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We study the homogenization of reflected SDEs with locally periodic coefficients and
highly oscillating drift. Our method is entirely probabilistic, and builds upon earlier
works of Tanaka, Benchérif-Madani and Pardoux, and Bensoussan et al. We extend, to
Tanaka’s theorem locally periodic case.
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1. Introduction

Let L
ε

be a uniformly elliptic second-order partial differential operator of the form (2.11)
indexed by a parameter ε > 0. The homogenization problem for an elliptic equation con-
sists in computing the limit as ε ↓ 0, of the solution uε(x) of L

ε
uε = f in a domain D of

Rd subject to an appropriate boundary condition under the assumption that the coeffi-
cients ai j(x), bi(x), and ci(x) are periodic, almost periodic, or more generally, stationary
random fields. In a probabilistic approach the problem becomes the following. What is
the limit of the laws of the diffusion processes Xε

t with generator Lε as ε→ 0? This kind of
problem has been studied for diffusion processes in the whole ofRd by Freı̆dlin [5, 6] and
Bensoussan et al. [3], and in the case of the presence of boundary conditions by Tanaka
[13]; and in this paper, we will consider the case of locally periodic coefficients and gen-
eralize [13, Theorem 2.2]. This result of Tanaka is used by Ouknine and Pardoux [9],
the authors have combined the probabilistic approach of Pardoux [10] with backward
stochastic differential equations, in order to derive homogenization results for semilinear
parabolic PDEs with periodic highly oscillating drift and nonlinear term and nonlinear
Neumann boundary conditions. We note that Benchérif-Madani and Pardoux [1, 2] deal
in the locally periodic case with the same problem with a Cauchy boundary condition.

The paper is organized as follows. In Section 2, we give our assumptions, notation,
and the problem formulation. In Section 3 we deal with the main result and its proof.
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2 Locally periodic homogenization of reflected diffusion

2. Reflected diffusion with rapidly oscillating and locally periodic coefficients

Let D = {(x1, . . . ,xd) ∈ Rd,x1 > 0}, the functions σ : Rd ⊗Rd → Rd ⊗Rd, b : Rd ⊗Rd →
Rd, c : Rd ⊗Rd → Rd, and γ : ∂D ⊗ ∂D(∼= Rd−1 ⊗Rd−1) → Rd are locally periodic (i.e.,
periodic with respect to the second variable; of period 1 in each direction in D), and
γ1(x, y) = 1. We note a = σ(x, y)tσ(x, y)/2 and we define some family of operators in-
dexed by x and acting on y. By convention ∂i means ∂yi :

Lεx =
d∑

i, j=1

ai j
(
x,

y

ε

)
∂i∂j +

1
ε

d∑

i=1

bi
(
x,

y

ε

)
∂i +

d∑

i=1

ci
(
x,

y

ε

)
∂i,

Lx,y =
d∑

i, j=1

ai j(x, y)∂i∂j +
d∑

i=1

bi(x, y)∂i,

Γεx =
d∑

i=1

γi
(
x,

y

ε

)
∂i,

Γεx,y =
d∑

i=1

γi(x, y)∂i.

(2.1)

2.1. Assumptions on the coefficients. Our standing assumptions are the following.
(H.1) Global Lipschitz condition: there exists a constant c such that for any ζ = a,b,c,

and γ,

∥∥ζ(x, y)− ζ(x′, y′)
∥∥≤ c

(‖x− x′‖+‖y− y′‖) ∀x,x′ ∈Rd; y, y′ ∈ Td. (2.2)

(H.2) The partial derivatives ∂xζ(x, y) as well as the mixed derivatives ∂2
xy ζ(x, y) exist

and are continuous, ζ = a,b,c, and γ,x ∈Rd, y ∈ Td.
(H.3) The coefficients are bounded, that is, there exists a constant c such that for any

ζ = a,b,c, and γ,

∥∥ζ(x, y)
∥∥≤ c, x ∈Rd, y ∈ Td. (2.3)

The system

Lεx inside D,

Γεxu= 0 on ∂D
(2.4)

determines a unique diffusion process on D, which is called (Lεx ,Γεx)-diffusion.
By requirement there exist a Lx,y-diffusion on Rd with generator Lx,y and by Y-perio-

dicity assumption on the coefficients this process induces diffusion process Ux on the
d-dimensional torus Td, moreover this diffusion process is ergodic. We denote by m(x,·)
its unique invariant measure. In order for the process with generator Lεx to have a limit in
law as ε→ 0, we need the following condition to be in force.
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(H.4) Centering condition: for all x,
∫

Td
b(x,u)m(x,du)= 0. (2.5)

2.2. Notations. We use the following notation for any functions ζ(x, y) or ξ(x):

ζ
(
Xεs ,

Xεt
ε

)
≡ ζ(s, t),

Δs,rξ(·)≡ ξ(r)− ξ(s),

∂iζ(x, y)≡ ∂yi ζ(x, y).

(2.6)

First we notice that under (H.4), there exists a unique periodic solution b̂k of Lb̂k =−bk
for each k = 1, . . . ,d, with zero integral against the measure m(x,·). That solution is given

by b̂k(x,u)= ∫∞0 Eu{bk(x,Ux
t )}dt where under Pu, Ux starts from u.

