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We study the central and noncentral limit theorems for the convolution of a certain kernel
h with F(ξ(·)), where ξ is a stationary Gaussian process and F is a square integrable func-
tion with respect to the standard Gaussian measure. Our method consists in showing that
in the weak dependence case, we can use the Lindeberg method, approaching the initial
Gaussian process by an m-dependent process. We could say that only variance computa-
tions are needed to get the two types of limits. Then we apply the obtained results to the
solutions of the certain differential equations.
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tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this work, we use an m-dependent approximation to obtain the asymptotic behavior
as t→∞ of the solution of several differential equations, with random initial condition
F(ξ(x)), where ξ is a stationary Gaussian process. As usual, this behavior depends heav-
ily on the integrability condition of the covariance function of the process ξ. The main
novelty of our approach is that we do not use the method of moments, avoiding lengthy
calculations. We only need, via the m-dependent approximation, L2 computations and
a slight generalization of the Hoeffding-Robbins theorem [9] for m-dependent random
variables. The problem is settled in a general framework, considering the class of pro-
cesses that can be written as the convolution of a certain kernel h(t,x) with F(ξ(x)).

We can justify our study through three basic examples. First we consider the Burgers’
equation with random initial condition, also known in the literature as Burgers’ turbu-
lence (see Section 6.1 for definition and properties), then the equation

∂u

∂t
=−1

2
∂4u

∂x4
(1.1)
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2 CLT for solutions of random initialized PDE

that can be interpreted as a heat-type equation of fourth order, finally the KDV (Kor-
teweg-de Vries) linear equation, which is a third-order heat-type equation given by

∂u

∂t
=−1

2
∂3u

∂x3
. (1.2)

Note that in all these examples, the solution is equal, or closed, to a convolution integral:

˜Ut(x)=
∫∞

−∞
h(t,x− y)u0(y)dy, (1.3)

for a certain kernel h. Thus the problem of solving differential equations with initial con-
ditions written as u0(·) = F(ξ(·)) is settled in a general framework, considering besides
solutions of partial differential equations, the class of processes that can be written as the
convolution of a certain kernel h(t,·) with F(ξ(·)).

Why these situations are of some interest? The answer will be exposed through three
different sources.

When dealing with the Burgers’ equation having a random initial condition, the ob-
served solutions u(t,x) correspond better to reality, as noticed by Woyczyński [17]: “If
one measures the velocity v(t,x) in a turbulent flow for two different time intervals, then
the profiles look totally different and are not repeatable. However if one concentrates on
the probability distribution of the measured turbulent signal, one obtains a predictable
object.” Thus it seems natural to consider the solutions as stochastic processes.

For the heat-type equation of fourth order, we refer to the work of Tanner and Berry,
see [15], who consider the experiment of spinning oil on to a smooth flat surface, which
provides an optically flat film. This may be disturbed in a randomly distributed way by
rolling. The profile of the disturbed surface u(t,x, y) is shown to satisfy the equation

∂u

∂t
=− γ

4

4τ
∇4u, (1.4)

where γ and τ are parameters and u(0,x, y)= ξ(x, y) is a bidimensional stationary Gauss-
ian process. Nevertheless, our work will concentrate only on the study of the asymptotic
behavior for the problem in a one-dimensional space.

Finally let us consider the third example based on the paper of Beghin et al. [2]. These
authors studied the asymptotic behavior of the third-order heat-type equation, recalling
that this type of equation emerges in the context of trimolecular chemical reactions and
also as linear approximation of the Korteweg-de Vries equation.

Here we will study the asymptotic behavior of the rescaled functional ˜Ut, given in
(1.3). Let us explain what type of rescaling we use, by taking the case of the fourth-order
heat-type equation (1.1). The solution of such an equation can be written as u(t,x) =
∫∞
−∞ pt(x−y)u0(y)dy, where pt(·) is the inverse Fourier transform of the function e−|γ|4t/2.

We look for a solution which is self-similar, that is, λu(λ4,λx)≡ u(t,x). Note that

lim
λ→∞

λu
(

λ4t,λx
)= 1

t1/4
p1

(

x

t1/4

)

:=V(t,x); (1.5)
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and is straightforward to check that V(t,x) is self-similar. By considering t = 1 and λ =
t1/4, we obtain

lim
t→∞ t

1/4u
(

t,xt1/4
)= p1(x)=V(1,x); (1.6)

thus the above change of scale stabilizes the solution at infinity. This type of rescaling
will be very useful to obtain the asymptotic normality of the random initial condition
solution.

As was indicated in the abstract, to prove this asymptotic behavior, we will proceed by
another approach than the method of moments and the diagram formula used by several
authors, see, for instance, [1, 4, 5, 11, 17].

2. Definitions

Let ξ(x) be a stationary Gaussian centered process with covariance function Σ such that
Σ(0)= 1.

