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We generate a sequence of measurable mappings iteratively and study necessary condi-
tions for its strong convergence to a random fixed point of strongly pseudocontractive
random operator. We establish the weak convergence of an implicit random iterative
procedure to common random fixed point of a finite family of nonexpansive random
operators in Hilbert spaces. We prove the equivalence between the convergence of ran-
dom Ishikawa and random Mann iterative schemes for contraction random operator and
strongly pseudocontractive random operator. We also examine the stability of random
fixed point iterative procedures for the random operators satisfying certain contractive
conditions in the context of metric spaces.
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1. Introduction

Random nonlinear analysis is an important mathematical discipline which is mainly con-
cerned with the study of random nonlinear operators and its development is required for
the study of various classes of random operator equations. The systematic study of ran-
dom operator equations employing the methods of functional analysis was first initiated
by the Prague school of probabilists in the 1950s. The study of random fixed points is the
core around which the theory of random operators has developed. Random fixed point
theorems for random contraction mappings on separable complete metric spaces were
first proved by Špaček [24] and Hanš (see, [12, 13]). The survey article by Bharucha-
Reid [6] in 1976 attracted the attention of several mathematicians and gave wings to
this theory. Itoh [14] extended Špaček’s and Hanš’s theorems to multivalued contraction
mappings. Now this theory has become the full-fledged research area and various ideas
associated with random fixed point theory are applied to obtain the solutions to a class
of stochastic integral equations (see [19]). Recently, Beg [2, 3], Beg and Shahzad [4, 5],
Lin [16], Papageorgiou [20], Tan and Yuan [26], Xu [28], Xu and Beg [29], and many
other authors have studied the stochastic solvability of the random operator equation
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and its various applications in diverse areas from pure mathematics to applied sciences.
The aim of this paper is to study the behaviour of the sequence of measurable mappings
constructed through random Ishikawa and random Mann iterative procedures involving
strongly pseudocontractive random operators in Banach spaces. We construct an implicit
random iterative scheme and study its weak convergence to common random fixed point
of finite family of nonexpansive random operators in the context of Hilbert spaces. We
prove that the convergences of random Ishikawa and random Mann iterative procedures
for contraction random operators and strongly pseudocontractive random operators are
equivalent. We also examine the stability of random fixed point iterative procedures for
the random operators satisfying certain contractive conditions in the context of metric
spaces.

2. Preliminaries

Let (Ω,Σ) be a measurable space (Σ-sigma algebra) and F a nonempty subset of a Banach
space X . A mapping ξ : Ω→ X is measurable if ξ−1(U) ∈ Σ, for each open subset U of
X . The mapping T : Ω× F → F is a random map if and only if for each fixed x ∈ F, the
mapping T(·,x) : Ω→ F is measurable and it is continuous if for each ω ∈Ω, the mapping
T(ω,·) : F → X is continuous. A measurable mapping ξ : Ω→ X is the random fixed point
of the random map T : Ω× F → X if and only if it is the stochastic solution of random
operator equation I − T(ω,x) = x, for each ω ∈ Ω and x ∈ F; the letter I denotes the
random mapping I : Ω×F → F defined by I(ω,x)= x. We denote the set of random fixed
points of a random map T by RF(T).

Let B(x0,r) denote the spherical ball centred at x0 with radius r, defined as the set
{x ∈ X : ‖x− x0‖ ≤ r}.

We denote the nth iterate T(ω,T(ω,T(ω, . . . ,T(ω,x), . . .))) of T by Tn(ω,x) and T0 = I .

Definition 2.1. Let F be a nonempty subset of a separable Banach space X and let T :
Ω×F → F be a random map.

(a) The map T is said to be an asymptotically nonexpansive random operator if there
exists a sequence of measurable mappings kn : Ω→ [1,∞) with limn→∞ kn(ω)= 1, for each
ω ∈Ω, such that for arbitrary x, y ∈ F,

∥
∥Tn(ω,x)−Tn(ω, y)

∥
∥≤ kn(ω)‖x− y‖, for each ω ∈Ω. (2.1)

Taking kn(ω) = 1, for every ω ∈ Ω and for every n ∈ N, replacing nth iterate of T by
T , there exists a nonexpansive random operator. It is known that nonexpansive random
operator from Ω×F → F has a random fixed point when F is closed convex and bounded
subset of a separable Banach space X satisfying Opial’s condition.

(b) The map T is said to be a uniformly L-Lipschitzian random operator if for arbitrary
x, y ∈ F,

∥
∥Tn(ω,x)−Tn(ω, y)

∥
∥≤ L‖x− y‖, for each ω ∈Ω, (2.2)

where n= 1,2, . . . , and L is a positive constant. Replacing nth iterate of T by the random
operator T , the definition of L-Lipschitzian random operator is obtained. An asymptot-
ically nonexpansive random operator is uniformly L-Lipschitzian random operator for
some L≥ 1.
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(c) The map T is said to be a pseudocontractive random operator if for any measurable
mapping r : Ω→ (0,∞) and for arbitrary x, y ∈ F,

‖x− y‖ ≤ ∥∥(1 + r(ω)
)

(x− y)− r(ω)
(

T(ω,x)−T(ω, y)
)∥
∥, (2.3)

for each ω ∈ Ω. This class of random operators is more general than the class of non-
expansive random operators. The importance of this class stems from the connection
which exists between pseudocontractive random operators and assertive random oper-
ators; namely, T(ω,·) is pseudocontractive random operator if and only if I −T(ω,·) is
assertive random operator, for each ω ∈Ω.

(d) The map T is said to be a k(ω)-strongly pseudocontractive random operator for some
measurable mapping k : Ω→ (0,1) if for any measurable mapping r : Ω→ (0,∞) and for
each x ∈ F,

‖x− y‖ ≤ k(ω)
∥
∥1 + r(ω)(x− y)− r(ω)

(

T(ω,x)−T(ω, y)
)∥
∥, y ∈ F, (2.4)

for each ω ∈Ω.
(e) The map T is said to be a weakly contractive random operator if for arbitrary x, y ∈

F,

∥
∥T(ω,x)−T(ω, y)

∥
∥≤ ‖x− y‖−Ψ

(‖x− y‖), for each ω ∈Ω, (2.5)

where Ψ : [0,∞) → [0,∞) is a continuous and nondecreasing map such that Ψ(0) = 0,
and limt→∞Ψ(t)=∞.

If Ψ(t)= (1− k(ω))t, where k : Ω→ (0,1) is any fixed measurable mapping, then the
weakly contractive random operator becomes a k(ω)-contraction random operator and
it has a unique random fixed point, according to Bharucha-Reid [6].