We set

b̂ =

⎡
⎢⎢⎢⎢⎣

b̂1

...

b̂d

⎤
⎥⎥⎥⎥⎦

, ∇yb̂ =

⎡
⎢⎢⎢⎢⎣

∂1b̂1 ···∂db̂1

...··· ...

∂1b̂d ···∂db̂d

⎤
⎥⎥⎥⎥⎦

,

a0(x)=
∫

Td

(
I +∇yb̂

)
at
(
I +∇yb̂

)
(x,u)m(x,du),

c0(x)=
∫

Td

(
I +∇yb̂

)
c(x,u)m(x,du),

L0(x)=
d∑

i, j=1

a
i j
0 (x)∂i∂j +

d∑

i=1

ci0(x)∂i.

(2.7)

We write u=Hxϕ for the solution u of

Lxu= 0 in D

u= ϕ on ∂D.
(2.8)

Then Hx sends functions defined on ∂D to functions defined on D, while ΓxH sends
functions on ∂D to functions on ∂D, where Γx =∑d

i=1 γ
i(x, y)∂i. There exist a unique

Markov process on ∂D with generator ΓxHx. By the periodicity assumption this Markov
process induces a Markov process on the torus Td−1; let m̃(x,·) be the invariant measure
of the induced Markov process. We set

γ0(x)=
∫

Td−1

(
I +∇yb̂

)
γ(x,u)m̃(x,du),

Γ0(x)=
d∑

i=1

γi0(x)∂i.

(2.9)
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Given a d-dimensional Brownian motion {Bt; t ≥ 0} defined on a probability space (Ω,�,
P), (Xε,φε) is the unique solution with values in D×R+ of the following reflected SDE:

dXε
t = σ

(
Xε
t ,
Xε
t

ε

)
dBt +

1
ε
b
(
Xε
t ,
Xε
t

ε

)
dt+ c

(
Xε
t ,
Xε
t

ε

)
dt+ γ

(
Xε
t ,
Xε
t

ε

)
dφε

t , t ≥ 0,

Xε,1
t ≥ 0, φε is continuous and increasing,

∫ t

0
X1,ε
s dφε

s = 0, t ≥ 0,

Xε
0 = x,

(2.10)

where Xε,1 denotes the first component of the process Xε. We recall that D =Rd
+, so that

Xε lives in D, that is, Xε,1 remains nonnegative, and φε increases when and only when Xε,1

is zero, just to keep it nonnegative.
Let

Lε =
d∑

i, j=1

ai j
(
x,
x

ε

)
∂xi∂xj +

1
ε

d∑

i=1

bi
(
x,
x

ε

)
∂xi +

d∑

i=1

ci
(
x,
x

ε

)
∂xi ,

Γε =
d∑

i=1

γi
(
x,
x

ε

)
∂xi

(2.11)

be the operators acting on x, so the diffusion process Xε
t is an (Lε,Γε)-diffusion.

We define

C0(x, y)=
[
∂xb̂b+

(
I + ∂yb̂

)
c+

1
2

Tr∂2
xyb̂σσ

∗
]

(x, y),

S0(x, y)= [(I + ∂yb̂
)
σ
]
(x, y), A0(x, y)= S0S

∗
0 (x, y),

C0(x)=
∫

Td
C0(x,u)m(x,du), A0(x)=

∫

Td
A0(x,u)m(x,du),

γ0(x)=
∫

Td−1

[(
I + ∂yb̂

)
γ
]
(x, y)m̃(x,dy),

L0 =
d∑

i, j=1

A
ij
0 (x)∂xi∂xj +

d∑

i=1

C
i
0(x)∂xi , Γ0 =

d∑

i=1

γi0(x)∂xi ,

dXt = A
1/2
0

(
Xt
)
dBt +C0

(
Xt
)
dt+ γ0

(
Xt
)
dφt, t ≥ 0,

X1
t ≥ 0, φ is continuous and increasing,

∫ t

0
X1
s dφs = 0, t ≥ 0,

X0 = x,

(2.12)

The operators L0 and Γ0 are acting on x.
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3. Main result

We can now state our main results, which are a generalization of Tanaka [13, Theorem
2.2].

Theorem 3.1. Under the assumptions (H.1), (H.2), (H.3), and (H.4), the (Lε,Γε)-diffusion
process Xε converges in law to an (L0,Γ0)-diffusion X as ε ↓ 0. Moreover,

(
Xε,MXε

,φε
)=⇒ (

X ,MX ,φ
)
, (3.1)

where MX (resp., MXε
) is the martingale part of X (resp., Xε), and φ (resp., φε) is the local

time of X1 (resp., Xε,1) at 0.