We define the filtered processes by

Ut(ξ,x)=
∫ u(t)

−u(t)
h(t, y)F

(

ξ(x− y)
)

dy,

˜Ut(ξ,x)=
∫∞

−∞
h(t, y)F

(

ξ(x− y)
)

dy,

(2.1)

where h is the filter and
(1) F is a function belonging to L2(R;ϕ(z)dz), ϕ(z)dz being the standard Gaussian

measure;
(2) u(·) is a positive function tending to infinity. It will be chosen such that the limit

theorems for ˜Ut(ξ,x) can be deduced of those obtained for Ut(ξ,x);
(3) h is a continuous bounded function such that h∈ L2(R), and for 0 < β < 1,

γβ =
∫∞

0

h∗h(s)
sβ

ds <∞, (2.2)

where h(x)= h(−x) and ∗ denotes the convolution;
(4) h(t, y) is the scaling of h given by

h(t, y)= 1
v(t)

h

(

y

w(t)

)

, (2.3)

where v(t) and w(t) are positive functions tending to infinity as t→∞ and satis-
fying

lim
t→∞

v2(t)
w(t)

=∞, lim
t→∞

u(t)
w(t)

=∞, lim
t→∞

u(t)
w2+δ(t)

= 0, (2.4)

for any δ > 0.
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Remark 2.1. In the two examples considered below; Burgers’ turbulence and the fourth-
order heat equation, we will choose v(t) = w2(t) with w = t1/2 in the former case and
v(t) = w(t) with w = t1/4 in the latter. These choices correspond to the type of scaling
indicated in Section 1 that stabilize the solution at infinity.

We are looking for the asymptotic behavior of Ut(ξ,x) and ˜Ut(ξ,x) when t→∞.

3. Asymptotic variance Ut(ξ,x)

Recall that the set of Hermite polynomials Hm defined by

Hm(z)= (−1)mez
2/2 d

m

dzm
e−z

2/2; m≥ 0, (3.1)

is a complete orthogonal system in the Hilbert space L2(R,ϕ(z)dz).
Hence the function F has a Hermite expansion given by

F(z)=
∞
∑

k=0

Ck
k!
Hk(z), (3.2)

where

Ck =
∫∞

−∞
F(z)Hk(z)ϕ(z)dz, k ≥ 0. (3.3)

Note that

C0 =
∫∞

−∞
F(z)ϕ(z)dz = E

[

F
(

ξ(y)
)]

. (3.4)

Let us assume that C1 	= 0.
Recall also Mehler’s formula [16],

E
[

Hk
(

ξ
(

y1
))

Hj
(

ξ
(

y2
))]= k!δ

j
kΣ

k
(∣

∣y1− y2
∣

∣

)

, (3.5)

which allows computing easily the variance of nonlinear functionals of stationary Gauss-
ian processes.

We have,

Ut(ξ,x)=
∞
∑

k=0

Ck
k!
ηk(ξ, t), (3.6)

where

ηk(ξ, t)=
∫ u(t)

−u(t)
h(t, y)Hk

(

ξ(x− y)
)

dy. (3.7)
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We will consider the cases when Σ satisfies one of the following two assumptions.
(H1) Σ is such that

∞
∑

k=1

C2
k

k!
Σk(y)= κ(y), (3.8)

and κ∈ Lp((0,∞)) for p = 1,2.
(H2) There exist 0 < α < 1 and a slowly varying function L, such that

Σ(y)= L(y)
|y|α , (3.9)

notice that Σ∈ Lp((0,∞)) for every p > 1/α.
By using (3.4), (3.5), (3.6), and (3.7), we compute the variance V of Ut(ξ,x) and we

obtain

V
[

Ut(ξ,x)
]=

∞
∑

k=1

C2
k

k!
V
[

ηk(ξ, t)
]

, (3.10)

where

V
[

ηk(ξ, t)
]=

∫ u(t)

−u(t)

∫ u(t)

−u(t)
h
(

t, y1
)

h
(

t, y2
)

Σk
(∣

∣y1− y2
∣

∣

)

dy1dy2

= 2
∫ 2u(t)

0
Σk(y)

(∫ u(t)

−u(t)+y
h(t,s− y)h(t,s)ds

)

dy

=
∫ 2u(t)

0
Σk(y)Kt(y)dy,

Kt(y)= 2
∫ u(t)

−u(t)+y
h(t,s− y)h(t,s)ds.

(3.11)

Theorem 3.1. It holds that
(1) if Σ satisfies the assumption (H1), then

σ2
1 (F)= lim

t→∞V

[

v(t)
√

w(t)
Ut(ξ,x)

]

= 2‖h‖2
2‖κ‖1; (3.12)

(2) if Σ satisfies the assumption (H2), then

σ2
2 (F)= lim

t→∞V

[

v(t)
(

w(t)
)1−α/2

L1/2
(

w(t)
)
Ut(ξ,x)

]

= 2C2
1γα, (3.13)

where γα was defined in (2.2).

Proof. Let us consider the first case. We have the following estimation:

v2(t)
w(t)

∣

∣Kt(y)
∣

∣= 2
∣

∣

∣

∣

∫ u(t)/w(t)

(−u(t)+y)/w(t)
h(s)h

(

s− y

w(t)

)

ds
∣

∣

∣

∣
≤ 2‖h‖2

2. (3.14)
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Then the result follows, under (H1) and formula (3.10), by applying Fubini’s theorem
and Lebesgue’s dominated convergence theorem. To apply the Fubini’s theorem, we have

v2(t)
w(t)

∫ 2u(t)

0

∣

∣

∣

∣

∣

( ∞
∑

k=1

C2
k

k!
Σk(y)

)

Kt(y)

∣

∣

∣

∣

∣

dy ≤ 2‖κ‖2‖h‖2
2 <∞. (3.15)

Moreover, since κ(·) is bounded and

lim
t→∞1[0,2u(t)](y)

v2(t)
w(t)

