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We consider a k-out-of-N reliability system with identical components having exponen-
tial lifetimes. There is a single repairman who attends to failed components on a first-
come first-served basis. The repair times are assumed to be of phase type. The system has
K spares that can be used according to a probabilistic rule to extend the lifetime of the
system. The system is analyzed using Markov chain theory and some interesting results
are obtained. A few illustrative numerical examples are discussed.
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1. Introduction and model description

The k-out-of-N reliability system is one of the most popular and widely used systems in
practice. These systems have been studied extensively in the literature in the context of
computing the reliability, optimizing the system, common cause failures, and with repair
facility for fixing the failed components [5]. The k-out-of-N reliability systems have been
studied in certain situations where redundancy is of importance. Redundancy is required
not only to extend the functioning of the system but also to achieve a certain reliabil-
ity of the system. Classical examples of redundancy requirement occur in aircrafts, space
shuttles, nuclear plants, satellites, electric generators, design of VLSI (very large scale inte-
grated) circuits, and computer systems. The k-out-of-N systems can be classified into (a)
active redundant systems in which all N components are active even though only k com-
ponents are required for the proper functioning of the system; (b) cold standby systems
in which N − k components will not be active and upon failure of one of the k active com-
ponents, cold standby component will instantaneously replace the failed component; (c)
warm standby systems in which N − k components will have a smaller failure rate com-
pared to the active ones; (d) hot standby systems in which N − k components will have a
higher failure rate as compared to the k active ones. Furthermore, the k-out-of-N systems
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can have a repair facility containing one or more servers who will fix the failed compo-
nents. The literature on k-out-of-N systems is quite extensive. Thus, we refer the reader
to [5] for a comprehensive review of the k-out-of-N systems including the setting up of
several optimization problems and their solution techniques. This book includes several
references to published articles on the k-out-of-N systems. Recently, the papers [1, 2] in-
tegrate the spares, the repairs, and the maintenance policy so as to prolong the life of a
k-out-of-N system. While these papers deal with a maintenance policy along with spares
and repairs, our focus here is mainly on the reliability system with spares and repairs.

In this paper we consider a k-out-of-N system with active redundancy. There is a reli-
able single repairman who attends to failed components on a first-come first-served basis.
There is an inventory consisting of K spares. These units are called upon using a proba-
bilistic rule. Suppose that the system has r, k ≤ r ≤N , functioning components. When a
component fails, with probability pr , a spare unit, if one can be made available, will be
used to replace the failed one which is immediately sent for repair. The motivation for in-
troducing the probability structure, {pr}, comes from a scenario where in spite of having
spares, the immediate dispatch of them requires operators or machines to be available at
that instant; or a switch that is used for instantaneous transfer of the unit may malfunc-
tion with probability pr . Hence, in these cases the availability of the spares is described
only through some probability structure. Note that this system will include cold standby
system by taking pr = 1, k ≤ r ≤ N . By taking pr = 0, for k < r ≤ N and pk = 1 we can
model situations where the spare units are used only at a time when the system failure
can be avoided. Here we analyze the k-out-of-N system with the above-mentioned prob-
ability structure and establish some interesting results that we believe are not noticed in
the literature.

Before we list the basic assumptions of the model, we set up some notations. By e
we will denote a column vector (of appropriate dimension) of 1’s; ei will denote a unit
column vector (of appropriate dimension) with 1 in the ith position and 0 elsewhere; and
I an identity matrix (of appropriate dimension). We will display the dimension should
there be a need to emphasize it. The notation “′” will stand for the transpose of a matrix
and the symbol ⊗ denotes the Kronecker product of matrices. For details and properties
on Kronecker products we refer the reader to [4].

Model description. (i) The system has N components and requires at least k of these
components to function.

(ii) The components work independently of each other and each component is as-
sumed to have a lifetime that is exponentially distributed with parameter λ.

(iii) There are K spares in the system. These spares are used as follows. When the sys-
tem is functioning with i, k ≤ i≤N , components, a spare component will be used upon
a failure of component with probability pi. With probability qi = 1− pi, a spare compo-
nent will not be used when a failure occurs. We will take pk = 1 so that the system will
not fail when at least one spare component is available. Note that this explicitly assumes
that the transfer of the spare unit will occur without any problem to prevent the system
from failing when a spare is in the inventory. However, the current model can easily be
modified to consider the case when pk < 1. The details are outlined in a separate section.
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(iv) There is a single repairman who will attend to failed components on a first-come
first-served basis. The repair times are assumed to follow a (continuous) phase-type dis-
tribution (PH-distribution) with representation (β,S) of order m. The mean service rate,
μ, is given by μ = [β(−S)−1e]−1. A continuous PH-distribution is obtained as the time
until absorption in a finite-state continuous time Markov chain with one absorbing state.
PH-distributions play an important role in stochastic modeling. Erlang, generalized Er-
lang, exponential, and hyperexponential are all special cases of PH-distributions. For de-
tails on PH-distribution we refer the reader to [6, 7].

(v) Repaired items are considered as new and are sent to the inventory of spares only
if the system has N working components. Otherwise the repaired items are sent directly
to the system.

(vi) The failure times and the repair times are assumed to be independent.

2. Markov process description

The reliability system outlined in Section 1 can be studied as a continuous time Markov
chain. To see this, we first define J1(t) to be the number of components working at time
t, J2(t) to be the number of failed components (including the one under repair) at time t,
and J3(t) to be the phase of the repair process at time t, (J3(t) is not defined when the re-
pairman is idle and will be denoted by∗). The reliability system can be studied as a finite
state nonhomogeneous quasi-birth-and-death (QBD) process with state space given by
Ω = {(N ,0,∗)}⋃{(N ,r, j),1 ≤ r ≤ K ,1 ≤ j ≤ m}⋃{(i,r, j) : k ≤ i ≤ N − 1,N − i ≤ r ≤
N +K − i,1≤ j ≤m}⋃{(k− 1,N + 1 +K − k, j) : 1≤ j ≤m}.