Remark 3.2 (Skorohod equation). We have Xε,1
s =Uε,1

s +φε
s , where

Uε
t = x+

∫ t

0

(
σ
(
Xε
s ,
Xε
s

ε

)
dBs +

1
ε
b
(
Xε
s ,
Xε
s

ε

)
ds+ c

(
Xε
s ,
Xε
s

ε

)
ds
)

, (3.2)

so by [13, Proposition 3.2],

φε
t −φε

s ≤ max
s≤t1≤t2≤t

∣∣Uε,1
t1 −Uε,1

t2

∣∣≤ sup
s≤t1≤t2≤t

∥∥Uε
t2 −Uε

t1

∥∥, 0≤ s≤ t, (3.3)

and using the boundedness of the coefficients, with probability one, we have

φε
t −φε

s ≤ c
(
(t− s) + (t− s)1/2 + ε−1(t− s)

)
, 0≤ s≤ t, (3.4)

and for t− s≤ ε2,

φε
t −φε

s ≤ cε(2 + ε) ∀t, s, 0≤ s≤ t ≤ s+ ε2 ≤ T. (3.5)

Let U· be the unique diffusion inRd, solution in law to the stochastic differential equa-
tion for 0≤ t ≤ T ,

Ut =
∫ t

0
C0
(
Us
)
ds+

∫ t

0
A

1/2
0

(
Us
)
dBs. (3.6)

Then we have from [1], that Uε converge in law sense to U (i.e., Uε⇒ U). We have, by
the Skorohod equation, that (Xε,1,φε) is associated to Uε,1:

Xε,1 =Uε,1 +φε ∀ε > 0. (3.7)

According to the above result, the above remark, and Słomiński [11, Corollary A.3],
we have the following.

Lemma 3.3. (Xε,1,Uε,1,φε)⇒ (X1,U1,φ) where (X1,φ) is associated to U1.

By [1, Lemmas 21 and 22] and the above remark, we have also the following.

Lemma 3.4. For any p > 0, there exists a constant cp such that for all ε > 0,

E
(
φε
T

)p
< cp. (3.8)
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Proof. We have from the remark that Xε,1
s =Uε,1

s +φε
s and since Uε

t =Uε
t +Rε

t by [1, Lem-
mas 21 and 22], for any 0≤ t ≤ T , ∃c such that E‖Uε

t ‖p < c and E‖Rεt ‖p < c. From (3.3),
we have E(φε

T)p ≤ E(max0≤t1≤t2≤t |Uε,1
t1 −Uε,1

t2 |)p ≤ E(sup0≤t1≤t2≤t |Uε
t2 −Uε

t1|)p <∞. �

From [1, Lemma 1] it is easy to reach the following result.

Lemma 3.5. Let h(x, y) be a continuous bounded function on Rd × Td such that for all
x ∈Rd,

∫
Td h(x,u)m(x,du)= 0. Then

ε−1
∫ t

s
h(r,r)dr = ε−1

∫ t

s

(
Δs,rh(·,r) +Δs,rL·,r ĥ(s,r)

)
dr

+
∫ t

s
∂yĥ(s,r)

[
c(r,r)dr + γ(r,r)dφεr

]

+
∫ t

s
∂yĥ(s,r)σ(r,r)dBr + εΔt,sĥ(s,·).

(3.9)

Proof. Use the Itô-Krylov formula to compute εΔs,t ĥ(s,·), where ĥ is the solution of the

Poisson equation, and the fact that Ls,r ĥ(s,r) +h(s,r)= 0. �

Let us take a fine enough equidistant subdivision, ultimately depending on ε, of the
interval [0,T] by means of the points ti, i= 0, . . . , [T/Δt]=N, where t0 = 0, Δti = ti+1− ti.
We denote by t∗ the largest ti below t, by t∗ the least ti above t, and by Nt the integer
[t/Δt] for t ≤ T . Applying the preceding lemma to b(x, y) on each Δti we can derive a
representation of Xε

t in which the singularity is removed by introducing a multiplicative
small corrector term.

Let us first define, for 0≤ s≤ T ,

F0,ε(s∗,s
)= (I + ∂yb̂

(
s∗,s

))
c(s,s),

G0,ε(s∗,s
)= (I + ∂yb̂

(
s∗,s

))
σ(s,s),

γ0,ε(s∗,s
)= (I + ∂yb̂

(
s∗,s

))
γ(s,s),

R0,ε(s∗,s
)= Δs∗,sb(·,s) +Δs∗,sL·,sb̂

(
s∗,s

)
,

(3.10)

and state the following as in [1].

Corollary 3.6. With the notation above, for 0≤ t ≤ T ,

Xε
t∗ = x+

∫ t∗

0
F0,ε(s∗,s

)
ds+

∫ t∗

0
G0,ε(s∗,s

)
dBs + ε−1

∫ t∗

0
R0,ε(s∗,s

)
ds

+ ε
Nt−1∑

i=0

Δti+1,ti b̂
(
ti,·

)
+
∫ t∗

0
γ0,ε(s∗,s

)
dφεs .

(3.11)

Proof. Write down Xε
t∗ and use Lemma 3.5 to change ε−1

∫ t∗
0 b(s,s)ds by

∑Nt−1
i=0 ε−1

∫ ti+1

ti b(s,
s)ds. �
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We need the following.

Lemma 3.7 [1, Lemma 2]. Under the conditions above, there exists a constant c > 0 such
that for all x ∈Rd and y in Td,

∥∥b̂(x, y)
∥∥+

∥∥∂xb̂(x, y)
∥∥+

∥∥∂yb̂(x, y)
∥∥+

∥∥∂2
yb̂(x, y)

∥∥+
∥∥∂2

xyb̂(x, y)
∥∥≤ c (3.12)

and these derivatives are continuous.

Now we can give a result about tightness.

