is a proper subset
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of E (and this is the case in several applications), and T maps K into E, then iteration
processes of Mann and Ishikawa studied by these authors may fail to be well defined.

Chidume [1] studied the iteration scheme defined by

x1 ∈ K , xn+1 = P
((

1−αn
)
xn +αnT(PT)n−1xn

)
, n≥ 1, (1.5)

in the framework of uniformly convex Banach space, where K is a nonempty closed con-
vex nonexpansive retract of a real uniformly convex Banach space E with P as a non-
expansive retraction. T : K → E is an asymptotically nonexpansive nonselfmap with se-
quence {kn} ⊂ [1,∞), kn → 1. {αn}∞n=1 is a real sequence in [0,1] satisfying the condition
ε ≤ αn ≤ 1− ε for all n≥ 1 and for some ε > 0. They proved strong and weak convergence
theorems for asymptotically nonexpansive nonselfmaps.

Recently, Shahzad [11] studied the sequence {xn} defined by

x1 ∈ K , xn+1 = P
((

1−αn
)
xn +αnTP

[(
1−βn

)
xn +βnTxn

])
, (1.6)

where K is a nonempty closed convex nonexpansive retract of a real uniformly convex
Banach space E with P as a nonexpansive retraction. He proved weak and strong conver-
gence theorems for nonself nonexpansive mappings in Banach spaces.

Motivated by Chidume [1], Shahzad [11], and some others, the purpose of this paper
is to construct an iterative scheme for approximating a fixed point of asymptotically non-
expansive nonself maps (when such a fixed point exists) and to prove some strong and
weak convergence theorems for such maps.

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
In this paper, the following iteration scheme is studied:

x1 ∈ K ,

zn = P
(
α′′n T(PT)n−1xn +

(
1−α′′n

)
xn
)
,

yn = P
(
α′nT(PT)n−1zn +

(
1−α′n

)
xn
)
,

xn+1 = P
(
αnT(PT)n−1yn +

(
1−αn

)
xn
)
,

(1.7)

where {αn}, {α′n}, and {α′′n } are real sequences in (0,1).
Our theorems improve and generalize some previous results. Our weak convergence

result applies not only to Lp-spaces with 1 < p <∞ but also to other spaces which do
not satisfy Opial’s condition or have a Fréchet differentiable norm. More precisely, we
prove weak convergence of the modified Noor-type iteration process (Noor-type iteration
process was introduced by Xu and Noor [14]) in a uniformly convex Banach space whose
dual has the Kadec-Klee property. It is worth mentioning that there are uniformly convex
Banach spaces, which have neither a Fréchet differentiable norm nor Opial’s property;
however their dual does have the Kadec-Klee property (see, e.g., [3, 5]).

Let E be a real Banach space. A subset K of E is said to be a retract of E if there exists
a continuous map P : E→ E such that Px = x for all x ∈ K . A map P : E→ E is said to be
a retraction if P2 = P. It follows that if a map P is a retraction, then Py = y for all y in
the range of P. A set K is optimal if each point outside K can be moved to be closer to all
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points of K . It is well known (see, e.g., [2]) that
(i) if E is a separable, strictly convex, smooth, reflexive Banach space, and if K ⊂ E

is an optimal set with interior, then K is a nonexpansive retract of E;
(ii) a subset of lp, with 1 < p <∞, is a nonexpansive retract if and only if it is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Banach spaces, op-
timal sets are closed and convex. However, every closed convex subset of a Hilbert space
is optimal and also a nonexpansive retract.

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if
whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈D(T) and
{Txn} converges strongly to p, then Tx∗ = p.

A Banach space E is said to have the Kadec-Klee property if for every sequence {xn} in
E, xn→ x weakly and ‖xn‖→ ‖x‖ strongly together imply ‖xn− x‖→ 0.

Recall that the mapping T : K → E with F(T) �= ∅, where K is a subset of E, is said
to satisfy [10, condition (A)] if there is a nondecreasing function f : [0,∞)→ [0,∞) with
f (0)= 0 and f (r) > 0 for all r ∈ (0,∞) such that for all x ∈ K ,

‖x−Tx‖ ≥ f
(
d
(
x,F(T)

))
, (1.8)

where d(x,F(T))= inf{‖x− p‖ : p ∈ F(T)}.
In order to prove our main results, we will make use of the following lemmas.

