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1. Introduction

In this paper, we consider the existence of solutions, defined on a compact interval, for
second-order functional differential inclusions of the form

(
p(t)y′(t)

)′ ∈ F(t, yt
)
, a.e. t ∈ [0,T]\{t1, . . . , tm

}
, (1.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (1.2)

Δy′|t=tk = Jk
(
y
(
t−k
))

, k = 1, . . . ,m, (1.3)

subject to initial conditions

y(t)= φ(t), t ∈ [−r,0], y′(0)= η (1.4)

or boundary conditions

y(t)= φ(t), t ∈ [−r,0], y(T)= η, (1.5)

respectively, where F : [0,T]×D→�(Rn) is a multivalued map,D = {ψ : [−r,0]→Rn; ψ
is continuous everywhere except for a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+)
exist with ψ(t̃−)= ψ(t̃)}, φ ∈D, p : [0,T]→R+ is continuous, η ∈Rn, �(Rn) is the fam-
ily of all nonempty subsets of Rn, 0 < r <∞, 0 = t0 < t1 < ··· < tm < tm+1 = T , Ik, Jk :
Rn → Rn

(
k = 1, . . . ,m

)
are continuous functions. y(t−k ) and y(t+k ) represent the left and
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2 Impulsive functional differential inclusions

right limits of y(t) at t = tk, respectively, Δy|t=tk = y(t+k )− y(t−k ), and Δy′|t=tk = y′(t+k )−
y′(t−k ).

For any continuous function y defined on [−r,T]\{t1, . . . , tm} and any t ∈ [0,T], we
denote by yt the element of D defined by

yt(θ)= y(t+ θ), θ ∈ [−r,0], (1.6)

where yt(·) represents the history of the state from time t− r, up to the present time t.
Many evolution processes are characterized by the fact that at certain moments of time,

they experience a change of state abruptly. These processes are subject to short-term per-
turbations whose duration is negligible in comparison with the duration of the process.
Consequently, it is natural to assume that these perturbations act instantaneously, that is,
in the form of impulses. It is known, for example, that many biological phenomena in-
volving thresholds, bursting rhythm models in medicine and biology, and optimal control
models in economics, do exhibit impulsive effects. For the theory of impulsive differential
equations, we refer to the monograph of Lakshmikantham et al. [14].

Recently, there have appeared a few existence results on solutions of impulsive func-
tional differential inclusions, among which we would like to mention [9] by Chang and
Li. In [9], the authors established some interesting results for the problem (1.1)–(1.4)
under the condition

∣
∣Ik(x)

∣
∣≤ ck|x|, k = 1,2, . . . ,m (1.7)

or

lim
|x|→∞

Ik(x)
x

= 0, k = 1,2, . . . ,m. (1.8)

Obviously, their results have dropped the boundedness of the impulsive functions (which
is required in many papers, such as [1, 7]). However, the multivalued map F needs to be
integrally bounded in [9], that is, there exists a function M ∈ L1([0,T],R+) such that

∥
∥F(t,u)

∥
∥= sup

{|v| : v ∈ F(t,u)
}≤M(t) for a.e. t ∈ [0,T], u∈D. (1.9)

We remark that it is a stronger condition (see Remark 3.7).
The main purpose of this paper is to investigate the existence of solutions to the prob-

lems (1.1)–(1.4) and (1.1)–(1.3) with boundary condition (1.5) by Sadovskii’s fixed point
theorem under the following conditions.

(H1) There exist nondecreasing functions lk :R+ →R+ such that |Ik(x)| ≤ lk(|x|), k =
1, . . . ,m for each x ∈Rn, and

liminf
r→+∞

lk(r)
r

= βk <∞. (1.10)

(H2) There exist nondecreasing functions Lk : R+ → R+ such that |Jk(x)| ≤ Lk(|x|),
k = 1, . . . ,m for each x ∈Rn, and

liminf
r→+∞

Lk(r)
r

= γk <∞. (1.11)
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We note that (H1) and (H2) cover many special cases (see Corollaries 3.3–3.6 in Section
3), especially those including the conditions used in [9]. In particular, the multivalued
map F in our results is not required to be integrally bounded and may be nonconvex
valued.