Lemma 3.8. There exists a constant c such that for all ε > 0 and 0≤ s < t ≤ T ,

E
(

sup
s≤v≤t

∥∥Xε
v −Xε

s

∥∥4
)
≤ c

[
(t− s)2 + ε4 +E

(
φεt −φεr

)4
]
. (3.13)

Proof. Let ti be as in Corollary 3.6 and let 0≤ s < v ≤ t ≤ T , we can write

∥∥Xε
v −Xε

s

∥∥≤ ∥∥Xε
v −Xε

v∗

∥∥+
∥∥Xε

v∗ −Xε
s∗

∥∥+
∥∥Xε

s −Xε
s∗

∥∥. (3.14)

By Lemmas 3.5 and 3.7, for 0≤ r∗ ≤ v ≤ r ≤ T ,

∥∥Xε
v −Xε

v∗

∥∥≤ c

⎛
⎝

ε−1
∫ v
r∗

∥∥Xε
u−Xε

r∗

∥∥du+
(
v− r∗

)

+
∥∥∫ v

r∗G
0,ε(r∗,u

)
dBu

∥∥+ ε+
(
φεv −φεr∗

)

⎞
⎠ . (3.15)

Therefore by Hölder and convexity,

∥∥Xε
v −Xε

v∗

∥∥4 ≤ c

⎛
⎜⎝
ε−4

(
v− r∗

)3 ∫ v
r∗

∥∥Xε
u−Xε

r∗

∥∥4
du+

(
v− r∗

)4

+
∥∥∫ v

r∗G
0,ε(r∗,u

)
dBu

∥∥4
+ ε4 +

(
φεv −φεr∗

)4

⎞
⎟⎠ . (3.16)

Hence

E
(

sup
r∗≤v≤r

∥∥Xε
v −Xε

r∗

∥∥4
)
≤ c

⎛
⎜⎜⎝
ε−4

(
r− r∗

)3 ∫ r
r∗ E

(
sup

r∗≤v≤u

∥∥Xε
v −Xε

r∗

∥∥4
)
du

+
(
r− r∗

)4
+
(
r− r∗

)2
+ ε4 +E

(
φεr −φεr∗

)4

⎞
⎟⎟⎠ . (3.17)
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By the Gronwall-Bellman lemma,

E
(

sup
r∗≤v≤r

∥∥Xε
v −Xε

r∗

∥∥4
)
≤ c

⎛
⎝
(
r− r∗

)4
+
(
r− r∗

)2
+ ε4

+E
(
φεr −φεr∗

)4

⎞
⎠ec

′ε−4(r−r∗)4
. (3.18)

We now choose Δti = ε2, by this and (3.5)

E
(

sup
r∗≤v≤r

∥∥Xε
v −Xε

r∗

∥∥4
)
≤ c

[
ε4 +E

(
φεr −φεr∗

)4
]
≤ c′ε4. (3.19)

Since, from Lemma 3.7, the function b̂(·, y) is Lipschitz on Rd uniformly in y ∈ Td, we
have by convexity for s≤ v ≤ t,

E

[
sup
s≤v≤t

∥∥∥∥∥

Nt−1∑

i=Ns+1

Δti+1,ti b̂
(·, ti

)
∥∥∥∥∥

4]
≤ cE

( Nt−1∑

i=Ns+1

∥∥Xε
ti −Xε

ti−1

∥∥
)4

≤ c
(
t− s

Δti

)4[
c′ε4].

(3.20)

Hence

E

[
sup
s≤v≤t

∥∥∥∥∥ε
Nt−1∑

i=Ns+1

Δti+1,ti b̂
(·, ti

)
∥∥∥∥∥

4]
≤ c′′(t− s)4. (3.21)

So by Corollary 3.6, we have

E
(

sup
s≤v≤t

∥∥Xε
v∗ −Xε

s∗

∥∥4
)
≤ c

[
ε4 +E

(
φεt −φεs

)4
+ (t− s)2 + (t− s)4]

≤ c′
(
ε4 + (t− s)2 +E

(
φεt −φεs

)4
) (3.22)

which implies the result. �

We can now state the following.

Theorem 3.9. Under the assumptions on the coefficients, the family of processes {Xε,
0 < ε ≤ 1} is tight in C[0,T].

Proof. By Billingsley [4, Theorem 8.3], it suffices to check that for any α and δ > 0, there
exist 0 < ε0 ≤ 1 and 0 < θ ≤ T such that

θ−1P
(

sup
s≤v≤s+θ

∥∥Xε
v −Xε

s

∥∥ > δ
)
< α (3.23)

for all s≤ T − θ and ε ≤ ε0. We have by the Markov-Chebychev inequality

P
(

sup
s≤v≤s+θ

∥∥Xε
v −Xε

s

∥∥ > δ
)
≤ 1

δ4
E
(

sup
s≤v≤s+θ

∥∥Xε
v −Xε

s

∥∥
)4

≤ c

δ4

[
θ2 + ε4 +E

(
φεs+θ −φεs

)4
]
.