Definition 2.2 (random Mann iterative process). Let T : Ω×F → F be a random operator,
where F is a nonempty closed and convex subset of a separable Banach space X . Then
random Mann iterative process is the sequence of functions {ξn} defined by

ξn+1(ω)= (1−αn(ω)
)

ξn(ω) +αn(ω)T
(

ω,ξn(ω)
)

, for each ω ∈Ω, (2.6)

n= 0,1,2, . . . , where αn : Ω→ [0,1] is measurable mappings for each n∈N and ξ0 : Ω→ F
is an arbitrary fixed measurable mapping. Obviously {ξn} is a sequence of functions from
Ω to F.

Remark 2.3. Let F be a closed and convex subset of a separable Banach space X and let the
sequence of functions {ξn} defined as in Definition 2.2 be pointwise convergent, that is,
ξn(ω)→ q := ξ(ω), for each ω∈Ω. Then closedness of F implies that ξ is a mapping from
Ω to F. Since F is a subset of a separable Banach space X , so, if T is a continuous random
operator, then by [1, Lemma 8.2.3] the map ω→ T(ω, f (ω)) is a measurable function for
any measurable function f from Ω to F. Thus {ξn} is a sequence of measurable func-
tions. Hence ξ : Ω→ F, being the limit of the sequence of measurable functions, is also
measurable.
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Definition 2.4 (random Ishikawa iterative process). Let T : Ω×F → F be a random opera-
tor, where F is a nonempty closed and convex subset of a separable Banach space X . Then
random Ishikawa iterative process is the sequences of functions {ξn} and {ηn} defined by

ξn+1(ω)= (1−αn(ω)
)

ξn(ω) +αn(ω)T
(

ω,ηn(ω)
)

,

ηn(ω)= (1−βn(ω)
)

ξn(ω) +βn(ω)T
(

ω,ξn(ω)
)

, for each ω ∈Ω,
(2.7)

n= 0,1,2, . . . , where αn and βn : Ω→ [0,1] are measurable mappings for each n∈N and
ξ0 : Ω→ F is an arbitrary measurable mapping. Obviously {ξn} and {ηn} are sequences of
measurable functions from Ω to F. Taking βn(ω)= 0, for each ω ∈Ω, the random Mann
iterative process is obtained.

Definition 2.5 (random Kirk iteration scheme). Let T : Ω×F → F be a random operator,
where F is a nonempty closed and convex subset of a separable Banach space X . Then,
for a fixed positive integer k, define the map S : Ω×F → F as

S(ω,x)=
k
∑

i=0

αi(ω)Ti(ω,x), for each ω ∈Ω, (2.8)

where αi(ω) ≥ 0,
∑k

i=0αi(ω) = 1, and α1(ω) �= 0, for each ω ∈ Ω. Now the sequence of
functions {ξn} given by the following equation defines random Kirk iterative process:

ξn+1(ω)= S
(

ω,ξn(ω)
)

, for each ω ∈Ω, n= 0,1,2, . . . , (2.9)

where ξ0 : Ω→ F is an arbitrary fixed measurable mapping. Obviously {ξn} is a sequence
of functions from Ω to F.

Definition 2.6. Let {T1,T2,T3, . . . ,TN} be a family of random operators from Ω× F to
F, where F is a closed, bounded, and convex subset of a separable Banach space X . Let
D = ⋂Ni=1 RF(Ti) �= φ, where RF(Ti) is the set of all random fixed points of a random
operator Ti, for each i∈ {1,2,3, . . . ,N} = J . Let ξ0 : Ω→ F be any fixed measurable map.
Let αn : Ω→ (0,1) be measurable mappings for each n∈N and limn→∞αn(ω)= 0 for each
ω ∈Ω. The sequence of functions {ξn} is defined as follows:

ξ1(ω)= α1(ω)ξ0(ω) +
(

1−α1(ω)
)

T1
(

ω,ξ1(ω)
)

,

ξ2(ω)= α2(ω)ξ1(ω) +
(

1−α2(ω)
)

T2
(

ω,ξ2(ω)
)

,

...

ξN(ω)= αN(ω)ξN−1(ω) +
(

1−αN(ω)
)

TN
(

ω,ξN(ω)
)

,

ξN+1(ω)= αN+1(ω)ξN(ω) +
(

1−αN+1(ω)
)

T1
(

ω,ξN+1(ω)
)

,

...

ξ2N(ω)= α2N(ω)ξ2N−1(ω) +
(

1−α2N(ω)
)

TN
(

ω,ξ2N(ω)
)

,

ξ2N+1(ω)= α2N+1(ω)ξ2N(ω) +
(

1−α2N+1(ω)
)

T1
(

ω,ξ2N+1(ω)
)

,

...

(2.10)
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In compact form, we have

ξn(ω)= αn(ω)ξn−1(ω) +
(

1−αn(ω)
)

Tn
(

ω,ξn(ω)
)

, n≥ 1, (2.11)

where Tn = TnmodN.

Definition 2.7. LetT : Ω×F → F be a random operator, where F is a nonempty closed and
convex subset of a separable Banach space X . Let ξ0 : Ω→ F be any fixed measurable map-
ping. The sequence {ξn+1(ω)} of measurable mappings from Ω to F, for n = 0,1,2, . . . ,
generated by the certain iterative procedure involving a random operator T is denoted by
{T ,ξn(ω)}, for each ω ∈Ω. Suppose ξn+1(ω)→ ξ∗(ω) as n→∞, for each ω ∈Ω, where
ξ∗ ∈ RF(T). Let {ηn} be any sequence of measurable mappings from Ω to F. Define the
sequence of measurable mappings kn : Ω→ R by kn(ω) = d(ηn(ω),{T ,ηn(ω)}) (measur-
ability of kn follows from [1, Corollary 8.2.13]). If for each ω ∈Ω, kn(ω)→ 0, as n→∞
implies ηn(ω)→ ξ∗(ω) as n→∞, for each ω ∈Ω, then a random iterative procedure is
said to be stable with respect to random operator T .

Definition 2.8. Let F be a nonempty closed and convex subset of a Banach space X . A
mapping T : F → X is called demiclosed with respect to y ∈ X for each sequence {xn} in
F such that {xn} converges weakly to x ∈ X and {Txn} converges strongly to y implying
that x ∈ F and Tx = y.

Let F be a closed and convex subset of a Hilbert space H and let T : F →H be a non-
expansive mapping then I −T is demiclosed on F. A Banach space X has Opial property
if xn → x weakly implies that limsupn‖xn − x‖ < limsupn‖xn − x‖ for any z ∈ X , z �= x.
Banach spaces satisfying Opial property include Hilbert spaces and lp (1 < p <∞) spaces
while Lp spaces (p �= 2) are not Opial spaces. For further details and other related results
we refer to [18].

A random operator T : Ω×F → F is called demiclosed if T(ω,·) is demiclosed for each
ω ∈Ω.

Definition 2.9. Let X and Y be two separable Banach spaces. Let F be a nonempty weakly
compact subset of X . A continuous random operator T : Ω×F → Y is said to satisfy the
Leray-Schauder boundary condition if for each ω ∈Ω, there exists z ∈ int(F) (depending
on ω) such that

T(ω, y)− z �= α(y− z) ∀y ∈ ∂(F),α > 1, (2.12)

where ∂(F) stands for the boundary of F.