Lemma 1.4 (Schu [9]). Suppose that E is a uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n∈N. Suppose further that {xn} and {yn} are sequences of E such that

limsup
n→∞

∥
∥xn
∥
∥≤ r, limsup

n→∞

∥
∥yn

∥
∥≤ r,

lim
n→∞

∥
∥tnxn +

(
1− tn

)
yn
∥
∥= r

(1.9)

hold for some r ≥ 0. Then limn→∞‖xn− yn‖ = 0.

Lemma 1.5 (demiclosed principle for nonselfmap [1]). Let E be a uniformly convex Ba-
nach space, K a nonempty closed convex subset of E. Let T : K → E be an asymptotically
nonexpansive mapping with {kn} ⊂ [1,∞) and kn → 1 as n→∞. Then I −T is demiclosed
with respect to zero.

Lemma 1.6 (see [3]). Let E be a real reflexive Banach space such that its dual E∗ has the
Kadec-Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ww(xn); here ww(xn)
denotes the weak w-limit set of {xn}. Suppose limn→∞‖txn + (1− t)x∗ − y∗‖ exists for all
t ∈ [0,1]. Then x∗ = y∗.

Lemma 1.7 (Tan and Xu [12]). Let {rn}, {sn}, and {tn} be three nonnegative sequences
satisfying the following conditions:

rn+1 ≤
(
1 + sn

)
rn + tn ∀n≥ 1. (1.10)

If
∑∞

n=1 sn <∞ and
∑∞

n=1 tn <∞, then limn→∞ rn exists.
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2. Main results

Definition 2.1 (see [1]). Let E be a real-normed linear space, K a nonempty subset of E.
Let P : E→ K be the nonexpansive retraction of E onto K . A map T : K → E is said to
be an asymptotically nonexpansive mapping if there exists a sequence {kn} ⊂ [1,∞) and
kn→ 1 as n→∞ such that the following inequality holds:

∥
∥T(PT)n−1x−T(PT)n−1y

∥
∥≤ kn‖x− y‖ ∀x, y ∈ K , n≥ 1. (2.1)

T is called uniformly L-Lipschitzian if there exists L > 0 such that

∥
∥T(PT)n−1x−T(PT)n−1y

∥
∥≤ L‖x− y‖ ∀x, y ∈ K , n≥ 1. (2.2)

Lemma 2.2. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be an asymptotically nonex-
pansive mapping with {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞. Starting from arbitrary

x1 ∈ K , define the sequence {xn} by the recursion (1.7). Then limn→∞‖xn − p‖ exists, for
any p ∈ F(T), where F(T) denotes the nonempty fixed points set of T .

Proof. For any given p ∈ F(T), it follows from (1.7) that

∥
∥zn− p

∥
∥= ∥∥P(α′′n T(PT)n−1xn +

(
1−α′′n

)
xn
)− p

∥
∥

≤ ∥∥α′′n T(PT)n−1xn +
(
1−α′′n

)
xn− p

∥
∥

≤ α′′n
∥
∥T(PT)n−1xn− p

∥
∥+

(
1−α′′n

)∥
∥xn− p

∥
∥

≤ α′′n kn
∥
∥xn− p

∥
∥+

(
1−α′′n

)∥
∥xn− p

∥
∥

≤ kn
∥
∥xn− p

∥
∥.

(2.3)

That is,

∥
∥zn− p

∥
∥≤ kn

∥
∥xn− p

∥
∥. (2.4)

From (1.7) and (2.4) we get

∥
∥yn− p

∥
∥= ∥∥P(α′nT(PT)n−1zn +

(
1−α′n

)
xn
)− p

∥
∥

≤ ∥∥α′nT(PT)n−1zn +
(
1−α′n

)
xn− p

∥
∥

≤ α′n
∥
∥T(PT)n−1zn− p

∥
∥+

(
1−α′n

)∥
∥xn− p

∥
∥

≤ α′nkn
∥
∥zn− p

∥
∥+

(
1−α′n

)∥
∥xn− p

∥
∥

≤ k2
n

∥
∥xn− p

∥
∥.

(2.5)
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That is,

∥
∥yn− p

∥
∥≤ k2

n

∥
∥xn− p

∥
∥. (2.6)

Again, from (1.7) and (2.6) we have

∥
∥xn+1− p

∥
∥= ∥∥P(αnT(PT)n−1yn +

(
1−αn

)
xn
)− p

∥
∥

= ∥∥αnT(PT)n−1yn +
(
1−αn

)
xn− p

∥
∥

≤ αn
∥
∥T(PT)n−1yn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ αnkn
∥
∥yn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ αnk
3
n

∥
∥xn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ k3
n

∥
∥xn− p

∥
∥.