(3.24)
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By continuity of φεt , there exist θ0 such that E(φεs+θ − φεs ) ≤ ε (by (3.5), we have E(φε
t −

φε
s)≤ cε, 0≤ s≤ t ≤ s+ ε2) for all 0 < θ ≤ θ0 ≤ T . For any α and δ > 0, there exist 0 < ε0 ≤

1 and 0 < θ ≤ θ0 ≤ T such that cθ[θ2 + 2ε4] < αδ4 for 0 < ε < ε0, this ends the proof. �

We can recover our processes as a main term which converges in law, plus an asymp-
totically small term. By Corollary 3.6, we have

Xε
t∗ = x+

∫ t∗

0

(
I + ∂yb̂

(
s∗,s

))
c(s,s)ds+

∫ t∗

0

(
I + ∂yb̂

(
s∗,s

))
σ(s,s)dBs

+
∫ t∗

0

(
I + ∂yb̂

(
s∗,s

))
γ(s,s)dφεs + ε

Nt−1∑

i=0

Δti+1,ti b̂
(
ti,·

)

+
Nt−1∑

i=0

ε−1
∫

Δti

(
Δti,sb(·,s) +Δti,sL·,sb̂

(
ti,s
))
ds.

(3.25)

Define

F1,ε
2 (s) �

(
I + ∂yb̂

(
s∗,s

))
c(s,s),

G1,ε(s) �
(
I + ∂yb̂

(
s∗,s

))
σ(s,s),

γ1,ε(s) �
(
I + ∂yb̂

(
s∗,s

))
γ(s,s),

(3.26)

R1,ε
Nt

�
Nt−1∑

i=0

ε−1
∫

Δti

(
Δti,sb(·,s) +Δti,sL·,sb̂

(
ti,s
))
ds, (3.27)

S1,ε
Nt

� ε
Nt−1∑

i=0

Δti+1,ti b̂
(
ti,·

)= ε
Nt−1∑

i=1

Δti−1,ti b̂
(·, ti

)
+ ε

(
b̂(0,0)− b̂

(
tNt−1, tNt

))

� S2,ε
Nt

+R2,ε
Nt
.

(3.28)

So we have now

Xε
t∗ = x+

∫ t∗

0
F1,ε

2 (s)ds+
∫ t∗

0
G1,ε(s)dBs +

∫ t∗

0
γ1,ε(s)dφεs + S1,ε

Nt
+R1,ε

Nt
,

S1,ε
Nt

� S2,ε
Nt

+R2,ε
Nt
.

(3.29)
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Using the same decomposition as in [1, pages 11–13 of the preprint], we denote by F2,ε
1 (s)

the process defined on ]ti−1, ti] by ∂xb̂(ti−1, ti)b(s,s).
We define

R3,ε
Nt
= ε

Nt−1∑

i=1

∫ 1

0

(
∂xb̂

(
Xε
ti−1

+ lΔti−1,tiX
ε
· ,
Xε
ti

ε

)
− ∂xb̂

(
ti−1, ti

))
Δti−1,tiX

ε
·dl

+ ε
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂
(
ti−1, ti

)
c(s,s)ds+ ε

Nt−1∑

i=1

∫ ti

ti−1

∂xb̂
(
ti−1, ti

)
γ(s,s)dφε

s

�R3,ε,1
Nt

+R3,ε,2
Nt

+R3,ε,3
Nt

,

S3,ε
Nt
= ε

Nt−1∑

i=1

∂xb̂
(
ti−1, ti

)∫ ti

ti−1

σ(s,s)dBs �
Nt−1∑

i=1

S3,ε,i
Nt

.

(3.30)

So, we have

S2,ε
Nt
=
Nt−1∑

i=1

∫ ti

ti−1

F2,ε
1 (s)ds+ S3,ε

Nt
+R3,ε

Nt
, (3.31)

we can compute S3,ε,i
Nt

to have

S3,ε,i
Nt

= εΔti−1,ti∂xb̂
(
ti−1,·)

∫ ti

ti−1

σ(s,s)dBs + ε
∫ ti

ti−1

∂xb̂
(
ti−1, ti

)
σ(s,s)dBs, (3.32)

but

εΔti−1,ti∂xb̂
(
ti−1,·)= ε(∂xb̂

(
ti−1, ti

)− ∂xb̂
(
ti−1, ti−1

))= ∂2
xyb̂

(
ti−1, ti

)
Δti−1,tiX

ε
·

+
∫ 1

0

⎛
⎜⎜⎝
∂2
xyb̂

(
Xε
ti−1

,
1
ε

(
Xε
ti−1

+ lΔti−1,tiX
ε·
))

−∂2
xyb̂

(
ti−1, ti

)

⎞
⎟⎟⎠Δti−1,tiX

ε
·dl.

(3.33)
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We define Ui � ∂2
xyb̂(ti−1, ti),

S4,ε
Nt

�
Nt−1∑

i=1

∫ ti

ti−1

Uiσ(s,s)dBs

∫ ti

ti−1

σ(s,s)dBs + ε−1
Nt−1∑

i=1

∫ ti

ti−1

Uib(s,s)ds
∫ ti

ti−1

σ(s,s)dBs

+
Nt−1∑

i=1

∫ ti

ti−1

Uic(s,s)ds
∫ ti

ti−1

σ(s,s)dBs +
Nt−1∑

i=1

∫ ti

ti−1

Uiγ(s,s)dφε
s

∫ ti

ti−1

σ(s,s)dBs,

(3.34)

R4,ε
Nt

�
Nt−1∑

i=1

∫ 1

0

(
Δl
i∂

2
xyb̂

)
Δti−1,tiX

ε
·dl

∫ ti

ti−1

σ(s,s)dBs + ε
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂(ti−1, ti−1)σ(s,s)dBs