Kt(y)= 2‖h‖2
2, (3.16)

the use of the Lebesgue’s convergence theorem yields the result.
Let us assume (H2). On one hand, if k < 1/α, we have

V
[

ηk(ξ, t)
]= (w(t)

)1−αk
Lk
(

w(t)
)

∫ 2u(t)

0

Kt
(

w(t)s
)

sαk
ds

� 2
Lk
(

w(t)
)(

w(t)
)2−αk

v2(t)
γαk,

(3.17)

where the symbol �means equivalence at infinity.
On the other hand, for k ≥ 1/α,

V
[

ηk(ξ, t)
]� w(t)

v2(t)
‖h‖2

2‖Σ‖kk, (3.18)

since Σ∈ Lk, for all k > 1/α.
Let Nα :=max{k : k < 1/α}, we have

V

[

L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2 Ut(ξ,x)

]

� 2C2
1γα + 2

Nα
∑

�=2

C2
�

�!
L�−1

(

w(t)
)

[

w(t)
]α(�−1) γα� + 2

‖h‖2
2L
−1
(

w(t)
)

[

w(t)
](1−α)

∞
∑

�=Nα+1

C2
�‖Σ‖��
�!

.

(3.19)

Then

V

[

L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2 Ut(ξ,x)

]

−→ 2C2
1γα, (3.20)

because the two last terms in the above sum tend to zero. �

Remark 3.2. In the precedent estimation, we assumed C1 	= 0, otherwise the rate of con-
vergence would have been determined by the first nonzero term in the Hermite expan-
sion. For instance, if C1 = 0 and C2 	= 0, assumption (H2) for 1/2 < α < 1 entails that Σ2

belongs to L1 and we have again

lim
t→∞V

[

v(t)
√

w(t)
Ut(ξ,x)

]

= σ2
1 (F). (3.21)
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Hence only the case 0 < α < 1/2 must be considered. The rate of convergence is then
v(t)/L(w(t))w1−α(t) and the variance limit C2

2γ2α.

From the above theorem, we can deduce the following proposition.

Proposition 3.3. If Σ satisfies the assumption (H1), then

lim
t→∞V

[

v(t)
√

w(t)

(

˜Ut(ξ,x)−Ut(ξ,x)
)

]

= 0. (3.22)

If Σ satisfies the assumption (H2), then

lim
t→∞V

[

v(t)
(

w(t)
)1−α/2

L1/2
(

w(t)
)

(

˜Ut(ξ,x)−Ut(ξ,x)
)

]

= 0. (3.23)

Proof. Assumption (H1) also yields

lim
t→∞V

[

v(t)
√

w(t)
˜Ut(x)

]

= 2‖h‖2
2‖κ‖1, (3.24)

and if u(t)/w(t)→∞,

lim
t→∞Cov

(

˜Ut(x),Ut(x)
)= 2‖h‖2

2‖κ‖1. (3.25)

To show this, it is enough to proof that

v2(t)
w(t)

[∫∞

u(t)

∫ u(t)

−u(t)
+
∫ −u(t)

−∞

∫ u(t)

−u(t)

]

h
(

t1, y1
)

h
(

t2, y2
)

κ
(∣

∣y1− y2
∣

∣

)

dy1dy2 −→ 0, (3.26)

we consider only the first integral, the second is similar,

v2(t)
w(t)

∫∞

u(t)

∫ u(t)

−u(t)
h
(

t1, y1
)

h
(

t2, y2
)

κ
(∣

∣y1− y2
∣

∣

)

dy1dy2

= 2
∫∞

0
κ(y)

∫∞

u(t)/w(t)
h
(

s− y

w(t)

)

h(s)dsdy −→ 0.

(3.27)

Hence we have

lim
t→∞V

[

v(t)
√

w(t)

(

˜Ut(x)−Ut(x)
)

]

= 0. (3.28)

The second part of the proposition is straightforward. �
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4. Main result: central limit theorem

We have the following theorems.

Theorem 4.1. If Σ satisfies the assumption (H2), then

L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2

[

˜Ut(ξ,x)−E
(

˜Ut(ξ,x)
)] w−−→U(ξ)=N(0,σ2

2 (F)
)

(4.1)

uniformly in x, as t→∞.

Theorem 4.2. If Σ satisfies the assumption (H1), then

v(t)
√

w(t)

[

˜Ut(ξ,x)−E
(

˜Ut(ξ,x)
)] w−−→U(ξ)=N(0,σ2

1 (F)
)

(4.2)

uniformly in x, as t→∞.

5. Proof of theorems

By using Proposition 3.3, we only need to proof the above theorems for Ut(ξ,x) instead
of ˜Ut(ξ,x).

Proof of Theorem 4.1. We have

L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2

[

Ut(ξ,x)−E
(

Ut(ξ,x)
)]

= L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2 C1η1(ξ, t) +

L−1/2
(

w(t)
)

v(t)
[

w(t)
]1−α/2

∞
∑

k=2

Ck
k!
ηk(ξ, t).

(5.1)

Using Theorem 3.1, the second term tends to zero in probability when t →∞, the first
one is Gaussian, mean zero, and the computation of the asymptotic variance yields the
result. �

Proof of Theorem 4.2. The proof of this theorem, strongly inspired by Malevich [12] and
Berman [3] methods, will be divided into several lemmas.