Note that the state (i,r, j) corresponds to the case when the system has i working
components and r components are under repair with the phase of the current repair
in j.

Denote by level N the set of states given by {(N ,0,∗)}⋃{(N ,r, j) : 1≤ r ≤ K ,1≤ j ≤
m}; by i, for k− 1 ≤ i ≤ N − 1, the set of states given by {(i,r, j) : N − i ≤ r ≤ N +K −
i,1≤ j ≤m}. Note that in the case when pk = 1, the level k− 1 which is of dimension m
takes the form {(k− 1,N + 1 +K − k, j) : 1 ≤ j ≤m}. In general the levels, i, k− 1 ≤ i ≤
N , are of dimension (K + 1)m. The generator of the Markov chain, {(J1(t), J2(t), J3(t)) :
t ≥ 0}, is then given by

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AN BN

CN−1 AN−1 BN−1

I ⊗ S0β AN−2 BN−2

. . .
. . .

. . .

I ⊗ S0β Ak Bk

Ck−1 Ak−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.1)
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where the matrices appearing in (2.1) are defined as follows:

AN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Nλ NλpNβ

S0 S−NλI NλpNI

S0β S−NλI NλpNI

. . .
. . .

. . .

S0β S−NλI NλpNI

S0β S−NλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.2)

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S− iλI iλpiI

S− iλI iλpiI

. . .
. . .

S− iλI iλpiI

S− iλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ≤ i≤N − 1, (2.3)

BN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

NλqNβ

NλqNI

. . .

NλqNI

NλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.4)

Bi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

iλqiI

. . .

iλqiI

iλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ≤ i≤N − 1, (2.5)

CN−1 =
⎛

⎝
S0

I ⊗ S0β

⎞

⎠ , (2.6)

and the matrices Ck−1 and Ak−1 are defined as

Ck−1 =
⎧
⎪⎨

⎪⎩

e′K (K + 1)⊗ S0β, pk = 1,

I ⊗ S0β, pk < 1,

Ak−1 =
⎧
⎪⎨

⎪⎩

S, pk = 1,

I ⊗ S, pk < 1.

(2.7)
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However, when pk = 1, Bk is given by

Bk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

...

0

kλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.8)

3. Steady-state analysis

In this section we perform a steady-state analysis of the k-out-of-N reliability system with
K spares including the derivation of the probability density functions of (a) the time until
the failure of the system; (b) the time between failures of the system; (c) the idle time of
the repairman; (d) the busy period of the repairman; and (e) the analysis of a series (k-
out-of-k) system. We also list some selected key system performance measures.

3.1. Steady-state probability vector. Let x, partitioned as x=((x(N)), . . . ,x(k),y(k−1)),
denote the steady-state probability vector of Q. That is, x satisfies

xQ = 0, xe= 1. (3.1)

We further partition x(i), k ≤ i ≤ N − 1, as x(i) = (y0(i), . . . ,yK (i)), and x(N) = (y0(N),
y1(N), . . . ,yK (N)). Note that y0(N) is a scalar and y j(i)’s are vectors of dimension m. The
system of equations given in (3.1) can be solved exploiting the special structure of the
coefficient matrices. To illustrate this, the steady-state equations satisfying (3.1) can be
written as follows:

y1(N)S0 + y0(N − 1)S0−Nλy0(N)= 0, (3.2)

NλpN y0(N)β+ y2(N)S0β+ y1(N − 1)S0β+ y1(N)(S−NλI)= 0, (3.3)

NλpNy j−1(N) + y j+1(N)S0β+ y j(N − 1)S0β+ y j(N)(S−NλI)= 0,

2≤ j ≤ K − 1,
(3.4)

NλpNyK−1(N) + yK (N − 1)S0β+ yK (N)(S−NλI)= 0, (3.5)

NλqN y0(N)β+ y0(N − 2)S0β+ y0(N − 1)
[
S− (N − 1)λI

]= 0, (3.6)

NλqNy j(N) + (N − 1)λpN−1y j−1(N − 1) + y j(N − 2)S0β

+ y j(N − 1)
[
S− (N − 1)λI

]= 0, 1≤ j ≤ K − 1,
(3.7)

NλyK (N) + (N − 1)λpN−1yK−1(N − 1) + yK (N − 2)S0β+ yK (N − 1)
[
S− (N − 1)λI

]= 0,
(3.8)
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and for k+ 1≤ i≤N − 2,

(i+ 1)λqi+1y0(i+ 1) + y0(i− 1)S0β+ y0(i)[S− iλI]= 0, (3.9)

(i+ 1)λqi+1y j(i+ 1) + iλpiy j−1(i) + y j(i− 1)S0β+ y j(i)[S− iλI]= 0,

1≤ j ≤ K − 1,
(3.10)

(i+ 1)λyK (i+ 1) + iλpiyK−1(i) + yK (i− 1)S0β+ yK (i)[S− iλI]= 0, (3.11)

(k+ 1)λqk+1y0(k+ 1) + y0(k)[S− kλI]= 0, (3.12)

(k+ 1)λqk+1y j(k+ 1) + iλpky j−1(k) + y j(k)[S− kλI]= 0, 1≤ j ≤ K − 1, (3.13)

(k+ 1)λyK (k+ 1) + kλpkyK−1(k) + y(k− 1)S0β+ yK (i)[S− iλI]= 0, (3.14)

kλyK (k) + y(k− 1)S= 0, (3.15)

with the normalizing condition

y0(N) +
K∑

j=1

y j(N)e +
N−1∑

i=k

K∑

j=0

y j(i)e + y(k− 1)e= 1. (3.16)

There is a variety of methods such as (block) Gauss-Seidel, aggregate/disaggregate avail-
able for solving the system equations given in (3.2)–(3.16) and one can refer to [9] for
full details. An alternate method due to Gaver et al. [3] is highly suitable and efficient
especially when the elements of Bi, k + 1 ≤ i ≤ N , are neither too small nor too large.
Very briefly the algorithm using the technique outlined in [3] is Algorithm 3.1. First for
notational convenience we define Ci = I ⊗ S0β, k ≤ i≤N − 2.