�R4,ε,1
Nt

+R4,ε,2
Nt

,
(3.35)

where

Δl
i∂

2
xyb̂= ∂2

xyb̂
(
Xε
ti−1

,
Xε
ti−1

+ lΔti−1,tiX
ε·

ε

)
− ∂2

xyb̂
(
ti−1, ti

)
, (3.36)

so that S3,ε
Nt
= S4,ε

Nt
+R4,ε

Nt
. We also compute S4,ε

Nt
. Let us first define by F3,ε

3 (s) the process

defined on ]ti−1, ti] by Tr[∂2
xyb̂(ti−1, ti)a(s,s)] and by {R5,ε,i

Nt
}1≤i≤3 the last three terms in

(3.34). We obtain

S4,ε
Nt
=
Nt−1∑

i=1

∫ ti

ti−1

F3,ε
3 (s)ds+R5,ε

Nt
, (3.37)

where R5,ε
Nt

�R5,ε,1
Nt

+R5,ε,2
Nt

+R5,ε,3
Nt

.
Let us now smooth out the irregularities in the construction of our coefficients. Indeed,

let us write the following definition:

F(x, y) �
(
∂xb̂b+

(
I + ∂yb̂

)
c+ Tr

[
∂2
xyb̂a

])
(x, y) �

(
F1 +F2 +F3

)
(x, y),

G(x, y) �
((
I + ∂yb̂

)
σ
)
(x, y),

Λ(x, y) �
((
I + ∂yb̂

)
γ
)
(x, y).

(3.38)

Note that F, G, and Λ are continuous.
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Those operations on the coefficients of Xε
t∗ involve the extra rests

R6,ε
Nt
=
Nt−1∑

i=1

∫ ti

ti−1

(
∂xb̂

(
ti−1, ti

)− ∂xb̂(s,s)
)
b(s,s)dBs,

R7,ε
Nt
=
∫ t∗

0

((
I + ∂yb̂

(
s∗,s

))
c(s,s)− (I + ∂yb̂

)
c(s,s)

)
ds,

R8,ε
Nt
=
Nt−1∑

i=1

∫ ti

ti−1

Uiσ(s,s)dBs

∫ ti

ti−1

σ(s,s)dBs−
∫ t∗

0
Tr
[
∂2
xyb̂a

]
(s,s)ds,

R9,ε
Nt
=
∫ t∗

0

((
I + ∂yb̂

(
s∗,s

))
σ(s,s)− (I + ∂yb̂

)
σ(s,s)

)
dBs,

R10,ε
Nt

=
∫ t∗

0

((
I + ∂yb̂

(
s∗,s

))
γ(s,s)− (I + ∂yb̂

)
γ(s,s)

)
dφε

s .

(3.39)

We have thus proved the following.

Lemma 3.10. For any subdivision ti with constant step Δti,

Xεt∗ = X
ε
t∗ +RεNt

, (3.40)

where

X
ε
t∗ = x+

∫ t∗

0
F(s,s)ds+

∫ t∗

0
G(s,s)dBs +

∫ t∗

0
Λ(s,s)dφεs , (3.41)

and the remainder RεNt
is the sum of the residual quantities, that is,

RεNt
=

10∑

i=1

Ri,ε
Nt
. (3.42)

We can now state the following theorem, which deals with the order of magnitude of
the RεNt

.

Theorem 3.11. With the notations above, the decomposition

Xεt = X
ε
t +Rεt , t ≥ 0, (3.43)

holds, where X
ε
t is the Itô process

X
ε
t = x+

∫ t

0
F(s,s)ds+

∫ t

0
G(s,s)dBs +

∫ t

0
Λ(s,s)dφεs , (3.44)

and the remainder term Rεt satisfies

P
(

sup
t≤T

∥∥Rεt
∥∥ > δ

)
−→ 0 ∀δ > 0. (3.45)
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Proof. For small value of ε, [1, Lemma 20, page 26 of the preprint] is still valid, so we use
the proof of [1, Theorem 2] and we consider only the new terms, that is, R10,ε

t and R5,ε,3
t ,

R10,ε
Nt

=
∫ t∗

0

((
I + ∂yb̂

(
s∗,s

))
γ(s,s)− (I + ∂yb̂)γ(s,s)

)
dφε

s ,

R5,ε,3
Nt

=
Nt−1∑

i=1

∫ ti

ti−1

Uiγ(s,s)dφε
s

∫ ti

ti−1

σ(s,s)dBs,

(3.46)

the last term clearly tends to zero in probability. We have

R10,ε
Nt

=
∫ t∗

0

(
∂yb̂

(
s∗,s

)− ∂yb̂(s,s)
)
γ(s,s)dφε

s ,

E
(∥∥R10,ε

Nt

∥∥)≤ cE
(

sup
0≤s∗≤s≤s∗≤T

∥∥Xε
s −Xε

s∗

∥∥
)

,

(3.47)

hence ‖R10,ε
Nt
‖ tend to zero in probability, as ε tend to zero. �

In order to identify the limit points of PXε , it suffices to do so for those of PX
ε . We use

the martingale problem with reflection approach.

