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This paper discusses acyclic maps between topological spaces. We show that if F is H-
essential and F ∼=G, then G has a fixed point.
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1. Introduction

The notion of an essential map in a Banach (or Fréchet) space setting introduced by
Granas in [2] is more general than the notion of degree. In [2] he showed that if F is
essential and F ∼= G, then G is essential. However to be essential is quite general and as
a result Granas was only able to show this homotopy property for particular classes of
maps (the most general being compact (or condensing) Kakutani maps). However from
an application viewpoint, one does not need such a strong homotopy property. In fact
one usually only needs that if F is essential and F ∼= G, then G has a fixed point. In this
paper we establish this result for a large class of maps (namely, the acyclic maps). An
added bonus is that the result holds for maps between Hausdorff topological spaces (i.e.,
the spaces need not be vector spaces).

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps F : X →
K(Z); here K(Z) denotes the family of nonempty compact subsets of Z. A nonempty
topological space is said to be acyclic if all its reduced C̆ech homology groups over the
rationals are trivial. Now F : X → K(Z) is acyclic if F is upper semicontinuous with acyclic
values.

2. Continuation theory

Throughout this section Y will be a completely regular topological space and U will be
an open subset of Y .

Definition 2.1. It is said that F ∈ AC(U ,Y) if F : U → K(Y) is an acyclic compact map;
here U denotes the closure of U in Y .
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2 Essential maps

Definition 2.2. It is said that F ∈ AC∂U(U ,Y) if F ∈ AC(U ,Y) with x /∈ F(x) for x ∈ ∂U ;
here ∂U denotes the boundary of U in Y .

Definition 2.3. Let F,G∈ AC∂U(U ,Y). It is said that F ∼= G in AC∂U(U ,Y) if there exists
a upper semicontinuous compact map Ψ : U × [0,1]→ K(Y) with Ψt ∈ AC∂U(U ,Y) for
each t ∈ [0,1], Ψ1 = F and Ψ0 =G (here Ψt(x)=Ψ(t,x)).

Definition 2.4. A map F ∈ AC∂U(U ,Y) is said to be H-essential in AC∂U(U ,Y) if every
map G∈AC∂U(U ,Y) with G|∂U = F|∂U and G∼= F in AC∂U(U ,Y) has a fixed point in U .

We immediately present our continuation theorem.

Theorem 2.5. Let Y be a completely regular topological space, let U be an open subset of Y ,
and let F ∈AC∂U(U ,Y) be H-essential in AC∂U(U ,Y). Suppose there exists an upper semi-
continuous compact map H : U × [0,1]→ K(Y) with Ht ∈ AC(U ,Y) for each t ∈ [0,1],
H0 = F and x /∈Ht(x) for x ∈ ∂U and t ∈ (0,1]. Then H1 has a fixed point in U .

Proof. Let

B = {x ∈U : x ∈Ht(x) for some t ∈ [0,1]
}
. (2.1)

Notice that B �= ∅ since F is H-essential in AC∂U(U ,Y) (note in particular that F ∼= F
in AC∂U(U ,Y) and so F has a fixed point in U). Also B is closed (note that H is upper
semicontinuous) and in fact compact (note that H is compact). Also note that x /∈Ht(x)
for x ∈ ∂U and t ∈ [0,1] (note that H0 = F ∈ AC∂U(U ,Y)) so B∩ ∂U =∅. Now, since
Y is completely regular, there exists a continuous map μ : U → [0,1] with μ(B) = 1 and
μ(∂U)= 0. Define a map R : U → K(Y) by

R(x)=H
(
x,μ(x)

)
. (2.2)

Clearly R∈ AC∂U(U ,Y) since R|∂U =H0|∂U = F|∂U . We claim that

R∼= F in AC∂U(U ,Y). (2.3)

If (2.3) is true, then, since F is H-essential in AC∂U(U ,Y), there exists x ∈ U with x ∈
R(x)=H(x,μ(x)). Thus x ∈ B so μ(x)= 1 and consequently x ∈H(x,1)=H1(x), and we
are finished.