(2.7)

That is,

∥
∥xn+1− p

∥
∥≤ (1 +

(
k3
n− 1

))∥
∥xn− p

∥
∥. (2.8)

Note that
∑∞

n=1(kn− 1) <∞ is equivalent to
∑∞

n=1(k3
n− 1) <∞, therefore by Lemma 1.7,

limn→∞‖xn− p‖ exists for all p ∈ F(T). This completes the proof. �

Lemma 2.3. Let E be a normed linear space, K a nonempty closed convex subset which is also
a nonexpansive retract of E, T : K → E a uniformly L-Lipschitzian, starting from arbitrary
x1 ∈ K , define the sequence {xn} by the recursion (1.7) and set Cn = ‖xn−T(PT)n−1xn‖ for
all n≥ 1. If limn→∞Cn = 0, then limn→∞‖xn−Txn‖ = 0.

Proof. It follows from (1.7) that

∥
∥xn+1− xn

∥
∥≤ ∥∥αnT(PT)n−1yn +

(
1−αn

)
xn− xn

∥
∥

≤ ∥∥T(PT)n−1yn− xn
∥
∥

≤ ∥∥T(PT)n−1xn− xn
∥
∥+

∥
∥T(PT)n−1yn−T(PT)n−1xn

∥
∥

≤ Cn +L
∥
∥yn− xn

∥
∥

≤ Cn +L
∥
∥α′nT(PT)n−1zn +

(
1−α′n

)
xn− xn

∥
∥

≤ Cn +L
∥
∥T(PT)n−1zn− xn

∥
∥

≤ Cn +L
∥
∥T(PT)n−1xn− xn

∥
∥+L

∥
∥T(PT)n−1zn−T(PT)n−1xn

∥
∥

≤ Cn +LCn +L2
∥
∥zn− xn

∥
∥

≤ Cn +LCn +L2
∥
∥α′′n T(PT)n−1xn +

(
1−α′′n

)
xn− xn

∥
∥

≤ Cn
(
1 +L+L2),

(2.9)
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∥
∥yn−1− xn

∥
∥≤ ∥∥α′n−1T(PT)n−2zn−1 +

(
1−α′n−1

)
xn−1− xn

∥
∥

≤ ∥∥T(PT)n−2zn−1− xn−1
∥
∥+

∥
∥xn−1− xn

∥
∥

≤ ∥∥T(PT)n−2xn−1− xn−1
∥
∥+

∥
∥T(PT)n−2zn−1−T(PT)n−2xn−1

∥
∥+

∥
∥xn−1− xn

∥
∥

≤ Cn−1 +LCn−1 +
∥
∥xn−1− xn

∥
∥.

(2.10)

Substituting (2.9) into (2.10) we obtain

∥
∥yn−1− xn

∥
∥≤ Cn−1

(
2 + 2L+L2). (2.11)

On the other hand, from (2.9) and (2.11) we have

∥
∥xn− (PT)n−1xn

∥
∥≤ ∥∥αn−1T(PT)n−2yn−1 +

(
1−αn−1

)
xn−1−T(PT)n−2xn

∥
∥

≤ ∥∥T(PT)n−2yn−1−T(PT)n−2xn
∥
∥+

∥
∥xn−1−T(PT)n−2xn

∥
∥

≤ L
∥
∥yn−1− xn

∥
∥+

∥
∥xn−1−T(PT)n−2xn−1

∥
∥

+
∥
∥T(PT)n−2xn−1−T(PT)n−2xn

∥
∥

≤ L
∥
∥yn−1− xn

∥
∥+Cn−1 +L

∥
∥xn−1− xn

∥
∥

≤ LCn−1
(
3 + 3L+ 2L2)+Cn−1.

(2.12)

It follows from (2.12) that

∥
∥xn−Txn

∥
∥≤ ∥∥xn−T(PT)n−1xn

∥
∥+

∥
∥T(PT)n−1xn−Txn

∥
∥

≤ Cn +L
∥
∥(PT)n−1xn− xn

∥
∥

≤ Cn +LCn−1
(
1 + 3L+ 3L2 + 2L3).