Remark 3.12. Following Stroock and Varadhan [12] (see also [3, pages 476-477]), the
measurePεx on �([0,T],D) associated with (Lε,Γε), where Γε = 〈γ(·,·/ε),∇〉 is a solution
of the submartingale problem:

(i) Pεx(x(0)= x)= 1,
(ii) f (x(t))− f (x(0))− ∫ t0 Lε f (x(s))ds is a Pεx submartingale for each f ∈�2(D) sat-

isfying 〈γ(·,·/ε),∇ f 〉 ≥ 0 on ∂D.
Under our assumptions, X

ε
(by abuse) is solution of the submartingale problem, hence

X
ε
t ∈D, t ≥ 0, and there exists a continuous, nondecreasing process λε such that

f
(
X
ε
t

)− f
(
X
ε
0

)−
∫ t

0
Lε f

(
X
ε
s

)
ds−

∫ t

0

〈
γ
(
X
ε
s ,
X
ε
s

ε

)
,Γε f

(
X
ε
s

)'
dλεs (3.48)

is {�Xε ,λε
t }-martingale for each f ∈ C2

K (Rd) and
∫ t

0 1D(X
ε
s )dλεs = 0, t ≥ 0.

Let ϕ(x) be a function in C∞K (Rd) and apply the Itô formula, we have for t ≥ t0,

ϕ
(
X
ε
t

)−ϕ
(
X
ε
s

)=
∫ t

s
∂xϕ

(
X
ε
r

)[
F(r,r)dr +G(r,r)dBr +Λ(r,r)dφεr

]

+
∫ t

s
Tr∂2

xxϕ
(
X
ε
r

)
GG∗(r,r)dr.

(3.49)
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Now let Φt0 (·), t0 ≤ T , be a bounded continuous functional on the Wiener space C[0,T]
which depends only on the past up to t0. Define GG∗ =Π. We have

E

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

Δt0,tϕ
(
X
ε
·
)

−
∫ t

t0
∂xϕ

(
X
ε
r

)
⎡
⎣
(
F + Tr∂2

xxϕ
(
X
ε
r

)
Π
)
(r,r)dr

+Λ(r,r)dφεr

⎤
⎦

⎞
⎟⎟⎟⎠Φt0 (·)

⎤
⎥⎥⎥⎦= 0. (3.50)

Let us now homogenize F, Π and Λ by setting (see also Section 2.2)

C0(x)=
∫

Td
F(x,u)m(x,du),

A0(x)=
∫

Td
Π(x,u)m(x,du),

γ0(x)=
∫

Td−1
Λ(x,u)m̃(x,du).

(3.51)

The relation (3.50) becomes

E

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

Δt0,tϕ
(
X
ε
·
)

−
∫ t

t0
∂xϕ

(
X
ε
r

)
⎡
⎣
(
C0 + Tr∂2

xxϕ
(
X
ε
r

)
A0
)(
Xεr
)
dr

+γ0
(
Xεr
)
dφεr

⎤
⎦

⎞
⎟⎟⎟⎠Φt0 (·)

⎤
⎥⎥⎥⎦

= E
⎡
⎣
⎛
⎝
∫ t

t0
∂xϕ

(
X
ε
r

)
⎡
⎣
(
C0# + Tr∂2

xxϕ
(
X
ε
r

)
A0#

)
(r,r)dr

+γ0#(r,r)dφεr

⎤
⎦
⎞
⎠Φt0 (·)

⎤
⎦ ,

(3.52)

where ζ#(x, y)= ζ(x, y)− ζ(x).
Now we show the continuity of C0, A0, and γ0.

Lemma 3.13. (i) If xn→ x0, then m(xn,·)⇒m(x0,·) and the functions C0(·) and A0(·) are
continuous.

(ii) If xn→ x0, then m̃(xn,·)⇒ m̃(x0,·) and the function γ0(·) is continuous.

Proof. The weak convergence in (i) follows from [1, Lemma 6]; C0 and A0 are continuous
since F(·,·) and Π(·,·) are. Let xn→ x0.

Recall that there exists a unique Markov process on ∂D with generator ΓxHx and By
the periodicity assumption this Markov process induces a Markov process indexed by x

(parameter) on the torus Td−1, say X̃x, and m̃(x,·) is the invariant measure of X̃x. We
have the continuity of this family of Markov processes with respect to parameter x, and
so, if the initial point is the same, say y, then supt≤T |X̃xn − X̃x0| → 0 in probability by [8,
Theorem 7.1] (or see Gı̄hman and Skorohod [7, pages 54-55] for details). Now,

∀ϕ∈�(Td−1), 0≤ t ≤ T ,
∫

Td−1
ϕ(y)m̃

(
xn,dy

)=
∫

Td−1
Ey
[
ϕ
(
X̃xn
t

)]
m̃
(
xn,dy

)
(3.53)
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hence
∫

Td−1
ϕ(y)m̃

(
xn,dy

)=
∫

Td−1
Ey
[
ϕ
(
X̃x0
t

)]
m̃
(
xn,dy

)
+
∫

Td−1
Ey
[
ϕ
(
X̃xn
t

)−ϕ
(
X̃x0
t

)]
m̃
(
xn,dy

)
.