For more results about the differential inclusions, we refer to the papers [1–7, 9, 12]
and the references therein.

This paper will be organized as follows. In Section 2, we will recall briefly some basic
definitions and preliminary facts from multivalued analysis which will be used in the
sequel. In Sections 3 and 4, we will prove our main results for the problems (1.1)–(1.4)
and (1.1)–(1.3) with conditions (1.5), respectively.

2. Preliminaries

In this section, we introduce some notations, definitions, and lemmas which are used
throughout this paper.

Let C([−r,0],Rn) be the Banach space of continuous functions from [−r,0] into Rn

with the norm

‖φ‖ := sup
{∣∣φ(θ)

∣
∣ :−r ≤ θ ≤ 0

}
, (2.1)

and let C([0,T],Rn) denote the Banach space of all continuous functions from [0,T] into
Rn normed by

‖y‖∞ := sup
{∣∣y(t)

∣
∣ : t ∈ [0,T]}. (2.2)

By L1([0,T],Rn), we denote the space of continuous function y : [0,T]→Rn which is
Lebesgue integrable and equipped with the norm

‖y‖L1 =
∫ T

0

∣
∣y(t)

∣
∣dt ∀y ∈ L1([0,T],Rn

)
. (2.3)

Let X be a nonempty closed subset of Rn, and N : X →�(Rn) be a multivaled map
with nonempty closed values. N is lower semicontinuous (l.s.c.) on X if the set {x ∈ X :
N(x)∩C 
= ∅} is open for any open set C in Rn.

Let A denote a subset of [0,T]×Rn. We say A is �⊗� measurable if A belongs to
the σ-algebra generated by all sets of the form �×� where � is Lebsegue measurable
in [0,T] and � is Borel measurable in Rn. A subset S of L1([0,T],Rn) is decomposable
if, for all u,v ∈ S and all measurable subsets � of [0,T], the function uχ� + v[0,T]−� ∈ S,
where χ denotes the characteristic function.

In order to define the solution of (1.1)–(1.4), we introduce the following space:

PC = {y : [0,T]−→Rn : yk ∈ C
([
tk, tk+1

]
,Rn

)
, k = 0, . . . ,m,

and there exist y
(
t−k
)

and y
(
t+k
)

with y
(
t−k
)= y

(
tk
)
, k = 1, . . . ,m

}
,

(2.4)
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which is a Banach space with the norm

‖y‖PC =max
{∥∥yk

∥
∥

(tk ,tk+1], k = 0, . . . ,m
}

, (2.5)

where yk is the restriction of y to (tk, tk+1], k = 0, . . . ,m.
Set Ω=D∪PC. Then Ω is a Banach space normed by

‖y‖Ω =max
{‖y‖D,‖y‖PC

}
, for each y ∈Ω. (2.6)

Let F : [0,T]×D→�(Rn) be a multivalued map with nonempty compact values. As-
sign to F the multivalued operator

� : Ω−→�
(
L1([0,T],Rn

))
(2.7)

by letting

�(y)= {ω ∈ L1([0,T],Rn
)

: ω(t)∈ F(t, yt) for a.e. t ∈ [0,T]
}
. (2.8)

The operator � is called the Niemytzki operator associated with F.
The multivalued map N has a fixed point if there exists x ∈ X such that x ∈N(x). For

more details on multivalued maps, see the books of Deimling [10] and Hu and Papageor-
giou [13].

Definition 2.1. A function y ∈Ω is said to be a solution of (1.1)–(1.4) if y satisfies the
differential inclusion (1.1) a.e. on [0,T]\{t1, . . . , tm} and the conditions (1.2)–(1.4).