We will also need the following lemma from [27].

Lemma 2.10. Let the nonnegative number sequence {αn} satisfy that

αn+1 ≤
(

1− δn
)

αn + σn, for each n= 1,2,3, . . . ;δn ∈ [0,1],
∞
∑

i=1

δi =∞; (2.13)

and σn = o(δn). Then, limn→∞αn = 0.
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3. Convergence and equivalence of random Mann and random Ishikawa
iterative schemes for strongly pseudocontractive random operator

The Ishikawa and Mann iterative schemes have been successfully applied for obtaining the
solutions of deterministic operator equations. Recently, Chidume [7, 8], Górnicki [11],
Park [21], Singh and Watson [23], and Tan and Xu [25] have used different iteration pro-
cedures to obtain fixed points in deterministic operator theory while Kirk [15], Gatica
and Kirk [9], and Goebel and Kirk [10] have studied the existence of fixed points of
asymptotically nonexpansive and pseudocontractive mappings, the class of mappings
more general than nonexpansive mappings. In this section, assuring the existence of ran-
dom fixed point of strongly pseudocontractive random operator, the convergence of ran-
dom Mann and random Ishikawa schemes to the random fixed point of strongly pseu-
docontractive random operator is proved and equivalence of these two random iterative
procedures is also established. First, we present the following convergence theorem.

Theorem 3.1. Let F be a nonempty closed bounded and convex subset of a separable re-
flexive Banach space X with 0 ∈ int(F). Let T : Ω× F → F be an L-Lipschitz and strongly
pseudocontractive random operator satisfying the Leray-Schauder boundary condition for
z = 0. Let ξ0 be a fixed measurable mapping from Ω to F. Define the sequences of functions
{ηn} and {ξn} as given below:

ηn(ω)= βn(ω)T
(

ω,ξn(ω)
)

+
(

1−βn(ω)
)

ξn(ω),

ξn+1(ω)= αn(ω)T
(

ω,ηn(ω)
)

+
(

1−αn(ω)
)

ξn(ω), for each ω ∈Ω,
(3.1)

n = 0,1,2, . . . , where αn and βn : Ω → [0,1] are measurable mappings for each n ∈ N,
∑

n≥0βn(ω) and
∑

n≥0αn(ω) <∞, for each ω ∈Ω. Then the sequence of measurable map-
pings {ξn} generated iteratively converges strongly to the random fixed point of T .

Proof. For every ω ∈Ω, we have

ξn(ω)= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

ξn(ω)− ξn+1(ω)
)−αn(ω)T

(

ω,ηn(ω)
)

,

ξn(ω)= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

αn(ω)ξn(ω)−αn(ω)T
(

ω,ηn(ω)
))

−αn(ω)
(

T
(

ω,ηn(ω)
)−T

(

ω,ξn+1(ω)
))−αn(ω)T

(

ω,ξn+1(ω)
)

.

(3.2)

Let ξ∗ : Ω→ F be the random fixed point of T , the existence of random fixed point of T
follows from [22, Theorem 3.10]. Therefore,

ξ∗(ω)= (1 +αn(ω)
)

ξ∗(ω)−αn(ω)T
(

ω,ξ∗(ω)
)

, (3.3)

for every ω ∈Ω. Now consider for ω ∈Ω,

ξn(ω)− ξ∗(ω)= 1 +αn(ω)
(

ξn+1(ω)− ξ∗(ω)
)

+αn(ω)
(

T
(

ω,ξ∗(ω)
)−T

(

ω,ξn+1(ω)
))

−αn(ω)
(

T
(

ω,ηn(ω)
)−T

(

ω,ξn+1(ω)
))

−αn(ω)
(

αn(ω)T
(

ω,ηn(ω)
)−αn(ω)ξn(ω)

)

.

(3.4)

�
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Since T is strongly pseudocontractive random operator, so taking the norm of the sum
of the first two terms on the right-hand side of (3.4), we obtain

∥
∥
(

1 +αn(ω)
)(

ξn+1(ω)− ξ∗(ω)
)

+αn(ω)
(

T
(

ω,ξ∗(ω)
)−T

(

ω,ξn+1(ω)
))∥
∥

≥ ∥∥ξn+1(ω)− ξ∗(ω)
∥
∥, for every ω ∈Ω.

(3.5)

Thus,

∥
∥ξn(ω)− ξ∗(ω)

∥
∥≥ ∥∥ξn+1(ω)− ξ∗(ω)

∥
∥−αn(ω)

∥
∥T
(

ω,ηn(ω)
)−T

(

ω,ξn+1(ω)
)∥
∥

−αn(ω)
∥
∥αn(ω)ξn(ω)−αn(ω)T

(

ω,ηn(ω)
)∥
∥, for every ω ∈Ω,

(3.6)

which further implies

∥
∥ξn+1(ω)− ξ∗(ω)

∥
∥≤ ∥∥ξn(ω)− ξ∗(ω)

∥
∥+αn(ω)

∥
∥T
(

ω,ηn(ω)
)−T

(

ω,ξn+1(ω)
)∥
∥

+αn(ω)
∥
∥αn(ω)ξn(ω)−αn(ω)T

(

ω,ηn(ω)
)∥
∥, for every ω ∈Ω.

(3.7)

Now,

∥
∥ξn(ω)−T

(

ω,ξn(ω)
)∥
∥≤ ∥∥ξn(ω)− ξ∗(ω)

∥
∥+

∥
∥T
(

ω,ξ∗(ω)
)−T

(

ω,ξn(ω)
)∥
∥

≤ ∥∥ξn(ω)− ξ∗(ω)
∥
∥+L

∥
∥ξn(ω)− ξ∗(ω)

∥
∥

≤ (1 +L)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥, for every ω ∈Ω.

(3.8)

Also,

∥
∥T
(

ω,ξn(ω)
)−T

(

ω,ηn(ω)
)∥
∥

≤ L
∥
∥ξn(ω)−ηn(ω)

∥
∥

≤ L
∥
∥ξn(ω)− (1−βn(ω)

)

ξn(ω)−βn(ω)T
(

ω,ξn(ω)
)∥
∥

≤ Lβn(ω)
∥
∥ξn(ω)−T

(

ω,ξn(ω)
)∥
∥

≤ Lβn(ω)(1 +L)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥, for every ω ∈Ω,

∥
∥ηn(ω)− ξ∗(ω)

∥
∥

= ∥∥(1−βn(ω)
)

ξn(ω) +βn(ω)T
(

ω,ξn(ω)
)− ξ∗(ω)

∥
∥

= ∥∥1−βn(ω)
(

ξn(ω)− ξ∗(ω)
)

+βn(ω)
(

T
(

ω,ξn(ω)
)− ξ∗(ω)

)∥
∥

≤ 1−βn(ω)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥+βn(ω)

∥
∥T
(

ω,ξn(ω)
)− ξ∗(ω)

∥
∥

≤ 1−βn(ω)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥+βn(ω)L

∥
∥ξn(ω)− ξ∗(ω)

∥
∥

≤ 1−βn(ω) +βn(ω)L
∥
∥ξn(ω)− ξ∗(ω)

∥
∥, for every ω ∈Ω.