(2.13)

It follows from limn→∞Cn = 0 that

lim
n→∞

∥
∥xn−Txn

∥
∥= 0. (2.14)

This completes the proof. �

Theorem 2.4. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be an asymptotically nonex-
pansive mapping with {kn} ⊂ [1,∞) such that

∑∞
n=1(kn− 1) <∞ and F(T) �= ∅. Let {αn},

{α′n}, and {α′′n } be real sequences in (0,1) and ε ≤ αn,α′n,α′′n ≤ 1− ε for all n∈N and some
ε > 0, starting from arbitrary x1 ∈ K , define the sequence {xn} by the recursion (1.7). Then
limn→∞‖xn−Txn‖ = 0.

Proof. Take p ∈ F(T), by Lemma 2.2 we know limn→∞‖xn− p‖ exists. Let limn→∞‖xn−
p‖ = c. If c = 0, then by the continuity of T the conclusion follows. Now suppose c > 0.
We claim limn→∞‖Txn− xn‖ = 0. Taking limsup on both sides in the inequality (2.4), we
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have

limsup
n→∞

∥
∥zn− p

∥
∥≤ c. (2.15)

Similarly, taking limsup on both sides in the inequality (2.6), we have

limsup
n→∞

∥
∥yn− p

∥
∥≤ c. (2.16)

Next, we consider

∥
∥T(PT)n−1yn− p

∥
∥≤ kn

∥
∥yn− p

∥
∥. (2.17)

Taking limsup on both sides in the above inequality and using (2.16), we get

limsup
n→∞

∥
∥T(PT)n−1yn− p

∥
∥≤ c. (2.18)

Again, limn→∞‖xn+1− p‖ = c means that

liminf
n→∞

∥
∥αn

(
T(PT)n−1yn− p

)
+
(
1−αn

)(
xn− p

)∥
∥≥ c. (2.19)

On the other hand, we have
∥
∥αn

(
T(PT)n−1yn− p

)
+
(
1−αn

)(
xn− p

)∥
∥

≤ αn
∥
∥T(PT)n−1yn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ αnkn
∥
∥yn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ αnk
3
n

∥
∥xn− p

∥
∥+

(
1−αn

)∥
∥xn− p

∥
∥

≤ k3
n

∥
∥xn− p

∥
∥.

(2.20)

Therefore, we obtain

limsup
n→∞

∥
∥αn

(
T(PT)n−1yn− p

)
+
(
1−αn

)(
xn− p

)∥
∥≤ c. (2.21)

Combining (2.19) and (2.21), we obtain

lim
n→∞

∥
∥αn

(
T(PT)n−1yn− p

)
+
(
1−αn

)(
xn− p

)∥
∥= c. (2.22)

Hence applying Lemma 1.4, we have

lim
n→∞

∥
∥T(PT)n−1yn− xn

∥
∥= 0. (2.23)

Next, it follows from
∥
∥xn− p

∥
∥≤ ∥∥T(PT)n−1yn− xn

∥
∥+

∥
∥T(PT)n−1yn− p

∥
∥

≤ ∥∥T(PT)n−1yn− xn
∥
∥+ kn

∥
∥yn− p

∥
∥

(2.24)
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that we have

c ≤ liminf
n→∞

∥
∥yn− p

∥
∥≤ limsup

n→∞

∥
∥yn− p

∥
∥≤ c. (2.25)

That is,

lim
n→∞

∥
∥yn− p

∥
∥= c. (2.26)

Again, limn→∞‖yn− p‖ = c gives that

liminf
n→∞

∥
∥α′n

(
T(PT)n−1zn− p

)
+
(
1−α′n

)(
xn− p

)∥
∥≥ c. (2.27)

Similarly,

∥
∥α′n

(
T(PT)n−1zn− p

)
+
(
1−α′n

)(
xn− p

)∥
∥

≤ α′n
∥
∥T(PT)n−1zn− p

∥
∥+

(
1−α′n

)∥
∥xn− p

∥
∥

≤ α′nkn
∥
∥zn− p

∥
∥+

(
1−α′n

)∥
∥xn− p

∥
∥

≤ α′nk
2
n

∥
∥xn− p

∥
∥+

(
1−α′n

)∥
∥xn− p

∥
∥

≤ k2
n

∥
∥xn− p

∥
∥.