It remains to check (2.3). Let Q : U × [0,1]→ K(Y) be given by

Q(x, t)=H
(
x, tμ(x)

)
. (2.4)

Now Q0 =H0 = F and Q1(x)=H(x,μ(x))= R(x), and clearly Q : U × [0,1]→ K(Y) is an
upper semicontinuous compact map with Qt ∈ AC(U ,Y) for each t ∈ [0,1]. Also Qt is
fixed point free on ∂U for each t ∈ [0,1] since if there exists t ∈ [0,1] and x ∈ ∂U with
x ∈ Qt(x), then x ∈H(x, tμ(x)), so x ∈ B, and as a result μ(x) = 1, that is, x ∈H(x, t), a
contradiction. Thus (2.3) holds. �
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We may now apply Theorem 2.5 to establish the main result in [1].

Definition 2.6. It is said that F ∈ AC(Y ,Y) if F : Y → K(Y) is an acyclic compact map.

Definition 2.7. If F ∈AC(Y ,Y) and p ∈ Y then it is said that F ∼= {p} in AC(Y ,Y) if there
exists an upper semicontinuous compact map R : Y × [0,1]→ K(Y) with Rt ∈ AC(Y ,Y)
for each t ∈ [0,1], R1 = F, and R0 = {p} (here Rt(x)= R(x, t)).

Theorem 2.8. Let Y be a completely regular topological space, U an open subset of Y , and
u0 ∈U . Suppose there exists an upper semicontinuous compact map H : U × [0,1]→ K(Y)
with Ht ∈ AC(U ,Y) for each t ∈ [0,1], H0 = {u0} and with x /∈ Ht(x) for x ∈ ∂U and
t ∈ (0,1]. In addition, assume the following property holds:

for any Φ∈AC(Y ,Y) and any p ∈ Ywith Φ∼= {p}
in AC(Y ,Y),Φ has a fixed point in Y.

(2.5)

Then H1 has a fixed point in U .

Proof. Let F(x) = {u0} for each x ∈ U . The result follows from Theorem 2.5 if we show
that F ∈ AC∂U(U ,Y) is H-essential in AC∂U(U ,Y). Certainly F ∈ AC∂U(U ,Y) since u0 ∈
U . Now let G∈ AC∂U(U ,Y) be any map with G|∂U = F|∂U and G∼= {u0} in AC∂U(U ,Y).
To show that F is H-essential in AC∂U(U ,Y), we must show that G has a fixed point in U .

We know there exists an upper semicontinuous compact map Λ : U × [0,1]→ K(Y)
with Λt ∈ AC∂U(U ,Y) for each t ∈ [0,1], Λ0 = {u0} and Λ1 =G. Now let

D = {x ∈U : x ∈Λt(x) for some t ∈ [0,1]
}
. (2.6)

Notice that D �= ∅ (since u0 ∈U) is closed and compact and D∩ (Y\U)=∅. Thus there
exists a continuous map σ : Y → [0,1] with σ(D) = 1 and σ(Y\U) = 0. Define Ψ : Y ×
[0,1]→ K(Y) by

Ψ(x, t)=
⎧
⎨

⎩
Λ
(
x, tσ(x)

)
, x ∈U ,

{u0}, x ∈ Y\U. (2.7)

ClearlyΨ : Y × [0,1]→ K(Y) is an upper semicontinuous compact map with Ψt ∈AC(Y ,
Y) for each t ∈ [0,1] and as a result Ψ1

∼= {u0} in AC(Y ,Y). Now (2.5) guarantees that
there exists x ∈ Y with x ∈ Ψ1(x). If x ∈ Y\U then x ∈ {u0}, which is a contradiction
since u0 ∈U . Thus x ∈U so x ∈Λ(x,σ(x)), and as a result x ∈D, which implies σ(x)= 1
and so x ∈Λ(x,1)=G(x). �

