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The mixed fractional Brownian motion is used in mathematical finance, in the modelling
of some arbitrage-free and complete markets. In this paper, we present some stochastic
properties and characteristics of this process, and we study the α-differentiability of its
sample paths.
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that the fractional Brownian motion of Hurst parameter H ∈ ]0;1[ is
a centered Gaussian process BH = {BH

t , t ≥ 0}, defined on a probability space (Ω,F,P),
with the covariance function

Cov
(
BH
t ,BH

s

)
= 1

2

(
s2H + t2H −|t− s|2H

)
. (1.1)

If H = 1/2, BH is the ordinary Brownian motion denoted by B = {Bt, t ≥ 0}. Among the
properties of this process, we recall the following:

(i) BH
0 = 0P-almost surely;

(ii) for all t ≥ 0, E((BH
t )2)= t2H ;

(iii) the increments of BH are stationary and self-similar with order H ;
(iv) the trajectories of BH are almost surely continuous and not differentiable (see

[7]).
Let us take a and b as two real constants such that (a,b) �= (0,0).

Definition 1.1. A mixed fractional Brownian motion (MFBM) of parameters a, b, and
H is a process MH = {MH

t (a,b); t ≥ 0} = {MH
t ; t ≥ 0}, defined on the probability space

(Ω,F,P) by

∀t ∈R+, MH
t =MH

t (a,b)= aBt + bBH
t , (1.2)
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where (Bt)t∈R+ is a Brownian motion, and (BH
t )t∈R+ is an independent fractional Brown-

ian motion of Hurst parameter H .

This process has been introduced by Cheridito [3] to present a stochastic model of
the discounted stock price in some arbitrage-free and complete financial markets. This
model is the process (XH

t (a,b))t∈[0;1] defined by

XH
t (a,b)= XH

0 (a,b)exp
(

νt+ σMH
t (a,b)

)
, (1.3)

where ν, σ are constants, a is a strictly positive constant, b = 1, and MH(a,b) is a mixed-
fractional Brownian motion of parameters a,b, and H .

Samuelson [11] has presented and treated the particular process (X1/2
t (1,0))t∈[0;1]. Yet,

this model has several deficiencies; notably it does not exhibit the long-range dependence
property.

That is why many authors, for example Cutland et al. [4], have proposed and studied
a fractional version of the Samuelson model, able to account for the possibility of long-
run nonperiodic statistical dependence in stock price returns. This fractional model is
the stochastic process (XH

t (0,1))t∈[0;1] with H ∈ ]1/2;1[. But this model has also some
deficiencies; for example, in 2001, Cheridito has shown that such model admits arbitrage.
And we recall that intuitively, the existence of an arbitrage is a sign of lack of equilibrium
in the market: no real market equilibrium can exist in the long run if there are arbitrages
there (see [8]).

In view of the advantage of the Cheridito model, this paper presents some stochas-
tic properties and characteristics of the MFBM and is organized as follows. In Section 2,
we give some stochastic general properties of the mixed fractional Brownian motion.
Section 3 deals with the correlation between the increments and Section 4 treats the
Hölder continuity of the sample paths of the process. In Section 5, we study the α-diff-
erentiability of the trajectories of the MFBM. This type of differentiability, introduced
by Kolwankar and Gangal [6] and studied by Ben Adda and Cresson [1], permits to sur-
pass the difficulty of studying the kinematics and geometric structure of nondifferentiable
processes.

2. The main properties

It is easy to check the following properties.

Lemma 2.1. The MFBM (MH
t (a,b))t∈R+ satisfies the following properties:

(i) MH is a centered Gaussian process;
(ii) for all t ∈R+, E((MH

t (a,b))2)= a2t+ b2t2H ;
(iii) one has that

∀s∈R+, ∀t ∈R+,

Cov
(
MH

t (a,b),MH
s (a,b)

)=a2(t∧ s)+
1
2

[
b2(t2H +s2H−|t− s|2H)

]
,

(2.1)

where t∧ s= 1/2(t+ s−|t− s|);
(iv) the increments of the MFBM are stationary.
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Notation 2.2. Let (Xt)t∈R+ and (Yt)t∈R+ be two processes defined on the same probability

space (Ω,F,P). The notation {Xt} Δ= {Yt} will mean that (Xt)t∈R+ and (Yt)t∈R+ have the
same law.