(3.9)
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Now,
∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥≤ ∥∥ξn(ω)− ξ∗(ω)

∥
∥+

∥
∥ξ∗(ω)−T

(

ω,ηn(ω)
)∥
∥

≤ ∥∥ξn(ω)− ξ∗(ω)
∥
∥+L

∥
∥ξ∗(ω)−ηn(ω)

∥
∥

≤ ∥∥ξn(ω)− ξ∗(ω)
∥
∥+L

(

1−βn(ω) +βn(ω)L
)∥
∥ξn(ω)− ξ∗(ω)

∥
∥

≤ 1 +L
(

1−βn(ω) +βn(ω)L
)∥
∥ξn(ω)− ξ∗(ω)

∥
∥

= 1 +L+βn(ω)L(L− 1)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥,

(3.10)

for each ω ∈Ω. Finally, we have

∥
∥T
(

ω,ηn(ω)
)−T

(

ω,ξn+1(ω)
)∥
∥

≤ L
∥
∥ηn(ω)− ξn+1(ω)

∥
∥

= L
∥
∥
(

1−βn(ω)
)

ξn(ω) +βn(ω)T
(

ω,ξn(ω)
)− (1−αn(ω)

)

ξn(ω)−αn(ω)T
(

ω,ηn(ω)
)∥
∥

= L
∥
∥βn(ω)

(

T
(

ω,ξn(ω)
)− ξn(ω)

)

+αn(ω)
(

ξn(ω)−T
(

ω,ηn(ω)
))∥
∥

≤ L
(

βn(ω)
∥
∥T
(

ω,ξn(ω)
)− ξn(ω)

∥
∥+αn(ω)

∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥
)

≤ L
(

βn(ω)(1 +L)
∥
∥ξn(ω)− ξ∗(ω)

∥
∥+αn(ω)

(

1+L+βn(ω)L(L− 1)
)∥
∥ξn(ω)−ξ∗(ω)

∥
∥
)

≤ L
(

βn(ω)(1 +L) +αn(ω)
(

1 +L+βn(ω)L(L− 1)
))∥
∥ξn(ω)− ξ∗(ω)

∥
∥,

(3.11)

for every ω ∈Ω. Now inequality (3.7) becomes

∥
∥ξn+1(ω)− ξ∗(ω)

∥
∥≤ 1 +αn(ω)

(

1 +L+βn(ω)L(L− 1)
)

+L
(

βn(ω)(1 +L) +αn(ω)
(

1 +L+βn(ω)L(L− 1)
))∥
∥ξn(ω)−ξ∗(ω)

∥
∥,

(3.12)

for every ω ∈Ω. Thus,

∥
∥ξn+1(ω)− ξ∗(ω)

∥
∥≤ 1 + δn(ω)

∥
∥ξn(ω)− ξ∗(ω)

∥
∥, for every ω ∈Ω, (3.13)

where δn(ω)=αn(ω)(1+L+βn(ω)L(L−1))+L(βn(ω)(1 + L)+αn(ω)(1+L + βn(ω)L(L−
1))). Applying [17, Lemma 2], we obtain limn→∞‖ξn(ω)− ξ∗(ω)‖, for each ω ∈Ω. Since
T is strongly pseudocontractive random operator, therefore limn→∞‖ξn(ω)− ξ∗(ω)‖ = 0,
for each ω ∈Ω, otherwise it will contradict the choice of the measurable mapping k : Ω→
(0,1).

Corollary 3.2. Let F be a nonempty closed bounded and convex subset of a separable
reflexive Banach space X with 0∈ int(F). Let T : Ω×F → F be an L-Lipschitz and strongly
pseudocontractive random operator satisfying the Leray-Schauder boundary condition for
z = 0. Let ξ0 be a fixed measurable mapping from Ω to F. Define the sequence of functions
{ξn} as given below:

ξn+1(ω)= αn(ω)T
(

ω,ξn(ω)
)

+
(

1−αn(ω)
)

ξn(ω), for each ω ∈Ω, (3.14)
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n=0,1,2, . . . , where αn : Ω→[0,1] is measurable mappings for each n∈N, and
∑

n≥0αn(ω) <
∞, for each ω ∈ Ω. Then the sequence of measurable mappings {ξn} generated iteratively
converges strongly to the random fixed point of T .

The following theorem establishes a relationship between random Ishikawa iterative
and random Mann iterative procedures.

Theorem 3.3. Let F be a nonempty closed bounded and convex subset of a separable reflex-
ive Banach space X with 0 ∈ int(F). Let T : Ω× F → F be an L-Lipschitz with L ≥ 1 and
strongly pseudocontractive random operator satisfying the Leray-Schauder boundary condi-
tion for z = 0. Let ξ0 = ζ0 be a fixed measurable mapping from Ω to F. Define the sequence
of functions {ηn} and {ξn} as given below:

ηn(ω)= βn(ω)T
(

ω,ξn(ω)
)

+
(

1−βn(ω)
)

ξn(ω),

ξn+1(ω)= αn(ω)T
(

ω,ηn(ω)
)

+
(

1−αn(ω)
)

ξn(ω), for each ω ∈Ω,

ζn+1(ω)= (1−αn(ω)
)

ζn(ω) +αn(ω)T
(

ω,ζn(ω)
)

, for each ω ∈Ω,

(3.15)

n = 0,1,2, . . . , where αn and βn : Ω → [0,1] are measurable mappings (same for both
random iterative procedures) for each n ∈ N, and limn→∞αn(ω) = 0 = limn→∞βn(ω) and
∑

n≥0αn(ω) = ∞, for each ω ∈ Ω. Then the sequence of measurable mappings {ξn} con-
verges strongly to the random fixed point ξ∗ of T if and only if the sequence of measurable
mappings {ζn} converges strongly to the random fixed point ξ∗ of T .

