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Let B = (Bt)t≥0 be a standard Brownian motion and let (Lxt ; t ≥ 0, x ∈R) be a continuous
version of its local time process. We show that the following limit limε↓0(1/2ε)

∫ t
0{F(s,Bs−

ε)− F(s,Bs + ε)}ds is well defined for a large class of functions F(t,x), and moreover we
connect it with the integration with respect to local time Lxt . We give an illustrative ex-
ample of the nonlinearity of the integration with respect to local time in the random
case.
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1. Introduction

1.1. The local time of the Brownian motion B at the point a is defined as follows:

Lat = P lim
ε↓0

1
2ε

∫ t

0
1(|Bs−a|≤ε) ds, (1.1)

which equivalently could be written as follows:

Lat = P lim
ε↓0

1
2ε

∫ t

0

(
1(Bs−ε≤a)− 1(Bs+ε≤a)

)
ds. (1.2)

Here we are, more generally, interested in the limit in L1:

lim
ε↓0

1
2ε

∫ t

0

{
F
(
s,Bs− ε

)−F
(
s,Bs + ε

)}
ds (1.3)

for some function F.
Our motivation comes from the desire to connect Chitashvili and Mania results [1]

with those of Eisenbaum [2].

Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis
Volume 2006, Article ID 26961, Pages 1–5
DOI 10.1155/JAMSA/2006/26961

http://dx.doi.org/10.1155/S1048953306269612


2 Some limit theorems connected with Brownian local time

1.2. We give an example which illustrates that the integration with respect to (Lxt ; 0≤ t ≤
1, x ∈R) does not admit a linear extension in the random case (see Section 3.2 for details)
and in particular local time is not a 1-integrator, which is also proved by Eisenbaum [2].

2. Notation and preliminaries

Let B = (Bt)t≥0 be a standard Brownian motion and let (Lxt ; t ≥ 0, x ∈R) be a continuous
version of its local time process. Let (�t)t≥0 denote the natural filtration generated by B.
Without loss of generality, we restrict our attention to functions defined on [0,1]×R.

For a measurable function f from [0,1]×R into R, define the norm ‖ · ‖ by

‖ f ‖ = 2
(∫ 1

0

∫

R
f 2(s,x)e−x

2/2s dsdx√
2πs

)1/2

+
∫ 1

0

∫

R

∣
∣x f (s,x)

∣
∣e−x

2/2s dsdx

s
√

2πs
. (2.1)

Let � be the set of functions f such that ‖ f ‖ <∞.
In Eisenbaum [2], it is shown that the integration with respect to L is possible in the

following sense. Let fΔ be an elementary function on [0,1]×R, meaning that

fΔ(t,x)=
∑

(si,xj )∈Δ
fi, j1(si,si+1](t)1(xj ,xj+1](x), (2.2)

where Δ= {(si,xj),1≤ i≤ n,1≤ j ≤m} is an [0,1]×R grid, and, for every (i, j), fi j is in
R. For such a function, integration with respect to L is defined by

∫ 1

0

∫

R
fΔ(s,x)dLxs =

∑

(si,xj )∈Δ
fi, j
(
L
xj+1
si+1 −L

xj+1
si −L

xj
si+1 +L

xj
si

)
. (2.3)

Let f be an element of �. For any sequence of elementary functions ( fΔk )k∈N con-
verging to f in �, the sequence (

∫ 1
0

∫
R fΔk (s,x)dLxs )k∈N converges in L1. The limit ob-

tained does not depend on the choice of the sequence ( fΔk ) and represents the integral
∫ 1

0

∫
R f (s,x)dLxs .

Theorem 2.1 (see [2]). Let (A(x, t); x ∈ R, 0 ≤ t ≤ 1) be a continuous random process
taking values in R, such that for any t in [0,1] and any ω, A(·, t) is absolutely continu-
ous with respect to dx. Note ∂A/∂x its derivative and ask ∂A/∂x to be continuous. Then
∫ 1

0

∫
RA(x,s)dLxs exists and the following hold:
(i) for any couple (a,b) in R2 with a < b

∫ t

0

∫ a

b
A(x,s)dLxs =−

∫ t

0

∂A

∂x

(
Bs,s

)
ds+

∫ t

0
A(b,s)dsLbs −

∫ t

0
A(a,s)dsLas ; (2.4)

(ii)
∫ 1

0

∫

R
A(x,s)dLxs =−

∫ 1

0

∂A

∂x

(
Bs,s

)
ds; (2.5)

(iii)
(∫ t

0

∫ a

b
A(x,s)dLxs

)
(ω)=

∫ t

0

∫ a

b
A(x,s)(ω)dLxs (ω). (2.6)
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3. Main results

3.1. Deterministic case

Theorem 3.1. Let F be a bounded element of �. The following equalities hold in L1:

lim
ε↓0

1
ε

∫ t

0

{
F
(
s,Bs

)−F
(
s,Bs− ε

)}
ds=−

∫ t

0

∫

R
F(s,x)dLxs ; (3.1)

lim
ε↓0

1
ε

∫ t

0

{
F
(
s,Bs + ε

)−F
(
s,Bs

)}
ds=−

∫ t

0

∫

R
F(s,x)dLxs ; (3.2)

lim
ε↓0

1
2ε

∫ t

0

{
F
(
s,Bs− ε

)−F
(
s,Bs + ε

)}
ds=

∫ t

0

∫

R
F(s,x)dLxs . (3.3)

Remark 3.2. (1) If we take F(t,x)= 1(x≤a) in (3.1), we have the very definition of Lat .
(2) Eisenbaum [2] has shown that for any Borelian function b(t),

lim
ε↓0

1
2ε

∫ t

0
1(|Bs−b(s)|<ε)ds=

∫ t

0

∫

R
1(−∞,b(s))(x)dLxs in L1, (3.4)

which corresponds to (3.3) with F(t,x)= 1(x≤b(t)) .