Lemma 2.3. For any h > 0, {MH
ht(a,b)}� {MH

t (ah1/2,bhH)}.
This property will be called the mixed-self-similarity.

Proof. For fixed h > 0, the processes {MH
ht(a,b)} and {MH

t (ah1/2,bhH)}are Gaussian and
centered. Therefore, one only has to prove that they have the same covariance function.

But, for any s and t in R+, since B and BH are independent, we have

Cov
(
MH

ht(a,b),MH
hs(a,b)

)
= E

(
MH

ht(a,b)MH
hs(a,b)

)

= a2E
(
BhtBhs

)
+ ab

(
E
(
BhtB

H
hs) +E

(
BH
htBhs

))
+ b2E

(
BH
htB

H
hs

)

= a2h(t∧ s) +
1
2

[
b2h2H(t2H + s2H −|t− s|2H)

]

= Cov
(
MH

t

(
ah1/2,bhH

)
,MH

s

(
ah1/2,bhH

))
.

(2.2)

Then the lemma is proved. �

Theorem 2.4. For all H ∈ ]0;1[ \ {1/2}, a ∈ R and b ∈ R \ {0}, (MH
t (a,b))t∈R+ is not a

Markovian process.

Proof. The process MH is a centered Gaussian and for all t > 0,

Cov
(
MH

t ,MH
t

)
= a2t+ b2t2H > 0. (2.3)

Then, if MH was a Markovian process, according to Revuz and Yor [9], for all s < t < u,
we would have

Cov
(
MH

s ,MH
u

)
Cov

(
MH

t ,MH
t

)
= Cov

(
MH

s ,MH
t

)
Cov

(
MH

t ,MH
u

)
. (2.4)

In the particular case where s= 1/2, t = 1, and u= 3/2, we will have

Cov
(
MH

1/2,MH
3/2

)
Cov

(
MH

1 ,MH
1

)
= Cov

(
MH

1/2,MH
1

)
Cov

(
MH

1 ,MH
3/2

)
, (2.5)

which is equivalent to the following equations:

1
2

[
a2 + b2

(
1

22H
+

32H

22H
− 1

)](
a2 + b2)

= 1
2

(
a2 + b2)× 1

2

[
2a2 + b2

(
1 +

32H

22H
− 1

22H

)]

⇐⇒
(

1
22H

+
32H

22H
− 1

)
= 1

2

(
1 +

32H

22H
− 1

22H

)

⇐⇒ 3 + 32H − 3× 22H = 0,

(2.6)
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but it is easy to check that for all H ∈ ]0;1[ \ {1/2},

3 + 32H − 3× 22H �= 0. (2.7)

We deduce that MH is not a Markovian process. �

3. Correlation between the increments

Notation 3.1. Let X and Y be two random variables defined on the same probability space
(Ω,F,P). We denote the correlation coefficient ρ(X ,Y) by

ρ(X ,Y)= Cov(X ,Y)√
V(X)

√
V(Y)

. (3.1)

We can check the following lemma without any difficulty.

Lemma 3.2. One has

∀s∈R+, ∀t ∈R+,∀h∈R+, 0 < h≤ t− s,

ρ
(
MH

t+h−MH
t ,MH

s+h−MH
s

)
= b2

2
(
a2h+ b2h2H

)
[

(t− s+h)2H − 2(t− s)2H + (t− s−h)2H
]
.