Definition 2.2. A function y ∈Ω is said to be a solution of (1.1)–(1.3) if y satisfies the
differential inclusion (1.1) a.e. on [0,T]\{t1, . . . , tm} and the conditions (1.2)-(1.3), (1.5).

Definition 2.3. Let Y be a separable metric space and let N : Y →�(L1([0,T],Rn)) be a
multivlaued operator. N has property (BC) if

(i) N is lower semicontinuous (l.s.c.);
(ii) N has nonempty closed and decomposable values.

Definition 2.4. Let F : [0,T]×D→�(Rn) be a multivalued map with nonempty compact
values. F is of lower semicontinuous type (l.s.c. type) if its associated Niemytzki operator
� is lower semicontinuous and has nonempty closed and decomposable values.

The following lemmas are of great importance in the proof of our main results.

Lemma 2.5 [8]. Let Y be a separable metric space and let N : Y →�(L1([0,T],Rn)) be a
multivlaued operator which has property (BC). Then N has a continuous selection, that is,
there exists a continuous function (single-valued) g : Y → L1([0,T],Rn) such that g(y) ∈
N(y) for every y ∈ Y .

Lemma 2.6 [15]. Let P be a condensing operator on a Banach space X , that is, P is continu-
ous and takes bounded sets into bounded sets, and α(P(B))≤ α(B) for every bounded set B
of X with α(B) > 0. If P(D)⊂D for a convex, closed, and bounded set H of X , then P has a
fixed point in D (where α(·) denotes Kuratowski’s measure of noncompactness).
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We remark here that a completely continuous operator is the easiest example of a con-
densing map.

3. Initial value problems

By Sadovskii’s fixed point theorem, combined with the selection theorem of Bressan and
Colombo for lower semicontinuous multivalued operators with decomposable values,
we will establish some new existence results for the problem (1.1)–(1.4). In addition to
(H1)-(H2), we need the following hypotheses.

(H3) Let F : [0,T]×D → �(Rn) be a nonempty, compact valued multivalued map
such that (i) (t,u) �→ F(t,u) is �⊗� measurable; and (ii) u �→ F(t,u) is lower
semicontinuous for a.e. t ∈ [0,T].

(H4) For each r > 0, there exists hr ∈ L1([0,T],R+) such that

∥
∥F(t,u)

∥
∥= sup

{| f | : f ∈ F(t,u)
}≤ hr(t) (3.1)

for a.e. t ∈ [0,T] and u∈D with ‖u‖D ≤ r, and

liminf
r→+∞

1
r

∫ T

0
hr(t)dt = α <∞. (3.2)

In the proof of our main theorem, we introduce the following lemma.

Lemma 3.1 [11]. Let F : [0,T]×D→�(Rn) be a multivalued map with nonempty, com-
pact values. Assume (H3) and (H4) hold. Then F is of l.s.c. type.

Theorem 3.2. Assume that (H1)–(H4) hold. Then the problem (1.1)–(1.4) has at least one
solution on [−r,T], provided that

T

p0
α+

m∑

k=1

(
βk +

T − tk
p0

p
(
tk
)
γk

)
< 1, (3.3)

where p0 =min{p(t) : t ∈ [0,T]}.
Proof. Note that (H3), (H4), and Lemma 3.1 imply that F is of l.s.c. type. Then, from
Lemma 2.5, there exists a continuous function f : Ω→ L1([0,T],Rn) such that f (y) ∈
�(y) for all y ∈Ω.

We consider the problem

(
p(t)y′(t)

)′ = f (yt), a.e. t ∈ [0,T]\{t1, . . . , tm
}

,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Jk
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t)= φ(t), t ∈ [−r,0], y′(0)= η,

(3.4)

It is clear that if y ∈Ω is a solution of (3.4), then y is a solution to the problem (1.1)–
(1.4). Transform the problem (3.4) into a fixed point problem. Consider the operator
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Γ : Ω→Ω, defined by

Γ(y)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r,0],

φ(0) + p(0)η
∫ t

0

ds

p(s)
+
∫ t

0

1
p(s)

∫ s

0
f
(
yu
)
duds

+
∑

0<tk<t

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

]

, t ∈ [0,T].