Proof. Define Hε(t,x)= (1/ε)
∫ x
x−ε F(t, y)dy. Then Hε → F in � as ε ↓ 0. On the one hand,

(∂/∂x)Hε(t,x) = (1/ε){F(t,x)− F(t,x− ε)}. It follows that (see Eisenbaum [2, Theorem
5.1(ii)])

∫ t
0

∫
RHε(s,x)dLxs=−(1/ε)

∫ t
0{F(s,Bs)−F(s,Bs−ε)}ds. On the other hand,

∫ t
0

∫
RHε(s,

x)dLxs →
∫ t

0

∫
RF(s,x)dLxs in L1. �

Corollary 3.3 (see [3]). The following relation holds in L1:

lim
ε↓0

1
2ε

∫ t

0
g(s)I(b(s)− ε < Bs < b(s) + ε)ds=

∫ t

0
g(s)dLbs (3.5)

for a continuous function g : [0, t]→R and a continuous curve b(·) with bounded variation
on [0, t].

Proof. We apply Theorem 3.1 to the function F(t,x)= g(t)I(x < b(t)). It follows that (1/
2ε)
∫ t

0 g(s)I(b(s)− ε < Bs < b(s) + ε)ds→ ∫ t0
∫
R g(s)I(x < b(s))dLxs in L1 as ε ↓ 0. We conclude

using (see [4, Corollary 2.9]) that for the continuous function g, we have
∫ t

0 g(s)∂sL
b(s)
s =

∫ t
0 g(s)dLbs . �

3.2. Random function case. Let a,b be in R with a < b. Let � be the set of elementary
processes A such that

A(s,x)=
∑

(si,xj )∈Δ
Aij1si,si+1](s)1(xj ,xj+1](x), (3.6)

where (si)1≤i≤n is a subdivision of (0,1], (xj)1≤ j≤m is a finite sequence of real numbers in
(a,b], Δ= {(si,xj),1≤ i≤ n,1≤ j ≤m}, and, is Aij an �s j -measurable random variable
such that |Aij| ≤ 1 for every (i, j).



4 Some limit theorems connected with Brownian local time

Eisenbaum [2] asked the following question: does integration with respect to (Lxt ; 0≤
t ≤ 1, x ∈R) admit a linear extension to � the field generated by �, verifying the follow-
ing property?

If (An)n≥0 converges a.e. to A(t,x), then (
∫ 1

0

∫ b
a An(s,x)dLxs )n≥0 converges in L1 to

∫ 1
0

∫ b
a A(s,x)dLxs .
She only obtained a negative answer to the following weaker question:

Is the set
{∫ 1

0

∫ b

a
A(s,x)dLxs , A∈�

}
bounded in L1? (3.7)

Consequently, integration with respect to (Lxt ; 0 ≤ t ≤ 1, x ∈ R) does not admit a
continuous extension in L1.

Here we give an illustrative example, thanks to a result obtained by Walsh, which shows
the lack of a linear extension.

Let us define Aε(t,x)= (1/ε)
∫ x
x−ε L

y
t dy and Ãε(t,x)= (1/ε)

∫ x+ε
x L

y
t dy. We see easily that

Aε(t,x) (resp., Ãε(t,x)) converges a.e. to Lxt , nevertheless we have

lim
ε↓0

∫ t

0

∫

R
Aε(s,x)dLxs 
= lim

ε↓0

∫ t

0

∫

R
Ãε(s,x)dLxs . (3.8)

Remark 3.4. The integrals
∫ t

0

∫
RAε(s,x)dLxs and

∫ t
0

∫
R Ãε(s,x)dLxs are well defined thanks to

Theorem 2.1, however, one does not know whether
∫ t

0

∫
RL

x
s dL

x
s is well defined or not.

Let us recall, for the convenience of the reader, Walsh’s theorem about the decomposi-
tion of A(t,Bt) := ∫ t0 1{Bs≤Bt}ds .

Theorem 3.5 (see [5]). A(t,Bt) has the decomposition

A
(
t,Bt

)=
∫ t

0
LBs
s dBs +Xt, (3.9)

where

Xt = lim
ε↓0

1
2ε

∫ t

0

{
LBs
s −LBs−ε

s

}
ds= t+ lim

ε↓0

1
2ε

∫ t

0

{
LBs+ε
s −LBs

s

}
ds. (3.10)

The limits exist in probability, uniformly for t in compact sets.

Our example follows by recalling the following property:

∫ t

0

∫

R
Aε(s,x)dLxs =−

1
ε

∫ t

0

{
LBs
s −LBs−ε

s

}
ds. (3.11)
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