Algorithm 3.1
Step 1. Determine Di, 0≤ i≤N − k+ 1, recursively as follows:

D0 = AN , Di =AN−i +CN−i
(−Di−1

)−1
BN−i+1, 1≤ i≤N − k+ 1. (3.17)

Step 2. Solve x(k− 1)DN−k+1 = 0, x(k− 1)e= 1, and recursively compute x(i), k ≤ i≤N
as

x(i)= x(i− 1)Ci−1
(−DN−i

)−1
, k ≤ i≤N. (3.18)

Step 3. Renormalize x(i), k− 1 ≤ i ≤ N , such that the normalizing condition xe = 1 is
satisfied.

Note. When K or m is large, one can exploit the special structure of the matrices appear-
ing in Q to find the inverses in the algorithm.
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3.2. The time until the failure of the system. Suppose that XTTF denotes the time until
the first failure of the system starting with N working components and K spares. The
following theorem shows that XTTF is of phase type.

Theorem 3.2. XTTF follows a PH-distribution with representation (e′1,T) of dimension r =
m[K(N − k+ 1) +N − k], where

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AN BN

CN−1 AN−1 BN−1

I ⊗ S0β AN−2 BN−2

. . .
. . .

. . .

I ⊗ S0β Ak+1 Bk+1

I ⊗ S0β Ak

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.19)

Proof. The proof follows immediately on noting that (a) starting the system with all N
components working andK spares remaining to be used corresponds to the Markov chain
with generator Q as given in (2.1), starting in state (N ,0); and (b) the failure of the system
corresponds to the Markov chain visiting level k− 1 for the first time. Thus, the system
failure time is modeled as the time until absorption in a finite-state Markov chain with
an absorbing state. �

Remark 3.3. The mean, μTTF, of the time until the failure of the system is given by

μTTF = e′1(−T)−1e. (3.20)

However, due to the large dimension of T , an efficient way to calculate the mean is done
as follows (see, e.g., [7]).

Let δ(TTF) denote the steady-state probability vector of the irreducible generator T +
T0e′1(r),where T0 is such that Te + T0=0.Then μTTF=[δ(TTF)T0]−1. The vector δ(TTF) can
be solved similar to the vector x appearing in (3.1) and the details are omitted.

3.3. The downtime of the system. Let XDT denote the duration during which the system
is down. Then we have the following.

Theorem 3.4. XDT follows a PH-distribution with representation ((1
/

yK (k)e)yK (k),S) of
dimension m.

Proof. Observing that (a) XDT is the duration that the Markov process with generator Q
spends in level (k− 1) before hitting level k; and (b) the jth component of the vector
ckλyK (k), where c is the normalizing constant, gives the (conditional) probability that
the repair process is in phase j at the time of the system failure, the stated result follows
immediately. �

Remark 3.5. (a) The mean, μDT, downtime of the system is then given by

μDT = 1
yK (k)e

yK (k)(−S)−1e. (3.21)
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(b) In the case of exponential repairs, (3.21) reduces to μDT = 1/μ. This is intuitively
obvious due to the memoryless property of the repair times.

3.4. The time between failures of the system. Suppose that XTBF denotes the time be-
tween two successive failures of the system. First note that any time after a failure of the
system always becomes functional with only k working components. The random vari-
able XTBF is of the form XTBF = Z + XDT, where Z is the failure time of the reliability
system that started functioning with k working components.

Theorem 3.6. Z follows a PH-distribution with representation (η,T) of dimension
m[K(N − k+ 1) +N − k], where η = (0,β) and T is as given in (3.19).

Proof. The proof is very similar to Theorem 3.2 and the details are omitted. �

Remark 3.7. The mean, μTBF, of the time between two successive failures of the system is
given by

μTBF = μZ +μDT = η(−T)−1e +μDT. (3.22)

The following result gives simple expressions for μDT, μZ , and μTBF in terms of the steady-
state probability vector x.

Theorem 3.8. The means μZ , μDT, and μTBF are calculated as

μDT = y(k− 1)e
kλyK (k)e

,

μZ = 1− y(k− 1)e
kλyK (k)e

,

μTBF = 1
kλyK (k)e

.

(3.23)

Proof. From the definition of η and T , we can write the generator Q of (2.1) as

Q =
(

T eN−k+1(N − k+ 1)⊗Bk

S0η S

)

. (3.24)

Partitioning the steady-state probability vector x as x = (u,y(k − 1)), the equations in
(3.1) reduce to

uT + y(k− 1)S0η = 0,

u
(

eN−k+1(N − k+ 1)⊗Bk
)

+ y(k− 1)S= 0,
(3.25)

with the normalizing equation

ue + y(k− 1)e= 1. (3.26)
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From equations in (3.25) we can immediately deduce that

u= kλyK (k)eη(−T)−1,

y(k− 1)= kλyK (k)(−S)−1.
(3.27)

The stated result follows immediately by using (3.26) in (3.27). �

3.5. The busy period of the repairman. The busy period of the repairman is defined as
the interval that starts with the repairman getting busy and ends when for the first time
the repairman becomes idle. Let XBPR denote the busy period of the repairman. Then we
have the following result.