(3.5)

Next we will show that Γ satisfies all the conditions of Lemma 2.5. The proof will be
given in several steps.
Step 1. For each constant r > 0, let Br = {y ∈Ω : ‖y‖Ω ≤ r}, clearly Br is a bounded closed
convex set in Ω. We claim that there exists a positive number r such that Γ(Br)⊆ Br .

If it is not true, then for each positive number r, there exists a function yr(·)∈ Br and
tr ∈ [0,T] such that ‖Γ(yr(tr))‖ > r. However, on the other hand, we have

r <
∣
∣Γ
(
yr
)(
tr
)∣∣

=
∣
∣
∣
∣
∣φ(0) + p(0)η

∫ tr

0

ds

p(s)
+
∫ tr

0

1
p(s)

∫ s

0
f
(
yru
)
duds

+
∑

0<tk<t

[

Ik
(
yr
(
t−k
))

+ Jk
(
yr
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

]∣∣
∣
∣
∣

≤ ‖φ‖+ p(0)|η| T
p0

+
T

p0

∫ T

0

∣
∣ f
(
yrs
)∣∣ds

+
m∑

k=1

∣
∣Ik
(
yr
(
t−k
))∣∣+

m∑

k=1

∣
∣
∣
∣Jk
(
yr
(
t−k
))×

∫ tr

tk

p
(
tk
)

p(s)
ds
∣
∣
∣
∣

≤ ‖φ‖+ p(0)|η| T
p0

+
T

p0

∫ T

0
hr(s)ds+

m∑

k=1

lk(r) +
m∑

k=1

T − tk
p0

p
(
tk
)
Lk(r)

=M +
T

p0

∫ T

0
hr(s)ds+

m∑

k=1

lk(r) +
m∑

k=1

T − tk
p0

p
(
tk
)
Lk(r),

(3.6)

where M is independent of r. Dividing both sides by r and taking the lower limit, we get

T

p0
α+

m∑

k=1

(
βk +

T − tk
p0

p
(
tk
)
γk

)
≥ 1, (3.7)

which contradicts (3.3). Hence for some positive number r, we have Γ(Br)⊆ Br .
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Step 2. Γ is continuous.
Let {yn} be a sequence such that yn→ y in Br . Then

∣
∣Γ
(
yn
)
(t)−Γ(y)(t)

∣
∣

≤
∣
∣
∣
∣

∫ t

0

1
p(s)

∫ s

0
f
(
ynu
)
duds−

∫ t

0

1
p(s)

∫ s

0
f
(
yu
)
duds

∣
∣
∣
∣

+
∑

0<tk<t

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
∑

0<tk<t

∫ t

tk

p
(
tk
)

p(s)

∣
∣Jk
(
yn
(
t−k
))− Jk

(
y
(
t−k
))∣∣ds

≤ T

p0

∫ T

0

∣
∣
∣
∣ f
(
ynu
)−

∫ s

0
f
(
yu
)
∣
∣
∣
∣du+

m∑

k=1

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
m∑

k=1

T − tk
p0

p
(
tk
)∣∣Jk

(
yn
(
t−k
))− Jk

(
y
(
t−k
))∣∣.

(3.8)

Since the functions f , Ik, Jk are continuous, by the dominated convergence theorem, we
have

∥
∥Γ
(
yn
)−Γ(y)

∥
∥= sup

t∈[0,T]

∣
∣Γ
(
yn
)
(t)−Γ(y)(t)

∣
∣−→ 0, as n−→∞, (3.9)

that is, Γ is continuous on Br .
Step 3. Γ(Br) is uniformly bounded.