(3.2)

Corollary 3.3. For all a ∈ R and b ∈ R \ {0}, the increments of (MH
t (a,b))t∈R+ are

positively correlated if 1/2 < H < 1, uncorrelated if H = 1/2, and negatively correlated if
0 <H < 1/2.

Proof. IfH > 1/2 (resp.,H < 1/2), from the convexity (concavity) of the function x 
→ x2H ,
we derive

∀x ∈R+, ∀h∈R+ \ {0}, (x+h)2H − 2x2H + (x−h)2H > 0[< 0]. (3.3)

Consequently, using Lemma 3.2, if H > (1/2) (resp., H = 1/2, H < 1/2),

ρ
(
MH

t+h−MH
t ,MH

s+h−MH
s

)
> 0[= 0,< 0]. (3.4)

�

Comments on Lemma 3.2 and Corollary 3.3. (i) If H > 1/2 (resp., H < 1/2), if a �= 0, b1

and b2 are two real constants such that |b1| ≤ |b2| [|b1| ≥ |b2|], then

∀s∈R+, ∀t ∈R+, ∀h∈R+, 0 < h≤ t− s,

ρ
(
MH

t+h

(
a,b1

)−MH
t

(
a,b1

)
,MH

s+h

(
a,b1

)−MH
s

(
a,b1

))

≤ ρ
(
MH

t+h

(
a,b2

)−MH
t

(
a,b2

)
,MH

s+h

(
a,b2

)−MH
s

(
a,b2

))
.

(3.5)

Then, if H > (1/2) (resp., H < (1/2)),
(1) the smaller (larger) |b| is, the less correlated the increments of MH are,
(2) the larger (smaller) |b| is, the more correlated the increments of MH are.
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(ii) If H > 1/2 (resp., H < (1/2)), if b �= 0, a1 and a2 are two real constants such that
|a1| ≤ |a2| [|a1| ≥ |a2|], then

∀s∈R+, ∀t ∈R+,∀h∈R+, 0 < h≤ t− s,

ρ
(
MH

t+h

(
a2,b

)−MH
t

(
a2,b

)
,MH

s+h

(
a2,b

)−MH
s

(
a2,b

))

≤ ρ
(
MH

t+h

(
a1,b

)−MH
t

(
a1,b

)
,MH

s+h

(
a1,b

)−MH
s

(
a1,b

))
.

(3.6)

Then, if H > 1/2 (resp., H < (1/2)),
(1) the smaller (larger) |a| is, the more correlated the increments of MH are,
(2) the larger (smaller) |a| is, the less correlated the increments of MH are.

Consequence. In the modelling of a certain phenomenon, we can choose H , a, an b suit-
ably in such a manner that {MH

t (a,b)} permits to obtain a good model, taking the sign
and the level of correlation between the increments of this phenomenon into account.

We now make the following definition.

Definition 3.4. Let {Xt, t ∈R+} be a process with stationary trajectories and (r(n))n∈N�
the sequence defined by

∀n∈N�, r(n)= E(Xn+1X1
)
. (3.7)

The process X is called long-range dependent if and only if

∑

n∈N�
r(n)= +∞. (3.8)

Remark 3.5. Since {Xt, t ∈R+} is a process with stationary trajectories,

∀s∈R+, ∀n∈N�, r(n)= E(Xn+sXs
)
. (3.9)

Lemma 3.6. For all a∈R and b ∈R \ {0}, the increments of (MH
t (a,b))t∈R+ are long-range

dependent if and only if H > 1/2.

Proof. For all n∈N�,

r(n)= E
((
MH

n+1−MH
n

)
MH

1

)
= b2

2

[
(n+ 1)2H + (n− 1)2H − 2n2H

]

= b2H(2H − 1)n2H−2 +n2H−2ε(n),
(3.10)

where limn→+∞ ε(n)= 0.
We see that

∑
n∈N� r(n)= +∞ if and only if 2H − 2 >−1; that is, if and only if H > 1/2.