Proof. Corollary 3.2 establishes the necessary condition. For the sufficient condition, con-
sider

ξn(ω)= ξn+1(ω) +αn(ω)ξn(ω)−αn(ω)T
(

ω,ηn(ω)
)

= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

ξn+1(ω)−T
(

ω,ξn+1(ω)
))

− 2αn(ω)ξn+1(ω) +αn(ω)ξn(ω) +αn(ω)
(

T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
))

= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

ξn+1(ω)−T
(

ω,ξn+1(ω)
))

− 2αn(ω)
(

ξn(ω) +αn(ω)
(

T
(

ω,ηn(ω)
)− ξn(ω)

))

+αn(ω)ξn(ω) +αn(ω)
(

T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
))

= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

ξn+1(ω)−T
(

ω,ξn+1(ω)
))

− 2αn(ω)ξn(ω) + 2
(

αn(ω)
)2(

ξn(ω)−T
(

ω,ηn(ω)
))

+αn(ω)ξn(ω) +αn(ω)
(

T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
))

= (1 +αn(ω)
)

ξn+1(ω) +αn(ω)
(

ξn+1(ω)−T
(

ω,ξn+1(ω)
))

+
(

1− 2αn(ω)
)

ξn(ω)

+ 2
(

αn(ω)
)2(

ξn(ω)−T
(

ω,ηn(ω)
))

+αn(ω)
(

T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
))

,
(3.16)
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for each ω ∈Ω. Also,

ζn(ω)= ζn+1(ω) +αn(ω)ζn(ω)−αn(ω)T
(

ω,ζn(ω)
)

= (1 +αn(ω)
)

ζn+1(ω) +αn(ω)
(

ζn+1(ω)−T
(

ω,ζn+1(ω)
))

− 2αn(ω)ζn+1(ω) +αn(ω)ζn(ω) +αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
))

= (1 +αn(ω)
)

ζn+1(ω) +αn(ω)
(

ζn+1(ω)−T
(

ω,ζn+1(ω)
))

− 2αn(ω)
(

ζn(ω) +αn(ω)
(

T
(

ω,ζn(ω)
)− ζn(ω)

))

+αn(ω)ζn(ω) +αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
))

= (1 +αn(ω)
)

ζn+1(ω) +αn(ω)
(

ζn+1(ω)−T
(

ω,ζn+1(ω)
))

+ 2
(

αn(ω)
)2(

ζn(ω)−T
(

ω,ζn(ω)
))

+
(

1− 2αn(ω)
)

αn(ω)ζn(ω)

+αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
))

,

(3.17)

for each ω ∈Ω. From (3.16) and (3.17), we have

ξn(ω)− ζn(ω)= (1 +αn(ω)
)(

ξn+1(ω)− ζn+1(ω)
)

+αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ξn+1(ω)
))

−αn(ω)
(

ζn+1(ω)− ξn+1(ω)
)

+
(

1− 2αn(ω)
)

αn(ω)
(

ζn(ω)− ξn(ω)
)

+ 2
(

αn(ω)
)2(

ξn(ω)− ζn(ω)−T
(

ω,ηn(ω)
)

+T
(

ω,ζn(ω)
))

+αn(ω)
(

T
(

ω,ξn+1(ω)
)−T

(

ω,ζn+1(ω)
)−T

(

ω,ηn(ω)
)

+T
(

ω,ζn(ω)
))

,
(3.18)

for every ω ∈Ω. Since T is strongly pseudocontractive random operator, so taking the
norm of the sum of the first two terms on the right-hand side of (3.18), we have

∥
∥
(

1 +αn(ω)
)(

ξn+1(ω)− ζn+1(ω)
)

+αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ξn+1(ω)
))∥
∥

≥ ∥∥ξn+1(ω)− ζn+1(ω)
∥
∥.

(3.19)

From (3.18), we have

∥
∥ξn(ω)− ζn(ω)

∥
∥

≥ ∥∥(1 +αn(ω)
)(

ξn+1(ω)− ζn+1(ω)
)

+αn(ω)
(

T
(

ω,ζn+1(ω)
)−T

(

ω,ξn+1(ω)
))∥
∥

+
(

1− 2αn(ω)
)

αn(ω)
∥
∥
(

ζn(ω)− ξn(ω)
)∥
∥

− 2
(

αn(ω)
)2∥
∥ξn(ω)− ζn(ω)−T

(

ω,ηn(ω)
)

+T
(

ω,ζn(ω)
)∥
∥

+αn(ω)
∥
∥T
(

ω,ξn+1(ω)
)−T

(

ω,ζn+1(ω)
)−T(ω,ηn(ω)

)

+T
(

ω,ζn(ω)
)∥
∥

+αn(ω)
∥
∥ζn+1(ω)− ξn+1(ω)

∥
∥

≥ 1 +αn(ω)
∥
∥ξn+1(ω)− ζn+1(ω)

∥
∥+

(

1− 2αn(ω)
)

αn(ω)
∥
∥ζn(ω)− ξn(ω)

∥
∥

− 2
(

αn(ω)
)2∥
∥ξn(ω)− ζn(ω)−T

(

ω,ηn(ω)
)

+T
(

ω,ζn(ω)
)∥
∥

−αn(ω)
∥
∥T
(

ω,ξn+1(ω)
)−T(ω,ζn+1(ω)

)−T(ω,ηn(ω)
)

+T
(

ω,ζn(ω)
)∥
∥,

(3.20)
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for each ω ∈Ω. Thus we have

1 +αn(ω)
∥
∥ξn+1(ω)− ζn+1(ω)

∥
∥≤ (1− (1− 2αn(ω)

)

αn(ω)
)∥
∥ζn(ω)− ξn(ω)

∥
∥

+ 2
(

αn(ω)
)2∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

+ 2
(

αn(ω)
)2∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥

+αn(ω)
∥
∥T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
)∥
∥

+αn(ω)
∥
∥T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
)∥
∥.

(3.21)

Also,
∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥

≤ ∥∥ξn(ω)− ζn(ω)
∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥+

∥
∥T
(

ω,ζn(ω)
)−T(ω,ηn(ω)

)∥
∥

≤ ∥∥ξn(ω)− ζn(ω)
∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥+L

∥
∥ζn(ω)−ηn(ω)

∥
∥,

(3.22)

for each ω ∈Ω. Consider
∥
∥ζn(ω)−ηn(ω)

∥
∥= ∥∥(1−βn(ω)

)(

ζn(ω)− ξn(ω)
)

+βn(ω)
(

ζn(ω)−T
(

ω,ξn(ω)
))∥
∥

≤ (1−βn(ω)
)∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ξn(ω)
)∥
∥

≤ (1−βn(ω)
)∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥T
(

ω,ζn(ω)
)−T

(

ω,ξn(ω)
)∥
∥

+βn(ω)
∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

≤ (1−βn(ω)
)∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)L

∥
∥ζn(ω)− ξn(ω)

∥
∥

+βn(ω)
∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

= (1−βn(ω) +βn(ω)L
)∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

≤ L
∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥,

(3.23)

for each ω ∈Ω. Now,
∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥≤ ∥∥ξn(ω)− ζn(ω)

∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

+L
(

L
∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
)

≤ (1 +L2)
∥
∥ξn(ω)− ζn(ω)

∥
∥+

(

1 +βn(ω)L
)∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥,

(3.24)

for each ω ∈Ω. Consider
∥
∥T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
)∥
∥≤ L

∥
∥ξn+1(ω)−ηn(ω)