Let M be a positive integer, and let us define

UM
t (ξ,x)=

M
∑

k=1

Ck
k!
ηk(ξ, t). (5.2)

We can write Σ(x)= ∫∞−∞ eixλg(λ)dλ, where g is the spectral density of the process ξ. The
process ξ has a Wiener’s spectral representation

ξ(x)=
∫∞

−∞
eixλg1/2(λ)dW(λ), (5.3)

where W is a complex Brownian motion satisfying

E
[

dW(λ)dW(λ′)
]= δλ(λ′)dλ. (5.4)
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Let φ be an even continuous function with support contained in the interval [−1/2,1/2].
Let us define ψ(x)= φ∗φ(x), with support in [−1,1].

Let us suppose that the L2 norm of φ with respect to Lebesgue’s measure equals one.
Then we have

ψ(0)= 1
2π

∥

∥ ̂φ(λ)
∥

∥

2
2 = ‖φ‖2

2 = 1. (5.5)

Let us define the process

ξε(x)=
∫∞

−∞
eiλx

(

g∗ψ̂ε
)1/2

(λ)dW(λ) :=
∫∞

−∞
eiλxg1/2

ε (λ)dW(λ), (5.6)

where ψ̂ε(λ)= (1/ε)| ̂φ(λ/ε)|2 and ε > 0.
The covariance function of ξε is

Σε(x)= Σ(x)ψ(εx), (5.7)

which implies that the process ξε is 1/ε-dependent (since ψ vanish outside of [−1,1]).
�

Lemma 5.1. For every ε > 0, there exists a process ξε that is 1/ε-dependent, such that

lim
ε→0

lim
t→∞

v2(t)
w(t)

E
[

UM
t

(

ξε
)−UM

t (ξ)
]2 = 0. (5.8)

Proof. We have

V
[

UM
t

(

ξε
)−UM

t (ξ)
]=

M
∑

k=1

C2
k

k!
E
[

ηk
(

ξε, t
)−ηk(ξ, t)

]2
. (5.9)

Let us consider the case when k = 1. Since

η1
(

ξε, t
)=

∫ u(t)

−u(t)
h(t, y)ξε(x− y)dy, (5.10)

we obtain, by using the spectral representation,

v(t)
√

w(t)
η1
(

ξε, t
)=

∫∞

−∞
eixλ/w(t)g1/2

ε

(

λ

w(t)

)(∫ u(t)/w(t)

−u(t)/w(t)
e−isλh(s)ds

)

dW(λ). (5.11)

Given that h∈ L2, we have

∫∞

−∞

∣

∣

∣

∣

∫ u(t)/w(t)

−u(t)/w(t)
e−isλh(s)ds− ̂h(λ)

∣

∣

∣

∣

2

dλ=
∫∞

−∞

∣

∣

∣

∣

∫

C(t)
e−isλh(s)ds

∣

∣

∣

∣

2

dλ−→ 0, (5.12)

where C(t) := {s > u(t)/w(t)}∪{s <−u(t)/w(t)}.
Thus we can write

v(t)
√

w(t)
η1
(

ξε, t
)=

∫∞

−∞
eixλ/w(t)g1/2

ε

(

λ

w(t)

)

̂h(λ)dW(λ) + J(t,ε). (5.13)
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Let us show that E[J(t,ε)]2 converges to zero when t tends to infinity uniformly in ε. In
fact, using the Itô-Wiener isometry and (5.12), we get

E
[

J(t,ε)
]2 =

∫∞

−∞
gε

(

λ

w(t)

)∣

∣

∣

∣

∫

C(t)
e−isλh(s)ds

∣

∣

∣

∣

2

dλ−→ 0 t −→∞. (5.14)

The same type of computation holds true for the process ξ.
Hence we get

E

[

v(t)
√

w(t)

(

η1
(

ξε, t
)−η1(ξ, t)

)

]2

=
∫∞

−∞

[

g1/2
ε

(

λ

w(t)

)

− g1/2
(

λ

w(t)

)]2∣
∣

∣
̂h(λ)

∣

∣

∣

2
dλ+ o(1),

(5.15)

which implies

lim
ε→0

lim
t→∞

v2(t)
w(t)

E
[

η1
(

ξε, t
)−η1(ξ, t)

]2 = 0. (5.16)

For k ≥ 2, we use

v2(t)
w(t)

E
[

ηk
(

ξε, t
)−ηk(ξ, t)

]2 = v2(t)
w(t)

∫ 2u(t)

0

(

Σkε(s)− 2σkε (s) +Σk(s)
)

Kt(s)ds, (5.17)

where σε(z) = E[ξ(y + z)ξε(y)]. We consider each of the terms in the above sum sepa-
rately. It is easy to see that

lim
ε→0

σε(x)= Σ(x), lim
ε→0

Σε(x)= Σ(x). (5.18)

Then

lim
ε→0

lim
t→∞

v2(t)
w(t)

∫ 2u(t)

0
Σkε(s)Kt(s)ds= 2‖h‖2

2

∫∞

0
Σk(s)ds,

lim
t→∞

v2(t)
w(t)

∫∞

0
Σk(s)Kt(s)ds= 2‖h‖2

2

∫∞

0
Σk(s)ds.