Remark 2.9. Condition (2.5) was discussed in [1] and we refer the reader to that paper.
For the convenience of the reader we present some examples here. Suppose X and Z are
topological spaces. Given a class � of maps, �(X ,Z) denotes the set of maps F : X → 2Z

(nonempty subsets of Z) belonging to �, and �c the set of finite compositions of maps
in �. We let

�(�)= {W : FixF �= ∅ ∀F ∈�(W ,W)
}

, (2.8)

where FixF denotes the set of fixed points of F.



4 Essential maps

The class � of maps is defined by the following properties:
(i) � contains the class � of single-valued continuous functions;

(ii) each F ∈�c is upper semicontinuous and compact valued;
(iii) Bn ∈�(�c) for all n∈ {1,2, . . .}; here Bn = {x ∈Rn : |x‖ ≤ 1}.
Next we consider the class �κ

c (X ,Z) of maps F : X → 2Z such that for each F and each
nonempty compact subset K of X there exists a map G∈�c(K ,Z) such that G(x)⊆ F(x)
for all x ∈ K . By a space we mean a Hausdorff topological space. Let Q be a class of
topological spaces. A space Y is an extension space for Q (written Y ∈ ES(Q)) if for all X ∈
Q, for all K ⊆ X closed in X , any continuous function f0 : K → Y extends to a continuous
function f : X → Y . Recall that if X ∈ ES(compact) and F ∈�κ

c (X ,X), a compact map,
then F has a fixed point. Consequently we have the following result: if Y ∈ ES(compact)
then any map G ∈ AC(Y ,Y) has a fixed point, so trivially (2.5) holds (notice that the
condition that G∼= {p} in AC(Y ,Y) in (2.5) does not play any role in this example).

For our next example we suppose Y is a metrizable ANR. We claim that (2.5) holds.
To see this let G ∈ AC(Y ,Y), let p ∈ Y , and let G ∼= {p} in AC(Y ,Y) (i.e., there exists
an upper semicontinuous compact map R : Y × [0,1] → K(Y) with Rt ∈ AC(Y ,Y) for
each t ∈ [0,1], R1 = G, and R0 = {p}). By the Arens-Eells theorem we know that Y can
be regarded as a closed subset of a normed space E (recall that the Arens-Eells theorem
states that any metric space can be isometrically embedded as a closed subset in a normed
linear space). Since Y ∈ ANR, there is an open neighborhood V of Y in E and a retraction
r : V → Y . Let λ : E→ [0,1] be a continuous function with λ(E\V)= 0 and λ(Y)= 1. Also
let

Q(x)=
⎧
⎨

⎩
R
(
r(x),λ(x)

)
, x ∈V ,

{p}, x ∈ E\V (2.9)

(note that if x ∈ ∂V then Q(x) = R(x,λ(x)) = R(x,0) = {p}). Clearly for each x ∈ E we
have that Q(x) is acyclic valued and it is easy to see that Q : E→ K(E) is an upper semi-
continuous compact map. Thus Q ∈AC(E,E). A well-known result guarantees that there
exists x0 ∈ E with x0 ∈ Q(x0). Notice that if x0 ∈ E\V then x0 ∈ {p}, which is a con-
tradiction since p ∈ Y (note Y ⊂ V). If x0 ∈ V\Y then since Q : E → K(Y) (note that
R : Y × [0,1]→ K(Y)) and x0 ∈ Q(x0), we have that x0 ∈ Y , a contradiction. As a result
x0 ∈ Y so r(x0)= x0, λ(x0)= 1, and so x0 ∈ R(x0,1)=G(x0), that is, (2.5) holds.
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[2] A. Granas, Sur la méthode de continuité de Poincaré, Comptes Rendus de l’Académie des Sciences.
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