∥
∥

= L
∥
∥
(

1−αn(ω)
)

ξn(ω) +αn(ω)T
(

ω,ηn(ω)
)−ηn(ω)

∥
∥

≤ L
[(

1−αn(ω)
)∥
∥ξn(ω)−ηn(ω)

∥
∥

+αn(ω)
∥
∥T
(

ω,ηn(ω)
)−ηn(ω)

∥
∥
]

,
(3.25)
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for each ω ∈Ω. Also,

∥
∥T
(

ω,ηn(ω)
)−ηn(ω)

∥
∥

≤ ∥∥T(ω,ηn(ω)
)−T

(

ω,ζn(ω)
)∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥+

∥
∥ηn(ω)− ζn(ω)

∥
∥

≤ L
∥
∥ηn(ω)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥+

∥
∥ηn(ω)− ζn(ω)

∥
∥

≤ (1 +L)
∥
∥ηn(ω)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥

≤ (1 +L)
[

L
∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
]

+
∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥

= (1 +L)L
∥
∥ζn(ω)− ξn(ω)

∥
∥+

[

(1 +L)βn(ω) + 1
]∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥,

(3.26)

for every ω ∈Ω. Hence we reach the following inequality:

∥
∥ξn(ω)−ηn(ω)

∥
∥= ∥∥ξn(ω)− (1−βn(ω)

)

ξn(ω) +βn(ω)T
(

ω,ξn(ω)
)∥
∥

= βn(ω)
∥
∥ξn(ω)−T

(

ω,ξn(ω)
)∥
∥

≤ βn(ω)
(∥
∥ξn(ω)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥

+
∥
∥T
(

ω,ζn(ω)
)−T

(

ω,ξn(ω)
)∥
∥
)

≤ βn(ω)
[

(1 +L)
∥
∥ξn(ω)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥
]

,

(3.27)

for each ω ∈Ω. We have

∥
∥T
(

ω,ξn+1(ω)
)−T

(

ω,ηn(ω)
)∥
∥

≤ L
[(

1−αn(ω)
)[

βn(ω)
[

(1 +L)
∥
∥ξn(ω)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥
]

+αn(ω)(1 +L)
[

L
∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
]

+αn(ω)
∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
]

≤ L
(

1−αn(ω)
)

βn(ω)(1 +L) +αn(ω)(1 +L)L2
∥
∥ξn(ω)− ζn(ω)

∥
∥

+L
(

1−αn(ω)
)

βn(ω) +αn(ω)L(1 +L)βn(ω) + 1
∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥,

(3.28)

for every ω ∈Ω. Consider

∥
∥ξn(ω)−T

(

ω,ηn(ω)
)∥
∥

≤ ∥∥ξn(ω)− ζn(ω)
∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥+

∥
∥T
(

ω,ηn(ω)
)−T

(

ω,ζn(ω)
)∥
∥

≤ ∥∥ξn(ω)− ζn(ω)
∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥+L

∥
∥ηn(ω)− ζn(ω)

∥
∥

≤ ∥∥ξn(ω)− ζn(ω)
∥
∥+

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥

+L
(

L
∥
∥ζn(ω)− ξn(ω)

∥
∥+βn(ω)

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
)

= (1 +L2)
∥
∥ξn(ω)− ζn(ω)

∥
∥+

(

1 +Lβn(ω)
)∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥,

(3.29)
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for each ω ∈Ω. Finally we arrive at

1 +
(

αn(ω)
)2∥
∥ξn+1(ω)− ζn+1(ω)

∥
∥

≤ (1− (1− 2αn(ω)
)

αn(ω)
)∥
∥ζn(ω)− ξn(ω)

∥
∥

+ 2
(

αn(ω)
)2(

1 +L2
∥
∥ζn(ω)− ξn(ω)

∥
∥+ 1 +βn(ω)L

∥
∥ζn(ω)−T

(

ω,ζn(ω)
)∥
∥
)

+ 2
(

αn(ω)
)2∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥

+αn(ω)
∥
∥T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
)∥
∥

+αn(ω)
(

L
(

1−αn(ω)
)

βn(ω)(1 +L)

+αn(ω)(1 +L)L2)
∥
∥ξn(ω)− ζn(ω)

∥
∥

+αn(ω)
(

L
(

1−αn(ω)
)

βn(ω) +αn(ω)L(1 +L)βn(ω) + 1
)∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥.

(3.30)

So for every ω ∈Ω,

∥
∥ξn+1(ω)− ζn+1(ω)

∥
∥

≤ (1− (1− 2αn(ω)
)

αn(ω)
)

+ 2
(

αn(ω)
)2(

1 +L2)

+αn(ω)
(

L
(

1−αn(ω)
)

βn(ω)(1 +L) +αn(ω)(1 +L)L2)
∥
∥ξn(ω)− ζn(ω)

∥
∥

+ 2
(

αn(ω)
)2(

2+βn(ω)L
)

× [(1 +L2)+αn(ω)
{

L
(

1−αn(ω)
)

βn(ω) +αn(ω)L(1 +L)βn(ω)

+ 1
∥
∥T
(

ω,ζn(ω)
)− ζn(ω)

∥
∥
}]

+αn(ω)
∥
∥T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
)∥
∥.

(3.31)

We may write it as

ϕn+1(ω)≤ δn(ω)ϕn(ω) + σn(ω), (3.32)

where, for each ω ∈Ω,

ϕn(ω)= ∥∥(ξn(ω)− ζn(ω)
)∥
∥,

δn(ω)= (1− (1− 2αn(ω)
)

αn(ω)
)

+ 2α2
n

(

1 +L2)

+αn(ω)
(

L
(

1−αn(ω)
)

βn(ω)(1 +L) +αn(ω)(1 +L)L2),

σn(ω)= αn(ω)
[

2αn(ω)
(

2 +βn(ω)L
)

× ((1 +L2)+
(

L
(

1−αn(ω)
)

βn(ω) +αn(ω)L(1 +L)βn(ω) + 1
))

×∥∥T(ω,ζn(ω)
)− ζn(ω)

∥
∥+

∥
∥T
(

ω,ζn+1(ω)
)−T

(

ω,ζn(ω)
)∥
∥
]

.