Theorem 3.9. The random variable XBPR follows a PH-distribution with representation
(θ,L) of dimension m(K + 1)(N − k+ 1), where θ = (pNe′1(K)⊗β,qNe′1(K + 1)⊗β,0) and
L is given by

L=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ÃN B̃N

C̃N−1 AN−1 BN−1

I ⊗ S0β AN−2 BN−2

. . .
. . .

. . .

I ⊗ S0β Ak+1 Bk+1

I ⊗ S0β Ak Bk

Ck−1 Ak−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.28)

where ÃN is obtained from AN by deleting its first row and first column; B̃N is obtained from
BN by removing its first row; and C̃N−1 is obtained from CN−1 by deleting its first column.

Proof. The proof follows immediately on noting that the busy period of the repairman
can start when the reliability system gets into either (a) the set of states {(N ,r, j),1≤ r ≤
K ,1≤ j ≤m} with probability pN or (b) the level N− 1 with probability qN . �

Remark 3.10. On noting that

Q=
(−Nλ Nλθ

L0 L

)

, (3.29)

where L0 is such that Le + L0 = 0, the mean, μBPR = θ(−L)−1e, of the busy period of the
repairman can be evaluated as

μBPR = 1− y0(N)
Nλy0(N)

. (3.30)

The above equation is intuitively clear as 1− y0(N) is the probability that the server is
busy and 1− y0(N)= μBPR/(μBPR + (1/Nλ)).
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3.6. Series system. In the special case when N = k we get a closed-form solution and
interesting limiting results. Furthermore these results are useful as accuracy checks in
our numerical computation. For the current case, noting that (a) pi, k + 1≤ i≤N , plays
no role and that pk = 1, and (b) the steady state probability vector x can be written by
suppressing N as

x = (y0,y1, . . . ,yK ,y(k− 1)
)
, (3.31)

the following theorem gives an explicit expression for x.

Theorem 3.11. For a series system with K spares, for K ≥ 1,

y j = y0βR
j , 1≤ j ≤ K ,

y(k− 1)= kλy0βR
K (−S)−1,

(3.32)

where y0 is the normalizing constant and R is given by

R= kλ(kλI − kλeβ− S)−1. (3.33)

Proof. The proof follows immediately on noting that kλy je= y j+1S0, 1≤ j ≤ K − 1, and
kλyKe= y(k− 1)S0. �

Remark 3.12. (1) It is easy to verify that the inverse appearing in (3.33) does indeed exist
and is nonnegative.

(2) When there are no spares in the system (i.e., when K = 0), it can be verified that
y0 = μ/(μ+ kλ) and y(k− 1)= (kλμ/(μ+ kλ))β(−S)−1.

The following result shows that the mean downtime of the system approaches a limit
as the number of spares increases. In the sequel ρ denotes the spectral radius of R and σ2

is the variance of the repair times.

Theorem 3.13. For a series system with k components, as K →∞,

μDT −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(μ− kλ)
kλμ(1− ρ)

, μ 	= kλ,

0.5kλ
(

σ2 +
1
μ2

)

, μ= kλ.
(3.34)

Proof. First note that R is nonnegative and irreducible. From Perron-Frobenius theory of
nonnegative matrices (see, e.g., [8]) we observe that

(i) the spectral radius, ρ, of R is simple and positive,
(ii) the left eigenvector, u, and the right eigenvector, v, for the spectral radius ρ are

positive and can be chosen so that ue= 1 and uv = 1,
(iii) the matrix ((1/ρ)R) j → vu as j →∞.

Now uR= ρu and the form of the matrix R as given in (3.33) implies

kλ(ρ− 1)u= kλρβ+ ρuS. (3.35)
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Post-multiplying (3.35) by (−S)−1e and using the facts that μ= [β(−S)−1e]−1 and ue= 1,
we get

kλ(ρ− 1)u(−S)−1e= ρ
[
kλ

μ
− 1

]

. (3.36)

Since u(−S)−1e > 0, (3.36) shows that ρ= 1 if and only if μ= kλ. The stated result, for the
case μ 	= kλ, follows immediately from the form of μDT as given in (3.23) and the fact that
βv is positive.

In the case when μ= kλ, (3.35) yields

u= kλβ(−S)−1. (3.37)

The stated result, for the case μ= kλ, follows by observing σ2 = 2β(−S)−2e− 1/μ2.
The following theorem establishes limiting results for various probabilities. �

Theorem 3.14. For a series system with k components, as K →∞,

y0 −→

⎧
⎪⎪⎨

⎪⎪⎩

μ− kλ

μ
, μ > kλ,

0, μ≤ kλ,
(3.38)

y(k− 1)e−→

⎧
⎪⎪⎨

⎪⎪⎩

0, μ > kλ,

kλ−μ

kλ
, μ≤ kλ,

(3.39)

K∑

j=1

y j(k)e−→

⎧
⎪⎪⎨

⎪⎪⎩

kλ

μ
, μ > kλ,

μ

kλ
, μ≤ kλ.

(3.40)

Proof. Let aK =
∑K

j=0βR
je, cK = aK/ρK , and b = βv. The proof follows immediately by

noting that

kλβRK (−S)−1e= 1 +
kλ−μ

μ

K∑

j=0

βRje,

aK −→ μ

μ− kλ
, for μ > kλ, aK −→∞, for μ≤ kλ,

cK −→ bρ

(ρ− 1)
, for μ < kλ.

(3.41)

�

Remark 3.15. In the case when μ > kλ, the limiting results in (3.38) and (3.40) can be
viewed as, respectively, the idle and the busy probabilities of the server (repairman) in
the M/G/1 queue.
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3.7. The case when pk ≤ 1. While pk = 1 is of particular interest in this paper, one can
easily incorporate the case when pk < 1. In this section we will sketch only the minimum
details.