Let Br := {y ∈Ω : ‖y‖Ω ≤ r} be a bounded set in Ω and y ∈ Br , there exists f ∈�(y)
such that

Γ(y)(t)= φ(0) + p(0)η
∫ t

0

ds

p(s)
+
∫ t

0

1
p(s)

∫ s

0
f
(
yu
)
duds

+
∑

0<tk<t

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

]

, t ∈ [0,T].

(3.10)

From (H1), (H2), and (H4), we have for each t ∈ [0,T]

∣
∣Γ(y)(t)

∣
∣≤ ‖φ‖+ p(0)|η| T

p0
+
T

p0

∫ T

0

∣
∣ f
(
ys
)∣∣ds

+
m∑

k=1

∣
∣Ik
(
y
(
t−k
))∣∣+

m∑

k=1

∣
∣
∣
∣Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds
∣
∣
∣
∣

≤ ‖φ‖+ p(0)|η| T
p0

+
T

p0

∫ T

0
hr(s)ds

+
m∑

k=1

lk
(∣∣y

(
t−k
)∣∣)+

m∑

k=1

T − tk
p0

p
(
tk
)
Lk
(∣∣y

(
t−k
)∣∣).

(3.11)
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Then, for each y ∈ Br , we have

∥
∥Γ(y)

∥
∥≤ ‖φ‖+ p(0)|η| T

p0
+
T

p0

∥
∥hr

∥
∥
L1

+
m∑

k=1

(
lk(r) +

T − tk
p0

p
(
tk
)
Lk(r)

)
.

(3.12)

Hence Γ(Br) is uniformly bounded in Ω.
Step 4. Γ maps bounded sets into equicontinuous sets in Ω.

Let τ1,τ2 ∈ J , 0 < τ1 ≤ τ2, and y ∈ Br = {y ∈Ω : ‖y‖Ω ≤ r} be a bounded subset of Ω.
Then for each t ∈ [0,T], we have

Γ(y)(t)= φ(0) + p(0)η
∫ t

0

ds

p(s)
+
∫ t

0

1
p(s)

∫ s

0
f
(
yu
)
duds

+
∑

0<tk<t

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

]

.

(3.13)

Thus,
∣
∣Γ(y)

(
τ2
)−Γ(y)

(
τ1
)∣∣

=
∣
∣
∣
∣
∣

∫ τ2

0

1
p(s)

∫ s

0
f
(
yu
)
duds+

∑

0<tk<τ2

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ τ2

tk

p
(
tk
)

p(s)
ds

]

−
∫ τ1

0

1
p(s)

∫ s

0
f
(
yu
)
duds−

∑

0<tk<τ1

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ τ1

tk

p
(
tk
)

p(s)
ds

]∣∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ τ2

τ1

1
p(s)

∫ s

0
f
(
yu
)
duds

∣
∣
∣
∣
∣+

∑

τ1<tk<τ2

∣
∣
∣
∣
∣Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ τ1

tk

p
(
tk
)

p(s)
ds

∣
∣
∣
∣
∣

+
∑

0<tk<τ2

∣
∣
∣
∣
∣Jk
(
y
(
t−k
))×

∫ τ2

τ1

p
(
tk
)

p(s)
ds

∣
∣
∣
∣
∣

≤
∫ T

0
hr(s)ds

∫ τ2

τ1

1
p(s)

ds+
∑

0<tk<τ2−τ1

(
lk(r) +

T − tk
p0

p
(
tk
)
Lk(r)

)

+
∑

0<tk<τ2

Lk(r)
∫ τ2

τ1

p
(
tk
)

p(s)
ds.

(3.14)

As τ2 → τ1, the right hand side of the above inequality tends to zero. The equicontinuity
for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0≤ τ2 are obvious.

As a consequence of Steps 1 to 4 together with the Ascoli-Arzela theorem, we can con-
clude that Γ : Ω→Ω is completely continuous, therefore, a condensing map. In view of
Lemma 2.6, Γ has a fixed point on Br , which in turn is a solution of the problem (1.1)–
(1.4). �
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From the proof of Theorem 3.2, we immediately obtain the following corollaries.