�
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4. Hölder-continuity

Lemma 4.1. For all T > 0 and γ < 1/2∧H , the MFBM has a modification which sample
paths have a Hölder-continuity, with order γ, on the interval [0;T].

Proof. According to Kolmogorov’s theorem of regularity (see Revuz and Yor [9, page 25]),
it suffices to prove that

∀α > 0,∃Cα, ∀(s, t)∈ [0;T]2, E
(∣∣MH

t −MH
s

∣∣α)≤ Cα|t− s |α(1/2∧H) . (4.1)

Let α > 0 and let s, t ∈ [0;T].
Using the stationarity and the mixed-self-similarity (see Lemma 2.3) of the increments

of MH , we have

E
(∣∣MH

t −MH
s

∣∣α)= E
(∣∣MH

t−s
∣∣α)

= E
(∣∣MH

1

(
a(t− s)1/2,b(t− s)H

)∣∣α).
(4.2)

�

First case. If H ≤ 1/2, there are two positive constants C1 and C2, depending on α, such
that

E
(∣∣MH

t −MH
s

∣∣α)≤ (t− s)αHE
(∣∣MH

1

(
a(t− s)(1/2)−H ,b

)∣∣α)

≤ (t− s)αH
[
C1|a|α(t− s)α((1/2)−H)E

(∣∣B1
∣∣α)+C2|b|αE

(∣∣BH
1

∣∣α)]

≤ Cα(t− s)αH ,
(4.3)

where

Cα = C1|a|αTα((1/2)−H)E
(∣∣B1

∣∣α)+C2|b|αE
(∣∣BH

1

∣∣α). (4.4)

Second case. If H > (1/2), there are two positive constants C′1 and C′2, depending on α,
such that

E
(∣∣MH

t −MH
s

∣∣α)≤ (t− s)α/2E
(∣∣MH

1

(
a,b(t− s)H−(1/2))∣∣α)

≤ (t− s)α/2
[
C′1|a|αE

(∣∣B1
∣∣α)+C′2|b|α(t− s)α(H−(1/2))E

(∣∣BH
1

∣∣α)]

≤ Cα(t− s)α/2,
(4.5)

where

Cα = C′1|a|αE
(∣∣B1

∣∣α)+C′2T
α(H−(1/2))|b|αE

(∣∣BH
1

∣∣α). (4.6)
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5. On the α-differentiability of the MFBM

The following notions have been introduced by Kolwankar and Gangal [6], and studied
by Ben Adda and Cresson [1].

Definition 5.1. Let f be a continuous function on [a;b], and let α ∈ ]0;1[. Call a right
(resp., left) local fractional α-derivative of f at t0 ∈ [a;b] the following quantity:

dασ f
(
t0
)= Γ(1 +α) lim

t→tσ0

σ
(
f (t)− f (t0)

)
∣∣t− t0

∣∣α (5.1)

for σ = + (resp., σ =−), where Γ is the Euler function.

Definition 5.2. Let f be a continuous function on [a;b], and let α∈ ]0;1[. The function
f is α-differentiable at t0 ∈ [a;b] if and only if dα− f (t0) and dα+ f (t0) exist and are equal.
In this case, denote by dα f (t0) the α-derivative of f at t0.

Remark 5.3. From the previous definition, we obtain the notion of α-velocity introduced
by Cherbit [2].

Remark 5.4. There are many differences between the so-called fractional derivative of
Riemann and Liouville, see Samko et al. [10], and our fractional derivative, introduced
in Definition 5.2; we cite just three of them.

(i) First, there is no geometric idea supporting the first-kind derivative notions, from
which we understand the difficulties of using them in order to obtain information
about the structure of nondifferentiable objects. On the other hand, there is a clear
geometrical meaning of our derivative; it gives the local Hölderian behavior of the
function, and the critical order of derivation is equal to the Hölder exponent (see
[1]).

(ii) Second, the first-kind derivatives are nonlocal on the contrary of our derivative
(also on the contrary of the classical derivative).