(i) First note that the matrix Bk as given in (2.5) for the current case takes the form

Bk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

qkkλI

. . .

qkkλI

kλI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.42)

and e′K (K + 1)⊗ S0β and S appearing in the generator given in (2.1) are replaced, respec-
tively, with I ⊗ S0β and I ⊗ S. Due to these changes in the entries of the generator Q gov-
erning the reliability system under study and noting that y(k− 1)= (y0(k− 1), . . . ,yK (k−
1)) is now a vector of dimension (K + 1)m, the steady-state (3.10)–(3.13) are replaced
with

(k+ 1)λqk+1y0(k+ 1) + y0(k− 1)S0β+ y0(k)[S− kλI]= 0, (3.43)

(k+ 1)λqk+1y j(k+ 1) + iλpky j−1(k) + y j(k− 1)S0β+ y j(k)[S− kλI]= 0,

1≤ j ≤ K − 1,
(3.44)

(k+ 1)λyK (k+ 1) + kλpkyK−1(k) + y(k− 1)S0β+ yK (i)[S− iλI]= 0, (3.45)

qkkλy j(k) + y j(k− 1)S= 0, 0≤ j ≤ K − 1, (3.46)

kλyK (k) + yK (k− 1)S= 0. (3.47)

(ii) The statement of Theorem 3.4 now reads as follows. XDT follows a PH-distribution
with representation (cqk

∑K−1
j=0 y j(k) + cyK (k),S) of dimension m, where c is the normal-

izing constant given by c = [qk
∑K−1

j=0 y j(k)e + yK (k)e]−1.
(iii) In Theorem 3.6, the vector η is replaced by η = (0,cy(k− 1)(I ⊗ S0β)), where c is

the normalizing constant.
(iv) The term kλyK (k)e appearing in (3.23) is replaced by kλ[qk

∑K−1
j=0 y j(k)e + yK

(k)e].
(v) Theorem 3.9 holds good with two modifications in the entries of L matrix and

these are similar to the ones carried out for Q.
(vi) Similar explicit expressions appearing in Theorem 3.11 for the series system can

be derived for the current case. The expressions are as follows:

y j(k)= y0βR
j , 1≤ j ≤ K ,

y0(k− 1)= qkkλy0β(−S)−1,

y j(k− 1)= qkkλy0βR
j(−S)−1, 1≤ j ≤ K ,

yK (k− 1)= kλy0βR
K (−S)−1,

(3.48)
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where y0 is the normalizing constant and R is given by

R= pkkλ(kλI − kλeβ− S)−1. (3.49)

(vii) Theorem 3.13 is generalized for the case pk < 1 as follows. First we let ρk denote
the spectral radius of R as given in (3.44) with corresponding left and right eigenvectors
denoted by u and v, respectively. From Perron-Frobenius theory, we can take u and v to
be positive vectors such that ue= 1 and uv = 1. In the following we let aK =

∑K
j=0βR

je,
a = β(I −R)−1e (in the case when ρk < 1), and b = βv. It is easy to verify the following
facts by routine calculations.

(1) From the equations in (3.48) and the form of R matrix given in (3.49), we have

K∑

j=0

y j(k− 1)e= y0

[

1 + aK
kλ−μ

μ

]

. (3.50)

(2) The mean downtime, μDT, is rewritten as

μDT = μ+ aK (kλ−μ)
μkλ

[
qaK + p

(
aK − aK−1

)] . (3.51)

(3) aK → a when ρk < 1, and aK →∞when ρk ≥ 1. However, when ρk > 1, (aK/ρKk )→
(bρk/(ρk − 1)).

Then as K →∞, we have

μDT −→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ+ a(kλ−μ)
akλμ

, ρk < 1,

(kλ−μ)
kλμ

(
1− pk

) , ρk = 1,

ρk(kλ−μ)
kλμ

(
ρk − pk

) , ρk > 1.

(3.52)

(viii) The results in Theorem 3.14 take the following form. As K →∞, we have

y0 −→
⎧
⎪⎨

⎪⎩

μ

μ+ akλ
, ρk < 1,

0, ρk ≥ 1,
(3.53)

K∑

j=0

y j(k− 1)e−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ+ a(kλ−μ)
μ+ akλ

, ρk < 1,

kλ−μ

kλ
, ρk ≥ 1,

(3.54)

K∑

j=1

y j(k)e−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ(a− 1)
μ+ akλ

, ρk < 1,

μ

kλ
, ρk ≥ 1.

(3.55)
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4. Illustrative numerical examples

In this section we discuss some interesting numerical examples that qualitatively describe
the model under study. The correctness and the accuracy of the code are verified by a
number of accuracy checks. For example, we obtained the numerical solution for the ex-
ponential repairs in its simple form. Next, we implemented the general algorithm, but
using the following PH-representation. Let S be an irreducible, stable matrix with eigen-
value of maximum real part −τ < 0. Let σ denote the corresponding left eigenvector, nor-
malized by σe= 1. Taking β = σ, the PH-representation reduces to the exponential repairs
with intensity rate τ. The general algorithm does not utilize this fact in any manner, but
the numerical results agreed very much. We also used the limiting results as another set
of accuracy checks.

For the repair times, we consider the following three PH-distributions
(1) Erlang (ERL),

β = (1,0,0,0,0),S=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; (4.1)

(2) exponential (EXP),

β = (1), S= (−5); (4.2)

(3) hyperexponential (HEX),

β = (0.9,0.1), S=
(
−100 0

0 −1

)

. (4.3)

All these three PH-distributions will be normalized so as to have a specific repair rate.
Note that these are qualitatively different distributions having different variances. The
ratio of the standard deviations of these three distributions with respect to ERL are,
respectively, 1.0, 2.236068, and 8.901896.