(3.33)
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Consider

L
(

1−αn(ω)
)

βn(ω)(1 +L) +αn(ω)(1 +L)L2 ≤ L(1 +L)
[(

1−αn(ω)
)

βn(ω) +αn(ω)L
]

≤ L(1 +L)
[

Lβn(ω) +αn(ω)L
]

≤ L2(1 +L)
(

αn(ω) +βn(ω)
)

,
(3.34)

for each ω ∈Ω. Since limn→∞αn(ω)= 0= limn→∞βn(ω) and
∑∞

n=1αn(ω)=∞, so

αn(ω)≤ 1
50
(

1 +L2
) , αn(ω) +βn(ω)≤ 1

5(1 +L)L2
, (3.35)

for every ω ∈Ω. Thus,

δn(ω)≤ (1− (1− 2αn(ω)
)

αn(ω)
)

+ 2
(

αn(ω)
)2(

1 +L2)

+αn(ω)L2(1 +L)
(

αn(ω) +βn(ω)
)

≤ (1− (1− 2αn(ω)
)

αn(ω)
)

+
1

25
αn(ω) +

1
5
αn(ω)

≤ (1− (1− 2αn(ω)
)

αn(ω)
)

+
2
5
αn(ω)

≤ 1− 4
5
αn(ω) +

2
5
αn(ω)= 1− 2

5
αn(ω), for sufficiently large n.

(3.36)

So,

ϕn+1(ω)≤ δn(ω)ϕn(ω) + σn(ω)

ϕn+1(ω)≤
(

1− 2
5
αn(ω)

)

ϕn(ω) + σn(ω),
(3.37)

for each ω ∈Ω. The application of Lemma 2.10 gives

lim
n→∞

∥
∥ξn(ω)− ζn(ω)

∥
∥= 0, for each ω ∈Ω. (3.38)

Now, since limn→∞‖ζn(ω)− ξ∗(ω)‖ = 0, for each ω ∈Ω, consider

∥
∥ξn(ω)− ξ∗(ω)

∥
∥≤ ∥∥ξn(ω)− ζn(ω)

∥
∥+

∥
∥ζn(ω)− ξ∗(ω)

∥
∥−→ 0, (3.39)

as n→∞, for each ω ∈ Ω. Hence we have limn→∞‖ξn(ω)− ξ∗(ω)‖ = 0, for each ω ∈
Ω. �

Corollary 3.4. Let F be a nonempty closed bounded and convex subset of a separable
reflexive Banach space X with 0 ∈ int(F). Let T : Ω× F → F be a k(ω)-contraction ran-
dom operator satisfying the Leray-Schauder boundary condition for z = 0. Let ξ0 = ζ0 be a
fixed measurable mapping from Ω to F. Define the sequences of functions {ηn} and {ξn} as
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given below:

ηn(ω)= βn(ω)T
(

ω,ξn(ω)
)

+
(

1−βn(ω)
)

ξn(ω),

ξn+1(ω)= αn(ω)T
(

ω,ηn(ω)
)

+
(

1−αn(ω)
)

ξn(ω), for each ω ∈Ω,

ζn+1(ω)= (1−αn(ω)
)

ζn(ω) +αn(ω)T
(

ω,ζn(ω)
)

, for each ω ∈Ω,

(3.40)

n = 0,1,2, . . . , where αn and βn : Ω→ [0,1] are measurable mappings for each n ∈N, and
limn→∞αn(ω)= 0= limn→∞βn(ω) and

∑

n≥0αn(ω)=∞, for eachω ∈Ω. Then the sequence
of measurable mappings {ξn} converges strongly to the random fixed point ξ∗ of T if and only
if the sequence of measurable mappings {ζn} converges strongly to the random fixed point ξ∗

of T .

Theorem 3.5. Let F be a nonempty closed bounded and convex subset of a separable Hilbert
space H and let Ti : Ω× F → F be a completely continuous and nonexpansive random op-
erator for each i ∈ J = {1,2, . . . ,N}. Let ξ0 : Ω→ F be any fixed measurable mapping. The
sequence {ξn} of measurable mappings from Ω to F defined by random implicit iterative
procedure (2.11) converges weakly to common random fixed point of the random operators
{Ti : i∈ J}.
Proof. For any ξ ∈D, using the Hilbert space identity, we have

∥
∥ξn(ω)− ξ(ω)

∥
∥

2 = ∥∥αn(ω)ξn−1(ω)− (1−αn(ω)
)

Tn
(

ω,ξn(ω)
)− ξ(ω)

∥
∥

2

= αn(ω)
∥
∥ξn−1(ω)− ξ(ω)

∥
∥

2
+
(

1−αn(ω)
)∥
∥Tn

(

ω,ξn(ω)
)− ξ(ω)

∥
∥

2

−αn(ω)
(

1−αn(ω)
)∥
∥ξn−1(ω)−Tn

(

ω,ξn(ω)
)∥
∥

2
,

(3.41)

for every ω ∈Ω. Since Tn is nonexpansive random operator for each n∈ J , so

∥
∥ξn(ω)− ξ(ω)

∥
∥

2 ≤ αn(ω)
∥
∥ξn−1(ω)− ξ(ω)

∥
∥

2
+
(

1−αn(ω)
)∥
∥ξn(ω)− ξ(ω)

∥
∥

2

−αn(ω)
(

1−αn(ω)
)∥
∥ξn−1(ω)−Tn

(

ω,ξn(ω)
)∥
∥

2
,

(3.42)

for each ω ∈Ω. Hence,
∥
∥ξn(ω)− ξ(ω)

∥
∥

2 ≤ ∥∥ξn−1(ω)− ξ(ω)
∥
∥

2
, (3.43)

for each ω ∈Ω. We also have
∞
∑

n=1

∥
∥ξn−1(ω)−Tn

(

ω,ξn(ω)
)∥
∥

2
<∞, (3.44)

which yields

lim
n→∞

∥
∥ξn−1(ω)−Tn

(

ω,ξn(ω)
)∥
∥= 0, (3.45)

for every ω ∈Ω. Now,
∥
∥ξn(ω)− ξn−1(ω)

∥
∥= (1−αn(ω)

)∥
∥ξn−1(ω)−Tn

(

ω,ξn(ω)
)∥
∥−→ 0, as n−→∞,

(3.46)
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for each ω ∈Ω. For each i∈ J , consider
∥
∥ξn(ω)−Tn+i

(

ω,ξn(ω)
)∥
∥≤ ∥∥ξn(ω)− ξn+i(ω)

∥
∥+

∥
∥ξn+i(ω)−Tn+i

(

ω,ξn+i(ω)
)∥
∥

+
∥
∥Tn+i

(

ω,ξn+i(ω)
)−Tn+i(ω,ξn(ω)

)∥
∥

≤ 2
∥
∥ξn(ω)− ξn+i(ω)

∥
∥+

∥
∥ξn+i(ω)−Tn+i

(

ω,ξn+i(ω)
)∥
∥,

(3.47)

for each ω ∈Ω. So for every i∈ J , we have

lim
n→∞

∥
∥ξn(ω)−Tn+i

(

ω,ξn(ω)
)∥
∥= 0, for each ω ∈Ω. (3.48)

Assume that ξ∗(ω) is a weak cluster point of {ξn(ω)} and w− limk ξnk (ω) = ξ∗(ω), for
every ω ∈Ω. Assuming nk ≡ jmodN for some j ∈ J and for all k, for any fixed l ∈ J , we
can find i∈ J , independent of k, such that nk + i≡ lmodN for all k. From (3.48), we have

lim
n→∞

∥
∥ξnk (ω)−Tl

(

ω,ξnk (ω)
)∥
∥= 0, for every ω ∈Ω. (3.49)