(5.19)

We finish studying the middle term of (5.17). We compute

lim
ε→0

lim
t→∞

v2(t)
w(t)

∫ 2u(t)

0
σkε (s)Kt(s)ds (5.20)

for k ≥ 2. But for k ≥ 2, we have

v2(t)
w(t)

σkε (s)≤ ‖h‖2
2σ

2
ε (s), (5.21)

and by using Parseval, we get 2
∫∞

0 σ2
ε (s)ds = 〈g,gε〉 ≤ ‖g‖2

2 <∞. Thus Lebesgue’s domi-
nated convergence theorem implies

lim
ε→0

lim
t→∞

v2(t)
w(t)

∫ 2u(t)

0
σkε (s)Kt(s)ds= 2‖h‖2

2 lim
ε→0

∫∞

0
σkε (s)ds= ‖h‖2

2

∫∞

0
Σk(s)ds. (5.22)
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Summing up, we can conclude that

lim
ε→0

lim
t→∞

v2(t)
w(t)

E
[

UM
t

(

ξε
)−UM

t (ξ)
]2 = 0. (5.23)

�

Lemma 5.2. If Σ satisfies (H1), then

lim
M→∞

lim
t→∞

v2(t)
w(t)

E
[

UM
t (ξ)−Ut(ξ)

]2 = 0. (5.24)

Proof. By using (3.10), we get

v2(t)
w(t)

E
[

UM
t (ξ)−Ut(ξ)

]2 = v2(t)
w(t)

∞
∑

k=M+1

C2
k

k!

∫ 2u(t)

0
Σk(y)Kt(y)dy, (5.25)

which tends to

2‖h‖2
2

∫∞

0

[ ∞
∑

k=M+1

C2
k

k!
Σk(y)

]

dy as t −→∞, (5.26)

the integrand is the tail of a convergent series.
Finally we get one version of the Hoeffding-Robbins theorem [9], the proof is included

for completeness. �

Lemma 5.3. If Σ satisfies (H1), then

w− lim
t→∞

v(t)
√

w(t)

[

UM
t

(

ξε,x
)−E

(

UM
t

(

ξε,x
))]=N(0,σ2

1 (F)ε
)

, (5.27)

where σ2
1 (F)ε = 2‖h‖2

2

∫ 1/ε
0

∑M
j=1(C2

j / j!)Σ
j
ε(y)dy.

Proof. For fixed integer M, let us define

�M
(

ξε(y)
)=

M
∑

j=1

Cj

j!
Hj
(

ξε(y)
)

. (5.28)

By using (3.5), we have

ΣεM
(∣

∣y1− y2
∣

∣

)= E
[

�M
(

ξε
(

x− y1
))

�M
(

ξε
(

x− y2
))]=

M
∑

j=1

C2
j

j!
Σ
j
ε
(∣

∣y1− y2
∣

∣

)

.

(5.29)

Let us define u(t) = n(t)ν(t) + r(t), where ν(t) = w(t)1+δ δ > 0. Then n(t) = u(t)/ν(t) +
o(1) and ν(t)/w(t)→∞ as t→∞. Consider a partition of the interval [−u(t),u(t)] such
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that, for every k, uk = kν(t). For every −n(t)≤ k ≤ n(t), let

Ik =
[

uk−1 +
1

2ε
,uk − 1

2ε

)

, Jk =
[

uk − 1
2ε

,uk +
1

2ε

)

, (5.30)

and I−n−1 = [−u(t),u−n− 1/2ε), In+1 = [un + 1/2ε,u(t)], when not empty.
Let

UM
t

(

ξε
)

:= St,n
(

ξε
)

+Tt,n
(

ξε
)

, (5.31)

where

St,n
(

ξε
)=

n(t)+1
∑

k=−n(t)−1

Yt,k, Tt,n
(

ξε
)=

n(t)
∑

k=−n(t)

Zt,k,

Yt,k =
∫

Ik
h(t, y)�M

(

ξε(x− y)
)

dy, Zt,k =
∫

Jk
h(t, y)�M

(

ξε(x− y)
)

dy.

(5.32)

By similar computations as in the above section, we get that

E
[

St,n
]2 =

∫ 1/ε

0
ΣεM(y)

(

∑

−n−1≤k≤n+1

∫

Ik(y)
h(t,z)h(t,z− y)dz

)

dy, (5.33)

where Ik(y) = [uk−1 + 1/2ε + y,uk − 1/2ε), and for the first and last intervals, we have
I−n−1(y)= [−u(t) + y,u−n− 1/2ε) and In+1(y)= [un + 1/2ε+ y,u(t)),

E
[

Tt,n
]2 =

∫ 1/ε

0
ΣεM(y)

( n
∑

k=−n

∫

Jk(y)
h(t,z)h(t,z− y)dz

)

dy, (5.34)

where Jk(y)= [uk − 1/2ε+ y,uk + 1/2ε), −n≤ k ≤ n.
Moreover we have

E

[

v(t)
√

w(t)
Tt,n

]2

≤ 1
w(t)

n(t)
∑

k=−n(t)

∫ 1/ε

0

∣

∣ΣεM(y)
∣

∣

(∫

Jk

∣

∣

∣

∣
h
(

z

w(t)

)

h
(

z− y

w(t)

)∣

∣

∣

∣
dz
)

dy

≤ C
w(t)

∫ 1/ε

0

∣

∣ΣεM(y)
∣

∣dy
n(t)
∑

k=−n(t)

∣

∣Jk
∣

∣≤ C
n(t)
w(t)

= u(t)
w2+δ(t)

+ o(1)−→ 0 as t −→∞.