In addition to various means listed above, we consider the following system perfor-
mance measures for our numerical examples:

(i) the probability, Pidle, that the repairman is idle is calculated as

Pidle = y0(N); (4.4)
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(ii) the probability, Pdown, that the system is down is given by

Pdown = y(k− 1)e; (4.5)

(iii) the probability mass function, f NR
j , of the number of units under repair is ob-

tained as

f NR
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(N), j = 0,
j∑

i=0

y j−i(N − i)e, 1≤ j ≤N − k,

N−k∑

i=0

y j−i(N − i)e, N − k+ 1≤ j ≤N +K − k,

y(k− 1)e, j =N + 1 +K − k.

(4.6)

Note that from (4.6) we can compute the mean, μNR, number of units under
repair.

Example 4.1. In this example, we consider a 15-out-of-20 system by first fixing pi = p,
k + 1 ≤ i ≤ N , pk = 1, λ = 1, and varying the parameters K , μ, p, and the repair time
distribution. The purpose here is to see the impact of varying these parameters on the
measures, μTBF and μBPR. The graphs of these measures for various combinations are
displayed in Figures 4.1 and 4.2. Next we compare the two cases when pk = 1.0 with pk < 1
when all other parameters are fixed. Towards this end, we take μ= 20, and vary K , pk and
the repair time distribution. The graphs of μTTF, μNR and the fraction of spares used are
displayed for ERL and HEX repairs in Figures 4.3 through 4.5. The fraction of spares used
is defined as the ratio of the mean number of spares used and K . Some interesting results
observed from these figures are summarized below.

(i) As μ increases, μTBF appears to increase in all cases. This is to be expected since
increasing the repair rate makes more components available for functioning.

(ii) While we see a very significant improvement in this measure for ERL and EXP
repairs, there seems to be only a marginal improvement for the HEX repairs.

(iii) The effect of the parameter p is noticeable only for small values p (between 0
and 0.4). This can be intuitively explained as follows. When p is small, the spares
are used sporadically unless the system is about to fail in which case we always
use a spare (when available). This on the average will result in an increase in the
mean. However, if p is large, the spares will be called upon as and when a unit fails
(irrespective of whether the system failure occurs at a failure or not). In this case
not only the failure rate of the system increases but also the spares deplete faster.

(iv) The impact of K on the mean is seen either when p is small or when μ is large.
Furthermore, after certain value for K (which depends on the type of repair dis-
tribution) the impact becomes significant. As is to be expected, the smaller the
repair rate the more the impact of K on the mean.
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(v) With respect to the measure μBPR, we notice that ERL repair appears to have the
largest value in all cases as compared to the other two repair times.

(vi) As K increases, we notice that the dependence of μBPR on p appears to increase
in all cases. [Note: we confirmed this result in the case of HEX repairs also even
though the graph in Figure 4.2 does not reflect this as K goes only up to 5, and for
HEX case K has to be even larger.]

(vii) Looking at Figures 4.3 through 4.5, we see that μTTF and μNR appear to increase
with pk. For K up to a certain value, the increase in these measures (as functions
of pk) appears to be very insignificant. However for K reasonably large the signif-
icance of these measures can be seen even for moderate values of pk.

(viii) With regards to the fraction of spares used by the system, we notice that pk appears
to be play no significant role in the case of ERL repairs for all values of K ; however,
for HEX repairs pk plays a significant role for almost all values of K . A similar
behavior is seen for the mean number of units under repair.

In Example 4.1 we assumed pi, k + 1 ≤ i ≤ N , to be a fixed number (not depending
on i). But in some situations it is necessary to consider pi as a decreasing function of i
or pi varying progressively. For example, as the number of working components (starting
with N) decreases, the probability of requesting (or delivering) a spare should increase. In
some situations, the uncertainty to deliver a spare remains the same irrespective of when
a spare is requested. We consider these scenarios in the next two examples.

Example 4.2. In this example, we let pi vary as a function of i and compare it to the
case when pi is constant. All other parameters are identical to the ones considered in
Example 4.1. The purpose here is to see the impact of the varying pi as opposed to keeping
it fixed. We look at the following scenarios.

(i) Case 1 (fixed): let pi = p, 15≤ i≤ 20.
(ii) Case 2 (linear): let pi = p− (0.2p− 0.01)(i− 15), 15≤ i≤ 20, where 0 < p ≤ 1. In

this case, p15 = p and p20 = 0.05, and 0.05 < pi < p, 15 < i < 20.
(iii) Case 3 (piecewise linear): given a set of 3 probabilities, say p( j), 1 ≤ j ≤ 3, with

p(1) < p(2) < p(3), we take p15 = p16 = p(1), p17 = p18 = p(2), p19 = p20 = p(3).
By fixing p(1) = 0.1, p(2) = 0.5(0.1 + p), and p(3) = p, we vary p from 0.3 to 1.0. Looking
at the graph of μTTF as shown in Figure 4.6, we notice the following observations.

(i) There appears to be a cut-off point for p, say p∗, such that for p < p∗, fixed values
for pi outperform the other two scenarios. For p > p∗, the other two scenarios
outperform the fixed value scenario.

(ii) The value of p∗ appears to be larger for HEX repairs as compared to ERL case.
This illustrates the role of variability in the repairs played in determining the strat-
egy of when to request for spares in the presence of uncertainty in the delivery.

Example 4.3. In this example, we consider the data given in Example 4.1 and we consider
probability structures that progressively request for spares. Denoting p= (p15, . . . , p20),
the six probability structures considered are p(1)= (p,0,0,0,0,0), p(2)= (p, p,0,0,0,0),
p(3)= (p, p, p,0,0,0), p(4)= (p, p, p, p,0,0), p(5)= (p, p, p, p, p,0), and p(6)= (p, p, p, p, p,
p). In Figure 4.7, we display the probability structure that yields the maximum value
for the mean time to failure as p is varied. It is clear from this graph that in the case of
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Figure 4.1. Mean time between failures of a 15-out-of-20 system.
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Figure 4.2. Mean busy period of the repairman of a 15-out-of-20 system.

smaller values of p, requests for a spare should be made as and when a component fails;
as p increases to 1, the requests for a spare can be postponed closer to system failure, so
as to maximize the mean time to failure. Furthermore, the larger the variation in the re-
pair times is, the much earlier requests should be made to system failure even when p is
reasonably large.
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Figure 4.3. Mean time to failure of a 15-out-of-20 system.
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Figure 4.4. Fraction of spares used in a 15-out-of-20 system.