(3.54)

The last term tends to zero, as n→∞, consequently, we obtain the identity
∫

Td−1
ϕ(y)m̃0(dy)=

∫

Td−1
Ey
[
ϕ
(
X̃xn
t

)]
m̃0(dy) ∀ϕ∈�

(
Td−1), 0≤ t ≤ T. (3.55)

Hence m̃0 = m̃(x0,·), and the whole sequence {m̃(xn,·)}n>0 converges to m̃(x0,·).
The function Λ(x, y) is continuous so we deduce that

lim
n→∞γ0

(
xn
)= lim

n→∞

∫

Td−1
Λ
(
xn,u

)
m̃
(
xn,du

)=
∫

Td−1
Λ
(
x0,u

)
m̃
(
x0,du

)= γ0
(
x0
)
. (3.56)

�

Now we need a locally period theorem to deal with the expected value on the right-
hand side in (3.52). This can be done by the two following lemmas.

Lemma 3.14. Let h(x, y) be a continuous bounded function on Rd × Td such that for all
x ∈Rd,

∫

Td
h(x, y)m(x,dy)= 0, (3.57)

h(x,·)∈W1,p(Td) for some p > d, and moreover there exists c(p) <∞, such that

∥∥h(x,·)∥∥W1,p(Td) ≤ c(p). (3.58)

Suppose moreover that ϕ∈�∞
K (Rd), then

Hε(t)=
∫ t

0
ϕ
(
X
ε
s

)
h
(
Xε
s ,
Xε
s

ε

)
ds (3.59)

converge to zero in L1(Ω) for any 0 < t ≤ T .

Proof. See the careful proof of [1, Theorem 3] and Lemma 3.5. �

Lemma 3.15. Let v(x, y) be a continuous bounded function on Rd ×Td−1 such that for all
x ∈Rd,

∫

Td−1
v(x, y)m̃(x,dy)= 0. (3.60)

Suppose moreover that ϕ∈�∞
K (Rd), and for y = (0, ỹ)∈ Td, ỹ ∈ Td−1, (but here abuse by

y ∈ Td−1)

Hε(t)=
∫ t

0
ϕ(X

ε
s )v

(
Xε
s ,
Xε
s

ε

)
dφεr (3.61)

converge to zero in L1(Ω) for any 0 < t ≤ T .
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Proof. Since ϕ∈�∞
K (Rd) and X

ε ⇒ X , it suffices to prove that
∫ t

0 v(Xε
s ,Xε

s /ε)dφ
ε
r converge

to zero in L1(Ω) for any 0 < t ≤ T , and to treat the case of v continuous with compact
support inRd ×Td−1. Since such a function can be uniformly approximated by a function
of the form

n∑

1

hi(x)gi(y), (3.62)

it is sufficient to establish the result for v of the form

v(x, y)= h(x)g(y), (3.63)

with h and g continuous and bounded. One can take h > 0 (since the result is still for−v).
Since all integrands are bounded, we have |Hε(t)| ≤ Kφεt so supε |Hε(t)|2 <∞, it is

sufficient to establish that sup0≤t≤T |Hε(t)| → 0 in probability as ε→ 0.

We have
∫ t

0 v(Xε
s ,Xε

s/ε)dφ
ε
r =

∫ t
0 h(Xε

s )g(Xε
s/ε)dφ

ε
r , let dϕεr =h(Xε

s )dφεr and dϕr=h(Xs)dφr
so that

∫ t
0 h(Xε

s )g(Xε
s /ε)dφ

ε
r =

∫ t
0 g(Xε

s /ε)dϕ
ε
r .

Since {Zε
t�=h(Xε

t ):0 ≤ t ≤ T} converges in the same sense as {Xε
t }, now h(x) > 0 so

ϕε· ,ϕ· ∈ Vc
+ follows clearly from the fact (see the proof of [9, Lemma 3.3]) that the map-

ping

(z,φ)−→
∫ t

0
zdφ (3.64)

is continuous from D([0,T])×Vc
+ into C([0,T]), where we equip D([0,T]) with the S-

topology, Vc
+ and C([0,T]) with the sup-norm topology. Here and below V+ denotes

the set of càdlàg increasing functions from [0,T] into R and Vc
+ the set of continuous

increasing functions from [0,T] into R. Let

g =
(

inf
y∈Td−1

g(y)
)−

,

g̃ =
∫

Td−1

(
g(y) + g

)
m̃(x,dy).

(3.65)

It suffices to prove that
∫ t

0

(
g
(
Xε
s

ε

)
+ g

)
dϕε

s
�−−→ g̃

∫ t

0
dϕs (3.66)

as ε → 0. But (
∫ t

0(g(Xε
s /ε) + g)dϕε

s ; 0 ≤ t ≤ T)ε↘0 is a collection of increasing functions
which converge in law uniformly in t to the continuous function (g̃ϕt; 0 ≤ t ≤ T), see
Tanaka [13, Lemma 6.4]. �
Theorem 3.16. There is only one limit point of the family Xε as ε → 0, namely X0, the
diffusion with reflection solution of

X0
t = x+

∫ t

0
A

1/2
0

(
X0
s

)
dWs +

∫ t

0
C0
(
X0
s

)
ds+

∫ t

0
γ0
(
X0
s

)
dλs, (3.67)

where C0(x), A0(x), and γ0(x) are defined in (3.51) (see also (3.26), (3.38)).
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Proof. SinceC0(x),A0(x), and γ0(x) are continuous, it suffices, in order to be able to apply
uniqueness theorem to a constrained martingale problem to show as in the martingale
uniqueness problem, that the matrix A0(x) is positive definite for each x. This last point
is shown in the proof of [1, Corollary 2]. �
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