(2.28)

Therefore, we have

limsup
n→∞

∥
∥α′n

(
T(PT)n−1zn− p

)
+
(
1−α′n

)(
xn− p

)∥
∥≤ c. (2.29)

Combining (2.27) and (2.29) yields

lim
n→∞

∥
∥α′n

(
T(PT)n−1zn− p

)
+
(
1−α′n

)(
xn− p

)∥
∥= c. (2.30)

On the other hand, we have

∥
∥T(PT)n−1zn− p

∥
∥≤ kn

∥
∥zn− p

∥
∥. (2.31)

Taking limsup on both sides in the above inequality and using (2.15), we have

limsup
n→∞

∥
∥T(PT)n−1zn− p

∥
∥≤ c. (2.32)

Applying Lemma 1.4, it follows from (2.30) and (2.32) that

lim
n→∞

∥
∥T(PT)n−1zn− xn

∥
∥= 0. (2.33)
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Notice that
∥
∥xn− p

∥
∥≤ ∥∥T(PT)n−1zn− xn

∥
∥+

∥
∥T(PT)n−1zn− p

∥
∥

≤ ∥∥T(PT)n−1zn− xn
∥
∥+ kn

∥
∥zn− p

∥
∥

(2.34)

which yields

c ≤ liminf
n→∞

∥
∥zn− p

∥
∥≤ limsup

n→∞

∥
∥zn− p

∥
∥≤ c. (2.35)

That is,

lim
n→∞

∥
∥zn− p

∥
∥= c. (2.36)

Using the same method, we have

lim
n→∞

∥
∥α′′n

(
T(PT)n−1xn− p

)
+
(
1−α′′n

)(
xn− p

)∥
∥= c. (2.37)

Moreover,
∥
∥T(PT)n−1xn− p

∥
∥≤ ∥∥T(PT)n−1xn− p

∥
∥

≤ kn
∥
∥xn− p

∥
∥

(2.38)

which implies that

limsup
n→∞

∥
∥T(PT)n−1xn− p

∥
∥≤ c. (2.39)

Lemma 1.4 combined with (2.37) and (2.39) yields

lim
n→∞

∥
∥T(PT)n−1xn− xn

∥
∥= 0. (2.40)

Since T is uniformly L-Lipschitzian for some L > 0, it follows from Lemma 2.3 that

lim
n→∞

∥
∥xn−Txn

∥
∥= 0. (2.41)

This completes the proof. �

Lemma 2.5. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be an asymptotically nonex-
pansive mapping with F(T) �= ∅ and {kn} ⊂ [1,∞) such that

∑∞
n=1(kn− 1) <∞. Let {αn},

{α′n}, and {α′′n } be real sequences in [0,1] and ε ≤ αn,α′n,α′′n ≤ 1− ε for all n∈N and some
ε > 0, starting from arbitrary x1 ∈ K , define the sequence {xn} by the recursion (1.7). Then
for all x∗,x∗∗ ∈ F(T), the limit

lim
n→∞

∥
∥txn + (1− t)x∗ − x∗∗

∥
∥ (2.42)

exists for all t ∈ [0,1]
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Proof. It follows from Lemma 2.2 that {xn} is bounded, there exists R > 0 such that
{xn} ⊂ C := BR(0)∩K , where BR(0) = {x ∈ E;‖x‖ ≤ R}. Then C is a nonempty closed
convex bounded subset of E. We follow basically the idea of [12]. Let an(t)= ‖txn + (1−
t)x∗ − x∗∗‖. Then limn→∞ an(0) = ‖x∗ − x∗∗‖, and from Lemma 2.2, limn→∞ an(1) =
limn→∞‖xn − x∗∗‖ exists. Without loss of generality, we may assume that limn→∞‖xn −
x∗∗‖ = b > 0 and t ∈ (0,1). Define Tn : C→ C by

Tnx = P
(
αnT(PT)n−1(P

(
α′nT(PT)n−1)(P

(
α′′n T(PT)n−1x

)
+
(
1−α′′n

)
x
)

+
(
1−α′n

)
x
)

+
(
1−αn

)
x
)
.