Conclusions and recommendations. Based on our numerical experimentation, we make
the following conclusions and offer some recommendations for practicing engineers.

(i) As is to be expected, having pk = 1 and pi = 0, k+ 1≤ i≤N , is the ideal situation
in that it increases (a) the mean time to failure; (b) the mean time between failures;
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Figure 4.5. Mean number of units under repair in a 15-out-of-20 system.
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Figure 4.6. MTTF of a 15-out-of-20 system for three probabilistic structures.

(c) the probability that the server is idle; and the following measures decrease:
(i) the probability that the system is down; (ii) the mean number of units under
repair; (iii) the mean number of spares used; and (iv) the mean busy period of the
repairman.
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Figure 4.7. Optimum point to start requesting a spare in a 15-out-of-20 system.

(ii) However, it is not always the case that a spare unit is made available with certainty
when requested. As pointed out earlier if there is a problem (which is described in
some probabilistic sense) in replacing a failed component with a spare, how and
when should a spare be requested so as to, say, increase the mean time to failure?
Of course, the answer to this question depends on a number of factors such as the
repair time distribution, the rate of repairs, and the probability structure, {pi},
for making the requests. If there is uncertainty in the delivery of spares (namely,
when pi < 1) it is advisable to make a request for spares way ahead of the system
failure, for all repair time distributions. In particular, whenever the repair times
have a larger variability, it is better to request for spares as early as possible. Given
the input parameters of the reliability model, one can use the results of this paper
to determine the strategy for requesting spares.

(iii) In practice, one has to use historical data to estimate the probabilities, {pi}.

5. An optimization problem

A number of optimization problems of practical interest can be proposed and solved once
the reliability model is analyzed. Here we will propose an optimization problem that takes
into account various costs and arrive at optimum values for N and K . Specifically, we
define

(i) c1 = cost per unit when the system is functional;
(ii) c2 = cost of system failure;

(iii) c3 = cost per spare unit made available during the operation of the system;
(iv) c4 = repair cost per unit;
(v) c5 = cost of using a spare unit.
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The optimization problem of interest is to find the optimum values, N∗ and K∗, of N and
K by fixing k, λ, μ, p, and the repair time distribution, that will minimize the expected
cost rate per unit of time. That is,

min
(N ,K)

1
μTTF

[
c1N + c2 + c3K + c4μ

c
NR + c5μ

c
NS

]
, (5.1)

where μcNR and μcNS are, respectively, the conditional mean number of units repaired and
the conditional mean number of spares used, conditioned on the fact that the system was
functioning. These can be obtained from the steady-state probability vector x (see, e.g.,
(3.3)) and the details are omitted.

Example 5.1. For the optimization problem we take λ= 1, k = 15, c1 = 1.0, c2 = 1000.0,
c3 = 0.1, c4 = 0.2, c5 = 1.0, and find (N∗,K∗,F∗) by restricting k ≤N ≤ 20 and 0≤ K ≤
10, and F∗ is the value of the objective function at the optimum point, for various com-
binations including the two cases: pk = 0.5 and pk = 1. Table 5.1 lists the optimum values
after running all possible combinations. Note that when the number of combinations
becomes prohibitively large, one can develop a suitable heuristic method to look for a lo-
cal or a global optimum. An examination of the table reveals the following observations.

(i) F∗(p) as a function p is such that this function is smallest when p = 0 and the
largest when p = 1 when all other parameters are fixed. This is as expected.

(ii) While F∗(μ) is a decreasing function of μ (when all other parameters are fixed),
there is an interesting trend for N∗ as μ is increased. For example, in the case of
ERL repairs, we notice that the optimum value of N∗ appears to decrease as μ
approaches kλ and then increases as μ increases further away from kλ.

(iii) The rate of decrease in F∗(μ) as μ increases (when all other parameters are fixed)
is high for ERL and EXP repairs while the rate is much smaller for HEX repairs.

(iv) Comparing the results for pk = 0.5 and pk = 1.0 cases, we notice the following.
(1) The objective function value increases as pk is decreased. This is intuitively

clear as reducing this probability makes the system fail earlier.

(2) When pk = 1.0, all combinations resulted in an optimum value for K∗ to be
10, the maximum that is allowed. However when pk = 0.5 for some com-
binations (especially when p is small) optimum value for K is less than 10.
This is again due to the fact that not using the spares regularly leads to more
failures of the system and thus results in a higher cost.

(v) There appears to be two cut-off points, say μ1 and μ2, such that for μ < μ1, F∗

appears to be decreasing with increasing variability of the repair times; for μ > μ2,
F∗ appears to increase with increasing variability of the repairs; for μ1 ≤ μ≤ μ2,
it appears that EXP repairs dominate the other two distributions before HEX be-
comes the dominator. In interpreting this, one has to keep in mind the possible
changes in N∗ and K∗.