(5.35)

Thus

E
[

v(t)
√

w(t)
St,n

]2

−→ ‖h‖2
2

∫ 1/ε

0
ΣεM(y)dy as t −→∞. (5.36)

Finally Lindeberg’s theorem entails that the sum of independent random variables
(v(t)/

√

w(t))St,n tends weakly to a Gaussian variable as t →∞, whenever the following
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condition holds:

n(t)
∑

k=−n(t)

E
[

v(t)
√

w(t)
Yt,k

]3

−→ 0 as t −→∞. (5.37)

To prove this statement, we have, for every k,

E
[

v(t)
√

w(t)
Yt,k

]3

= 1
w3/2(t)

∑

j∈AM
Ek,t(j), (5.38)

where

Ek,t(j)=
∫

Ik

∫

Ik

∫

Ik
Σ
j1
ε
(∣

∣y1− y2
∣

∣

)

Σ
j2
ε
(∣

∣y1− y3
∣

∣

)

Σ
j3
ε (|y2− y3|)

×h
(

y1

w(t)

)

h
(

y2

w(t)

)

h
(

y3

w(t)

)

dy1dy2dy3

=
∫

Ik

∫

{|z1|<1/ε}

∫

{|z1−z2|<1/ε}
Σ
j1
ε
(∣

∣z1− z2
∣

∣

)

Σ
j2
ε
(∣

∣z1
∣

∣

)

Σ
j3
ε
(∣

∣z2
∣

∣

)

×h
(

z1

w(t)

)

h
(

z2

w(t)

)

h
(

z3

w(t)

)

dz2dz1dz3.

(5.39)

We have used

E

[ 3
∏

j=1

�M
(

ξε
(

yj − x
))

]

=
∑

j∈AM
C(j)Σ

j1
ε
(∣

∣y1− y2
∣

∣

)

Σ
j2
ε
(∣

∣y1− y3
∣

∣

)

Σ
j3
ε
(∣

∣y2− y3
∣

∣

)

,

(5.40)

where AM = {j= ( j1, j2, j3) : j1 + j2 + j3 = 2p, 1≤ 2p ≤M; j1, j2, j3 ∈ Ik}.
Given that Σε(|y|)= 0 when |y| > 1/ε, and Σε and h are bounded, we have

∣

∣Ek,t(j)
∣

∣≤ C
ε2

∫

Ik

∣

∣

∣

∣
h
(

z3

w(t)

)∣

∣

∣

∣
dz3 = C

ε2
w(t)

∫

Ik

∣

∣h(z)
∣

∣dz. (5.41)

Finally

∣

∣

∣

∣

∣

n(t)
∑

k=−n(t)

E
[

v(t)
√

w(t)
Yt,k

]3
∣

∣

∣

∣

∣

≤ C
w1/2(t)

n(t)
∑

k=−n(t)

∫

Ik

∣

∣h(z)
∣

∣dz = C
w1/2(t)

∫∞

−∞

∣

∣h(z)
∣

∣dz

(5.42)

that tends to zero as t→∞. This yields the result.
Then we prove Theorem 4.2 by using the three precedent lemmas, Theorem 3.1, and

Proposition 3.3. �

6. Applications

Theorems 4.1 and 4.2 can be applied to study the asymptotic behavior not only of the
solutions of linear differential equation with random initial conditions, but also of the
solutions of some particular nonlinear equations, as Burgers’ equation.



14 CLT for solutions of random initialized PDE

6.1. Burgers’ equation. The Burgers’ equation with random initial data is known as the
Burgers’ turbulence problem. Burgers’ turbulence has been considered as a model for
various physical phenomena, from the hydrodynamic turbulence to the evolution of the
density of matter in the universe. The equation can be viewed as a simplified version of
the Navier-Stokes equation with the pressure term omitted. See [1, 4, 5, 11, 17].

We consider the one dimensional Burgers’ equation with viscosity parameter μ > 0,
x ∈ R, t ≥ 0,

∂

∂t
u+uu′ = μu′′, u(x,0)= v′(x). (6.1)

Let us suppose that v(x) = F(ξ(x)), where ξ denotes a mean zero stationary Gaussian
centered process with covariance function Σ.

It is well known (see [14]) that the solution of problem (6.1) can be written as

u(x, t)= I(x, t)
J(x, t)

, (6.2)

where

I(x, t)=
∫∞

−∞
y

t

1
√

4πμt
exp

{

− y2

4μt

}

exp
{

− F
(

ξ(x− y)
)

2μ

}

dy,

J(x, t)=
∫∞

−∞
1

√

4πμt
exp

{

− y2

4μt

}

exp
{

− F
(

ξ(x− y)
)

2μ

}

dy.

(6.3)

If Σ satisfies (H1) or (H2), then V[J(x, t)]→ 0, as t→∞. This implies that J(x, t) tends to
E[J(x, t)]= C0 in probability, uniformly in x (C0 denoting the first Hermite’s coefficient
of F). Then we are leaden to consider only

Ut(ξ,x)= C−1
0 It(ξ,x), ˜Ut(ξ,x)= C−1

0 I(x, t), (6.4)

where

It(ξ,x)=
∫ t

−t
h(t, y)exp

{

− F
(

ξ(x− y)
)

2μ

}

dy,

h(t, y)= 1
t
h
(

y√
t

)

, h(y)= y
√

4πμ
e−y

2/4μ.

(6.5)

Note that we have taken v(t)= t, w(t)=√t, u(t)= t, which are function satisfying (2.4).