Corollary 3.3. Suppose that (H3)-(H4) and the following conditions hold.
(H5) There exist constants ck such that |Ik(x)| ≤ ck|x|, k = 1, . . . ,m, for each x ∈Rn.
(H6) There exist constants dk such that |Jk(x)| ≤ dk|x|, k = 1, . . . ,m, for each x ∈Rn.
Then the problem (1.1)–(1.4) has at least one solution on [−r,T], provided that

T

p0
α+

m∑

k=1

(
ck +

T − tk
p0

p
(
tk
)
dk

)
< 1. (3.15)

Corollary 3.4. Suppose that (H3)-(H4) and the following conditions are satisfied.
(H5′) There exist constants c′k such that |Ik(x)| ≤ c′k, k = 1, . . . ,m, for each x ∈Rn.
(H6′) There exist constants d′k such that |Jk(x)| ≤ d′k, k = 1, . . . ,m, for each x ∈Rn.
Then the problem (1.1)–(1.4) has at least one solution on [−r,T], provided that

T

p0
α < 1. (3.16)

Corollary 3.5. In addition to (H3)-(H4), suppose that the following conditions are satis-
fied.

(H7) There exist constants ak ∈R, bk ∈R+, αk ∈ [0,1), k = 1, . . . ,m, such that

∣
∣Ik(y)

∣
∣≤ ak + bk|y|αk . (3.17)

(H8) There exist constants ak ∈R, bk ∈R+, αk ∈ [0,1), k = 1, . . . ,m, such that

∣
∣Jk(y)

∣
∣≤ ak + bk|y|αk . (3.18)

Then the problem (1.1)–(1.4) has at least one solution on [−r,T] if (3.16) holds.

Corollary 3.6. Assume that (H3)-(H4) and the following conditions hold:
(H9) lim|x|→∞(Ik(x)/x)= 0, k = 1, . . . ,m,
(H10) lim|x|→∞(Jk(x)/x)= 0, k = 1, . . . ,m.
Then the problem (1.1)–(1.4) has at least one solution on [−r,T] if (3.16) holds.

Proof. As in the proof of Theorem 3.2, we can define the operator N : Ω→Ω,

N(y)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r,0],

φ(0) + p(0)η
∫ t

0

ds

p(s)
+
∫ t

0

1
p(s)

∫ s

0
f
(
yu
)
duds

+
∑

0<tk<t

[

Ik
(
y
(
t−k
))

+ Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

]

, t ∈ [0,T].

(3.19)
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In view of (H1)-(H2) and (3.16), there exist positive constants εk, ε′k, k = 1, . . . ,m, and C
such that

∣
∣Ik(y)

∣
∣≤ εk|y|,

∣
∣Jk(y)

∣
∣≤ ε′k|y|, ∀|y| > C,

T

p0
α+

m∑

k=1

(
εk +

T − tk
p0

p
(
tk
)
ε′k

)
< 1.

(3.20)

Let

E1 =
{
t : t ∈ [0,T],

∣
∣y
∣
∣≤ C}, E2 =

{
t : t ∈ [0,T],

∣
∣y
∣
∣ > C

}
,

C1 =max
{∣∣Ik

(
y(t)

)∣∣, t ∈ E1}, C2 =max
{∣∣Jk

(
y(t)

)∣∣, t ∈ E1}.
(3.21)

Note that

∣
∣
∣
∣
∣

m∑

k=1

Ik
(
y
(
t−k
))
∣
∣
∣
∣
∣≤

∑

tk∈E1

∣
∣Ik
(
y
(
t−k
))∣∣+

∑

tk∈E2

∣
∣Ik
(
y
(
t−k
))∣∣≤mC1 +

m∑

k=1

εk|y|,
∣
∣
∣
∣
∣

m∑

k=1

Jk
(
y
(
t−k
))×

∫ t

tk

p
(
tk
)

p(s)
ds

∣
∣
∣
∣
∣≤

T − tk
p0

p
(
tk
)
(
∑

tk∈E1

∣
∣Jk
(
y
(
t−k
))∣∣+

∑

tk∈E2

∣
∣Jk
(
y
(
t−k
))∣∣

)

≤ T − tk
p0

p
(
tk
)
(

mC2 +
m∑

k=1

ε′k|y|
)

.