Since for each ω ∈ Ω, I − T(ω,·) is demiclosed at 0, therefore it follows that Tl(ω,
ξ∗(ω))= ξ∗(ω), for each ω ∈Ω. The measurability of ξ∗ follows from the fact that T is
completely continuous random operator and from Remark 2.3. We reach the conclusion
that ξ∗ is the random fixed point of Tl. Since l is arbitrary, we get ξ∗ ∈D. Now we show
that the entire sequence {ξn} converges weakly to ξ∗. Assume that η(ω) is another weak
cluster point of {ξn(ω)} and w− lim j ξmj (ω) = η(ω), for every ω ∈Ω. Using the similar
argument as above, η ∈D. Using (3.43) for every ξ ∈D, we have limn

∥
∥ξn(ω)− ξ(ω)

∥
∥, for

each ω ∈Ω. Now we prove ξ∗(ω) = η(ω), for each ω in Ω. If it is not so, then for some
ω∈Ω, ξ∗(ω) �= η(ω); by Opial’s condition,

lim
n

∥
∥ξn(ω)− ξ∗(ω)

∥
∥

= lim
k

∥
∥ξnk (ω)− ξ∗(ω)

∥
∥ < lim

n

∥
∥ξmj (ω)−η(ω)

∥
∥

= lim
j

∥
∥ξmj (ω)−η(ω)

∥
∥ < lim

j

∥
∥ξmj (ω)− ξ∗(ω)

∥
∥

= lim
n

∥
∥ξn(ω)− ξ∗(ω)

∥
∥.

(3.50)

This contradiction concludes the proof. �

4. Stability of random iterative procedure involving weakly random operator

Theorem 4.1. Let F be a nonempty closed bounded and convex subset of a separable com-
plete metric space X and let T : Ω × F → F be a weakly contractive random operator.
Let ξ0 : Ω→ F be any fixed measurable mapping. Then the random Picard iterative proce-
dure {T ,ξn+1(ω)} for n= 0,1,2, . . . , generating the sequence {ξn+1} of measurable mappings
from Ω to F, is stable with respect to random operator T .

Proof. The existence of a unique random fixed point of weakly contractive random oper-
ator and convergence of random Picard iterative procedure to the random fixed point of
weakly contractive random operator T can be shown. Let ξ∗ ∈ RF(T). Let {ηn} be the se-
quence of measurable mappings from Ω to F. We will show that limn→∞ kn(ω)= 0 if and
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only if limn→∞d(ηn(ω),ξ∗(ω))= 0, for eachω ∈Ω. Let, for everyω ∈Ω, limn→∞d(ηn(ω),
ξ∗(ω))=0. Now employing the continuity ofT , we have limn→∞ kn(ω)=limn→∞d(ηn+1(ω),
T(ω,ηn(ω)))= d(ξ∗(ω),T(ω,ξ∗(ω)))= 0, for each ω ∈Ω. Suppose that limn→∞ kn(ω)=
0, for each ω ∈Ω. Consider

d
(

ξ∗(ω),ηn+1(ω)
)≤ d

(

ξ∗(ω),ξn+1(ω)
)

+d
(

ξn+1(ω),T
(

ω,ηn(ω)
))

+d
(

T
(

ω,ηn(ω)
)

,ηn+1(ω)
)

= d
(

ξ∗(ω),ξn+1(ω)
)

+d
(

T
(

ω,ξn(ω)
)

,T
(

ω,ηn(ω)
))

+ kn(ω)

≤ d
(

ξ∗(ω),ξn+1(ω)
)

+d
(

ξn(ω),ηn(ω)
)−Ψ

(

d
(

ξn(ω),ηn(ω)
))

+ kn(ω),
(4.1)

for each ω ∈Ω. Now,

d
(

ηn+1(ω),ξn+1(ω)
)= d

(

T
(

ω,ξn(ω)
)

,T
(

ω,ηn(ω)
))

≤ d
(

ξn(ω),ηn(ω)
)−Ψ

(

d
(

ξn(ω),ηn(ω)
))≤ d

(

ξn(ω),ηn(ω)
)

,
(4.2)

for every ω ∈Ω. Since Ψ is positive on (0,∞), this implies that {d(ξn(ω),ηn(ω))} is a non-
negative and nonincreasing sequence of numbers, for every ω ∈Ω. Hence it converges to
L such that L≥ 0. Now if L > 0, we have

Ψ
(

d
(

ξn(ω),ηn(ω)
))≥Ψ(L) > 0, (4.3)

for each ω ∈Ω. Thus,

d
(

ξn+1(ω),ηn+1(ω)
)= d

(

T
(

ω,ξn(ω)
)

,T
(

ω,ηn(ω)
))

≤ d
(

ξn(ω),ηn(ω)
)−Ψ(L), for every ω ∈Ω.

(4.4)

Continuing this process, we reach the stage

d
(

ξm+N(ω),ηm+N(ω)
)= d

(

T
(

ω,ξm+N−1(ω)
)

,T
(

ω,ηm+N−1(ω)
))

≤ d
(

ξm(ω),ηm(ω)
)−NΨ(L),

(4.5)

for every ω ∈Ω. Therefore,

d
(

ξm+N(ω),ηm+N(ω)
)

+NΨ(L)≤ d
(

ξm(ω),ηm(ω)
)

. (4.6)

This gives a contradiction for N large enough. Thus L= 0. Next, we have

d
(

ηn+1(ω),ξ∗(ω)
)≤ d

(

ηn+1(ω),T
(

ω,ηn(ω)
))

+d
(

T
(

ω,ηn(ω)
)

,ξn+1(ω)
)

+d
(

ξn+1(ω),ξ∗(ω)
)

,
(4.7)

for each ω ∈Ω. Since limn→∞ kn(ω)= 0 for every ω ∈Ω, the result follows. �

Corollary 4.2. Let X be a separable complete metric space and let T : Ω×X → X be a
weakly contractive random operator. Let ξ0 : Ω→ X be any fixed measurable mapping.Then
the random Kirk iterative procedure {T ,ξn+1(ω)} for n= 0,1,2, . . . , generating the sequence
{ξn+1} of measurable mappings from Ω to X , is stable with respect to random operator T .
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Using similar arguments as in Theorem 3.1, we have the following random stability
theorem.

Theorem 4.3. Let X be a separable complete metric space and let T : Ω×X → X be a k(ω)-
contraction random operator, where k : Ω→ (0,1) is a measurable mapping. Let ξ0 : Ω→ X
be any fixed measurable mapping. Then the random Picard iterative procedure {T ,ξn+1(ω)}
for n = 0,1,2, . . . , generating the sequence {ξn+1} of measurable mappings from Ω to X , is
stable with respect to random operator T .
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