We have also that γβ = (βμ1−β/2/
√
π21+3β/2)Γ((1− β)/2), and ‖h‖2

2 =
√

μ/2π. We obtain,
as a corollary of Theorem 3.1 and Proposition 3.3, the following theorem.
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Theorem 6.1. It holds that
(1) if Σ satisfies (H1), then

lim
t→∞V

[

t3/4 ˜Ut(ξ)
]= σ2

1 (F), (6.6)

where

σ2
1 (F)= 2

C2
0

√

μ

2π

∫∞

0
κ(y)dy; (6.7)

(2) if Σ satisfies (H2), then

lim
t→∞V

[

t1/2+α/4L−1(
√
t
)

˜Ut(ξ)
]= σ2

2 (F), (6.8)

where

σ2
2 (F)= C2

1αμ
1−α/2

C2
0
√
π23α/2

Γ
(

1−α
2

)

. (6.9)

6.1.1. Examples

Example 6.2. Let be F(x)= x. The Hermite’s coefficients of the function e−x/2μ are

C0 = e1/8μ2
, Ck = e1/8μ2 (−1)k

(2μ)k
, if k ≥ 1. (6.10)

Then

C−2
0 κ(y)=

∞
∑

k=1

Σk(y)
k!(2μ)2

= eΣ(y)/4μ2 − 1. (6.11)

Hence we obtain

κ∈ Lp((0,∞)
)⇐⇒ Σ∈ Lp((0,∞)

)

(6.12)

for p = 1,2, and we have the following expression for the asymptotic variances:

σ2
1 (F)=

√

2μ
π

∫∞

0

(

eΣ(y)/4μ2 − 1
)

dy,

σ2
2 (F)= α√

π22+3α/2μ1+α/2
Γ
(

1−α
2

)

.

(6.13)

Example 6.3. Consider F(x)= x2, in this case,

Ck = (−1)k
∫∞

−∞
e−z

2/2μ d
k

dzk
(

e−z
2/2) dz√

2π
=
⎧

⎨

⎩

0 if k is odd,

	= 0 if k = 2�.
(6.14)
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A straightforward computation gives

C0 =
√

μ

μ+ 1
, C2� =

√

μ

μ+ 1
(−1)�

(2�)!
2��!(μ+ 1)�

. (6.15)

Then

C−2
0 κ(y)=

∞
∑

�=1

(2�)!
(�!)2!22�(μ+ 1)2�

Σ2�(y)= 1
√

1−Σ2(y)/(μ+ 1)2
− 1. (6.16)

By using 1/
√

1− x2− 1∼ x2 when x→ 0, (H1) holds if Σ∈ L2((0,∞)).
According to Remark 3.2, if (H2) holds, for 0 < α < 1/2, we have

σ2
2 (F)= αμ1−α

(μ+ 1)4
√
π23+3α

Γ
(

1
2
−α

)

. (6.17)

For one slightly different treatment of this problem, see Leonenko and Orsingher [11].

6.1.2. Extension. The results can be easily generalized to F : Rd → R such that

F
(

x1,x2, . . . ,xn
)= F(x1

)

+ ···+F
(

xd
)

(6.18)

and F : R→ R. We consider the initial process defined as

ξ(y)= (ξ1(y), . . . ,ξd(y)
)

, (6.19)

where ξi(y) for i= 1, . . . ,d are independent stationary Gaussian standard processes inde-
pendent with covariance function Σ.

This type of problems has been considered using the method of moment in [5], how-
ever their approach allows a more general form of function F and of process ξ.

In this case,

exp
{

− F
(

ξ1(y), . . . ,ξd(y)
)

2μ

}

=
∞
∑

�1,...,�d=0

C�1 , . . . ,C�d
�1!, . . . ,�d!

H�1

(

ξ1(y)
)···H�d

(

ξd(y)
)

, (6.20)

where C� are the Hermite’s coefficients of function e−F(x)/2μ. Here the process It(ξ) is
defined by

It(ξ)=
∫ t

−t
h(t, y)e−F(ξ1(x−y),...,ξd(x−y))/2μdy. (6.21)

By the independence assumption, we have

κ(y)=
∑

�1+···+�d 	=0

C2
�1

, . . . ,C2
�d

�1!, . . . ,�d!
Σ�1+···+�d (y). (6.22)
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With the obvious modifications, we can also prove that if (H1) or (H2) hold, then

Jt(ξ)
P−→ Cd0 ,

Ut(ξ)= C−d0

∑

�1+···+�d 	=0

C�1 , . . . ,C�d
�1!, . . . ,�d!

η�1,...,�d (ξ, t),
(6.23)

where

η�1,...,�d (ξ, t)=
∫ t

−t
h(t, y)H�1

(

ξ1(y)
)···H�1

(

ξd(y)
)

dy. (6.24)

The expression for the variance is

V
[

Ut(ξ)
]= 2C−2d

0

√

μ

2πt3
∑

�1+···+�d 	=0

C2
�1

, . . . ,C2
�d

�1!, . . . ,�d!

∫ 2t

0
Σ�1+···+�d (y)Kt(y)dy. (6.25)

Theorems 4.1 and 4.2 hold true with
(1)

σ2
1 (F)= 2

C2d
0

√

μ

2π

∫∞

0
κ(y)dy, (6.26)

(2)

σ2
2 (F)= C2

1

C2
0
√
π
dαμ1−α/221−3α/2Γ

(

1−α
2

)

. (6.27)

Remark 6.4. The extension of Theorem 4.1 is immediate by using the independence be-
tween the coordinate processes. This allows to approach the process (ξ1(x), . . . ,ξd(x)) by
the d-dimensional process (ξε1 (x), . . . ,ξεd (x)), where each coordinate is defined in the same
way as in the proof of Theorem 4.1 becoming independent.