(3.22)

By an analogous reasoning in Theorem 3.2, we can show that N has a fixed point. The
details are omitted here. �

Remark 3.7. If the multivalued map F in the problem (1.1)–(1.4) is integrally bounded,
then Theorem 3.2 and Corollaries 3.3–3.6 hold with α= 0. In this case, Theorem 3.2 still
extends the corresponding theorem in [9], that is to say, the main existence theorem in [9]
is also the immediate corollaries of Theorem 3.2. So, our results improve those of Chang
and Li [9] greatly.

4. Boundary value problems

In this section, we give some existence results for the problem (1.1)–(1.3), (1.5).

Theorem 4.1. Assume that (H1)–(H4) hold. Then the problem (1.1)–(1.3), (1.5) has at
least one solution on [−r,T], provided that

w(T)α+ 2
m∑

k=1

(
βk +

T − tk
p0

p
(
tk
)
γk

)
< 1, (4.1)

where w(t)= ∫ t0(1/p(s))ds.
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Proof. As in Theorem 3.2, we transform the problem into a fixed point problem. Con-
sider the multivalued operator Θ : Ω→Ω, defined by

Θ(y)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r,0],

φ(0) +
η−φ(0)
w(T)

w(t) +
∫ T

0
G(t,s) f

(
ys
)
ds+

∑

0<tk<t
Ik
(
y
(
t−k
))

− w(t)
w(T)

∑m

k=1
Ik
(
y
(
t−k
))

+
∫ t

0

1
p(s)

[
∑

0<tk<s

p
(
tk
)
Jk
(
y
(
t−k
))
]

ds

− w(t)
w(T)

∫ T

0

[∑

0<tk<s
p
(
tk
)
Jk
(
y
(
t−k
))]

ds, t ∈ [0,T],

(4.2)

where G(t,s) is the Green’s function for the corresponding homogeneous problem which
is given by the formula

G(t,s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(s)
(
w(t)
w(T)

− 1
)

if 0≤ s≤ t ≤ T ,

w(t)
(
w(s)
w(T)

− 1
)

if 0≤ t < s≤ T.
(4.3)

Obviously, we have

sup
{∣∣G(t,s)

∣
∣ : t,s∈ [0,T]

}≤w(T). (4.4)

We can show that Θ has a fixed point as in the proof of Theorem 3.2. The details are
omitted here. �

From Theorem 4.1, we can also obtain Corollaries 4.2–4.5.

Corollary 4.2. Suppose that (H3)–(H6) hold. Then the problem (1.1)–(1.3), (1.5) has at
least one solution on [−r,T], provided that

w(T)α+ 2
m∑

k=1

(
ck +

T − tk
p0

p
(
tk
)
dk

)
< 1. (4.5)

Corollary 4.3. Suppose that (H3)-(H4) and (H5′)–(H6′) are satisfied. Then the problem
(1.1)–(1.3), (1.5) has at least one solution on [−r,T], provided that

w(T)α < 1. (4.6)

Corollary 4.4. In addition to (H3)-(H4), suppose that (H7)-(H8) are satisfied. Then the
problem (1.1)–(1.3), (1.5) has at least one solution on [−r,T] if (4.6) holds.

Corollary 4.5. Suppose that (H3)-(H4) and (H9)-(H10) hold. Then the problem (1.1)–
(1.3), (1.5) has at least one solution on [−r,T] if (4.6) holds.

Remark 4.6. If the multivalued map F in the problem (1.1)–(1.3), (1.5) is integrally
bounded, then Theorem 4.1 and Corollaries 4.2–4.5 hold with α= 0.
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