(iii) Third, contrary to Riemann-Liouville, our derivative of a constant function is
zero. This allows to generalize some classical results of analysis to the nondiffer-
entiable case (see [1]).

Theorem 5.5. For all α ∈ ]0,1/2∧H[, the sample paths of the MFBM are almost surely
α-differentiable at every t0 ≥ 0, and

∀t0 ≥ 0, P
{
dαMH

t0 = 0
}= 1. (5.2)

Proof. We detail the proof for σ = +. The proof for σ =− is the same.
Using the stationarity and the mixed-self-similarity of the increments of the MFBM,

we have for t > t0 ≥ 0,

MH
t −MH

t0(
t− t0

)α Δ= MH
t−t0(

t− t0
)α Δ= (t− t0

)−α
MH

1

(
a
(
t− t0

)1/2
,b
(
t− t0

)H)

Δ= a
(
t− t0

)1/2−α
B1 + b

(
t− t0

)H−α
BH

1 .

(5.3)
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In consequence, if 0 < α < 1/2∧H ,

P
{
dα+M

H
t0 = 0

}
= P

{
lim
t→t+

0

MH
t −MH

t0(
t− t0

)α = 0
}

= P
{

lim
t→t+

0

a
(
t− t0

)1/2−α
B1 + b

(
t− t0

)H−α
BH

1 = 0

}
= 1.

(5.4)

�

Theorem 5.6. For all α ∈ ]1/2∧H ;1[, the sample paths of the MFBM are nowhere α-
differentiable, almost surely.

Proof. For d > 0, we define the events

A(t)=
{

sup
0≤s≤t

∣∣∣∣
MH

s (a,b)
sα

∣∣∣∣ > d

}
. (5.5)

For any sequence tn ↘ 0, we have

A
(
tn+1

)⊂ A
(
tn
)
; (5.6)

thus,

P
{

lim
n→+∞A

(
tn
)}= lim

n→+∞P
{
A
(
tn
)}

, (5.7)

and using the mixed-self-similarity of MH ,

P
{
A
(
tn
)}≥ P

{∣∣∣∣
MH

tn (a,b)

tαn

∣∣∣∣ > d

}

= P
{∣∣at1/2−α

n B1 + btH−αn BH
1

∣∣ > d
}
.

(5.8)

(i) If H < 1/2, (in this case α > H)

P
{
A
(
tn
)}≥ P{∣∣at1/2−H

n B1 + bBH
1

∣∣ > tα−Hn d
}

,

lim
n→+∞P

{∣∣at1/2−H
n B1 + bBH

1

∣∣ > tα−Hn d
}= P{∣∣bBH

1

∣∣≥ 0
}= 1.

(5.9)

(ii) If H = 1/2, (in this case α > H and α > 1/2)

P
{
A
(
tn
)}≥ P{∣∣aB1 + bBH

1

∣∣ > tα−Hn d
}

,

lim
n→+∞P

{∣∣aB1 + bBH
1

∣∣ > tα−Hn d
}= P{∣∣aB1 + bBH

1

∣∣≥ 0
}= 1.

(5.10)

(iii) If H > 1/2, (in this case α > 1/2)

P
{
A
(
tn
)}≥ P{∣∣aB1 + btH−1/2

n BH
1

∣∣ > tα−1/2
n d

}
,

lim
n→+∞P

{∣∣aB1 + btH−1/2
n BH

1

∣∣ > tα−1/2
n d

}= P{∣∣aB1
∣∣≥ 0

}= 1.
(5.11)
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We conclude that for all α∈ ]1/2∧H ;1[, for all t0 ≥ 0,

P

{
limsup

t→t+
0

∣∣∣∣
MH

t −MH
t0(

t− t0
)α
∣∣∣∣= +∞

}
= 1, (5.12)

and the theorem is proved. �

Open problem. What about the α-differentiability of the MFBM in the case where α=H
and H �= 1/2?
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