Example 6.5 (process χ2(d)). Let be ξ2(x) = ξ2
1 (x) + ξ2

2 (x) + ···+ ξ2
d(x), where d ≥ 1 is

a positive integer and ξ2
1 ,ξ2

2 , . . . ,ξ2
d are independent Gaussian processes with covariance

function Σ.
We have computed the Hermite’s coefficients in Example 6.3. Under (H1),

σ2
1 (F)=

√

μ

2π

∑

�1+···+�d 	=0

(

2�1!
)

, . . . ,
(

2�d!
)

(

�1!, . . . ,�d!
)2(

2(μ+ 1)
)2(�1+···+�d)

∫∞

0
Σ2(�1+···+�d)(y)dy

=
√

μ

2π

∫∞

0

⎡

⎢

⎣

⎛

⎝

1
√

1−Σ2(y)/(μ+ 1)2

⎞

⎠

d

− 1

⎤

⎥

⎦dy.

(6.28)

Under (H2), for 0 < α < 1/2,

σ2
2 =

d(d− 1)C2
1

C2d
0
√
π

μ1−α/221−3α/2αΓ
(

1
2
−α

)

. (6.29)

We finish with the following proposition.
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Proposition 6.6. A necessary and sufficient condition for (H1) is Σ2∈Lp[0,∞), for p=1,2.

Proof. By using

1
√

1−Σ2(y)/(μ+ 1)2
− 1∼ Σ2(y)

(μ+ 1)2
y −→∞, (6.30)

we have
⎛

⎝

1
√

1−Σ2(y)/(μ+ 1)2

⎞

⎠

d

− 1∼
d
∑

q=1

(

d

q

)

Σ2q(y)
(μ+ 1)2q . (6.31)

Function Σ is bounded. Thus Σ2 ∈ Lp[0,∞) if and only if Σ2q ∈ L1[0,∞) for q = 1, . . . ,d,
and p = 1,2. �

6.2. Linear differential equations. The heat-type equation of higher order than two has
been considered for a long time. This study began in 1960 with the seminal paper of
Krylov [10], since then there is a huge literature about these equations. We can mention in
particular the papers [6, 7] of Hochberg, who used the fundamental solutions of this type
of equations to build signed measures related to Wiener measure. For these measures, he
also gets analogous results to the law of large numbers and the central limit theorem.
More recently, similar problems in [8, 13] have been treated.

Let us study for instance the fourth-order heat-type equation, the extension to higher
order being always possible.

Thus let us define the fourth-order heat-type equation in R+×R with random initial
condition:

∂

∂t
u(t,x)=−1

2
∂4

∂x4
u(t,x); u(x,0)= F(ξ(x)

)

. (6.32)

We keep the same hypothesis as that in the general case. It is well known that problem
(6.32) admits a solution in the form

∫∞

−∞
h(t, y)F

(

ξ(x− y)
)

dy, (6.33)

where ̂h(t,λ)= e−|λ|4t/2.
Condition (2.3) in Section 2 can be expressed as

̂h(t,λ)= w(t)
v(t)

̂h
(

w(t)λ
)

. (6.34)

We conclude that v(t)=w(t)= t1/4, corresponding with our previous computations, and
by choosing u(t)= t1/2, then v, w, and u verify (2.4).

Defining

Ut(ξ,x)=
∫ t1/2

−t1/2
h(t, y)F

(

ξ(x− y)
)

dy, ˜Ut(ξ,x)=
∫∞

−∞
h(t, y)F

(

ξ(x− y)
)

dy,

(6.35)
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we get

γβ = 1
2

∫∞

−∞
1
|ζ|β

(∫∞

−∞
eiζλ

∣

∣̂h(λ)
∣

∣

2
dλ
)

dζ =
∫∞

−∞

∣

∣̂h(λ)
∣

∣

2
(∫∞

−∞
eiζλ

1
ζβ
dζ
)

dλ

= πβ−1 Γ
(

(1−β)/2
)

Γ(β/2)

∫∞

−∞
e−|λ|

4/2|λ|β−1dλ= πβ−1 Γ(β/4)Γ
(

(1−β)/2
)

21−β/4Γ(β/2)
.

(6.36)

Note that |h(x)| ≤ ‖̂h‖1 < C, and by using Parseval’s identity,

‖h‖2
2 =

1
2π

∥

∥̂h‖2
2 =

1
4π

Γ
(

1
4

)

. (6.37)

Theorems 4.1 and 4.2 hold true with the elements defined before.
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José R. León: Escuela de Matemática, Facultad de Ciencias, Universidad Central de Venezuela,
A.P. 47197 Los Chaguaramos, Caracas 1041-A, Venezuela
E-mail address: jleon@euler.ciens.ucv.ve

mailto:ileairi@cantv.net
mailto:jleon@euler.ciens.ucv.ve

	1. Introduction
	2. Definitions
	3. Asymptotic variance Ut(,x)
	4. Main result: central limit theorem
	5. Proof of theorems
	6. Applications
	6.1. Burgers' equation
	6.2. Linear differential equations

	Acknowledgment
	References