(2.43)

Then

∥
∥Tnx−Tny

∥
∥≤ k3

n‖x− y‖. (2.44)

Set Sn,m := Tn+m−1Tn+m−2 . . .Tn, m≥ 1, and

bn,m =
∥
∥Sn,m

(
txn + (1− t)x∗

)− (tSn,mxn + (1− t)x∗∗
)∥
∥. (2.45)

Then

∥
∥Sn,mx− Sn,my

∥
∥≤

n+m−1∏

j=n
k3
j‖x− y‖, (2.46)

Sn,mxn = xn+m, and Sn,mp = p for all p ∈ F(T). It follows from [3, Lemma 2.1 and Theo-
rem 2.3] that limn→∞ bn,m = 0. Note that

an+m(t)= ∥∥txn+m + (1− t)x∗ − x∗∗
∥
∥

≤ bn,m +
∥
∥Sn,m

(
txn + (1− t)x∗

)− x∗∗
∥
∥

≤ bn,m +
n+m−1∏

j=n
k3
j an(t).

(2.47)

Note that
∑∞

n=1(kn − 1) < ∞ is equivalent to
∑∞

n=1(k3
n − 1) < ∞. Since kn ∈ [1,∞),

limn→∞
∏∞

j=n k
3
j = 1. Therefore, we have

limsup
n→∞

an(t)≤ lim
n,m→∞bn,m + liminf

n→∞ an(t)= liminf
n→∞ an(t). (2.48)

That is,

lim
n→∞

∥
∥txn + (1− t)x∗ − x∗∗

∥
∥ (2.49)

exists for all t ∈ [0,1]. This completes the proof. �

Theorem 2.6. Let E be a uniformly convex Banach space such that its dual E∗ has the
Kadec-Klee property and K a nonempty closed convex subset which is also a nonexpansive
retract of E. Let T : K → E be an asymptotically nonexpansive mapping with {kn} ⊂ [1,∞),
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kn → 1 as n→∞ and F(T) �= ∅. Let {αn}, {α′n}, and {α′′n } be real sequences in [0,1] and
ε ≤ αn,α′n,α′′n ≤ 1− ε for all n ∈N and some ε > 0, starting from arbitrary x1 ∈ K , define
the sequence {xn} by the recursion (1.7). Then {xn} converges weakly to some fixed point
of T .

Proof. Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} of {xn}
converging weakly to some u∈ k. It follows from Theorem 2.4 that limi→∞‖Txni − xni‖ =
0. By Lemma 1.5, we have u = Tu. Next we claim {xn} converges weakly to u. Suppose
{xnj} is another subsequence of {xn} converging to some v ∈ K . Then u,v ∈ ww(xn)∩
F(T). Using Lemma 2.5 yields that the limit

lim
n→∞

∥
∥txn + (1− t)u− v

∥
∥ (2.50)

exists for all t ∈ (0,1). By Lemma 1.6 we have that u= v. Then {xn} converges weakly to
some fixed point of T . �

Next, we will prove a strong convergence theorem.

Theorem 2.7. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be a nonexpansive mapping
with p ∈ F(T) := {x ∈ K : Tx = x}. Let {αn}, {α′n}, and {α′′n } be real sequences in [0,1]
and ε ≤ αn,α′n,α′′n ≤ 1− ε for all n ∈ N and some ε > 0, starting from arbitrary x1 ∈ K ,
define the sequence {xn} by the recursion (1.7). Suppose T satisfies condition (A). Then {xn}
converges strongly to some fixed point of T .

Proof. By Lemma 2.2, limn→∞‖xn− p‖ exists for all p ∈ F = F(T). Let limn→∞‖xn− p‖ =
c for some c ≥ 0. If c = 0, there is nothing to prove. Suppose c > 0. By Theorem 2.4,
limn→∞‖Txn− xn‖ = 0, and (2.8) gives

inf
p∈F
∥
∥xn+1− p

∥
∥≤ (1 +

(
k3
n− 1

))
inf
p∈F
∥
∥xn− p

∥
∥. (2.51)

That is,

d
(
xn+1,F

)≤ (1 +
(
k3
n− 1

))
d
(
xn,F

)
(2.52)

gives that limn→∞d(xn,F) exists by the virtue of Lemma 1.7. Now by condition (A),
limn→∞ f (d(xn,F)) = 0. Since f is a nondecreasing function and f (0) = 0, therefore
limn→∞d(xn,F)= 0. Now we can take a subsequence {xnj} of {xn} and sequence {yj} ⊂ F
such that ‖xnj − yj‖ < 2− j . Then following the method of the proof of Tan and Xu [12],
we get that {yj} is a Cauchy sequence in F and so it converges. Let yj → y. Since F is
closed, therefore y ∈ F and then xnj → y. As limn→∞‖xn− p‖ exists, xn → y ∈ F = F(T)
thereby completing the proof. �
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