6. Concluding remarks

In this paper we considered a k-out-of-N reliability system with a single repairman offer-
ing phrase-type services to failed components. We introduced a decision rule (based on
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Table 5.1. Values of (N∗,K∗,F∗) when λ= 1, pk = 0.5, and k = 15.

pk = 1 pk = 0.5
μ p

ERL EXP HEX ERL EXP HEX

1

0.0 (20,10,977.47) (20,10,953.54) (20,10,692.60) (20,7,2473.70) (20,7,2372.47) (20,6,1586.05)

0.1 (20,10,983.74) (20,10,960.10) (20,10,702.45) (20,7,2296.80) (20,7,2196.90) (20,8,1428.69)

0.2 (20,10,991.71) (20,10,968.47) (20,10,714.75) (20,9,2107.29) (20,9,2009.92) (20,10,1270.87)

0.5 (20,10,1036.24) (20,10,1014.96) (20,10,767.68) (20,10,1486.65) (20,10,1415.94) (20,10,918.52)

0.8 (20,10,1128.72) (20,10,1104.58) (20,10,822.80) (20,10,1163.66) (20,10,1134.73) (20,10,835.80)

0.9 (20,10,1158.33) (20,10,1131.30) (20,10,835.25) (20,10,1170.30) (20,10,1142.72) (20,10,843.15)

1.0 (20,10,1181.19) (20,10,1151.33) (20,10,844.44) (20,10,1191.95) (20,10,1161.82) (20,10,852.15)

5

0.0 (20,10,737.32) (20,10,726.87) (20,10,567.81) (20,7,1971.18) (20,7,1876.65) (20,7,1054.21)

0.1 (20,10,746.57) (20,10,736.70) (20,10,572.44) (20,8,1767.93) (20,8,1691.37) (20,8,1007.59)

0.2 (20,10,758.94) (20,10,749.41) (20,10,577.88) (20,10,1551.91) (20,10,1495.83) (20,9,955.91)

0.5 (20,10,828.52) (20,10,813.41) (20,10,603.05) (20,10,1012.26) (20,10,1006.85) (20,10,768.45)

0.8 (20,10,911.81) (20,10,888.87) (16,10,630.39) (20,10,920.74) (20,10,899.93) (20,10,657.24)

0.9 (20,10,927.44) (20,10,904.95) (15,10,636.05) (20,10,933.57) (20,10,911.12) (19,10,659.21)

1.0 (20,10,937.59) (20,10,916.34) (15,10,636.05) (20,10,943.70) (20,10,922.36) (16,10,648.97)

10

0.0 (20,10,444.54) (20,10,455.14) (20,10,452.96) (20,10,446.10) (20,10,456.79) (20,10,453.87)

0.1 (20,10,462.57) (20,10,470.96) (20,10,457.16) (20,10,464.19) (20,10,472.68) (20,10,458.11)

0.2 (20,10,485.86) (20,10,490.10) (20,10,462.25) (20,10,487.57) (20,10,491.89) (20,10,463.25)

0.5 (15,10,557.90) (17,10,552.52) (20,10,486.76) (15,10,559.54) (17,10,554.37) (20,10,487.96)

0.8 (15,10,557.90) (15,10,566.89) (16,10,513.57) (15,10,559.54) (15,10,568.40) (16,10,514.48)

0.9 (15,10,557.90) (15,10,566.89) (16,10,519.60) (15,10,559.54) (15,10,568.40) (16,10,520.55)

1.0 (15,10,557.90) (15,10,566.89) (15,10,520.59) (15,10,559.54) (15,10,568.40) (15,10,521.42)

14

0.0 (20,10,227.47) (20,10,250.73) (20,10,370.96) (20,7,794.61) (20,7,898.31) (20,9,849.29)

0.1 (15,10,228.51) (19,10,268.83) (20,10,375.07) (20,10,596.73) (20,10,730.55) (20,9,802.88)

0.2 (15,10,228.51) (17,10,278.09) (20,10,380.09) (20,10,457.38) (20,10,580.63) (20,10,750.69)

0.5 (15,10,228.51) (15,10,287.57) (20,10,404.34) (20,10,358.98) (20,10,388.46) (20,10,563.06)

0.8 (15,10,228.51) (15,10,287.57) (17,10,431.92) (18,10,338.01) (18,10,368.17) (20,10,453.62)

0.9 (15,10,228.51) (15,10,287.57) (16,10,438.14) (17,10,319.36) (17,10,363.07) (19,10,455.44)

1.0 (15,10,228.51) (15,10,287.57) (15,10,440.45) (16,10,272.50) (16,10,317.27) (16,10,448.70)

15

0.0 (15,10,164.68) (20,10,203.50) (20,10,352.05) (20,7,689.25) (20,7,812.50) (20,9,829.21)

0.1 (15,10,164.68) (18,10,217.70) (20,10,356.13) (20,10,502.35) (20,10,651.50) (20,9,782.62)

0.2 (15,10,164.68) (17,10,224.25) (20,10,361.12) (20,10,378.03) (20,10,509.79) (20,10,730.29)

0.5 (15,10,164.68) (15,10,232.18) (20,10,385.23) (19,10,295.72) (20,10,333.16) (20,10,542.79)

0.8 (15,10,164.68) (15,10,232.18) (17,10,412.94) (18,10,271.63) (18,10,310.29) (20,10,433.91)

0.9 (15,10,164.68) (15,10,232.18) (16,10,419.38) (17,10,250.67) (17,10,304.65) (19,10,435.82)

1.0 (15,10,164.68) (15,10,232.18) (15,10,422.03) (16,10,204.11) (16,10,259.33) (16,10,429.78)

20

0.0 (20,10,12.17) (20,10,40.42) (20,10,267.47) (20,8,308.40) (20,8,475.30) (20,9,735.42)

0.1 (18,10,15.58) (19,10,47.72) (20,10,271.32) (20,10,193.43) (20,10,355.36) (20,10,688.22)

0.2 (17,10,17.14) (18,10,52.60) (20,10,276.04) (20,10,116.61) (20,10,253.43) (20,10,635.54)

0.5 (15,10,18.19) (16,10,60.53) (20,10,298.93) (20,10,60.08) (20,10,115.24) (20,10,450.00)

0.8 (15,10,18.19) (15,10,63.92) (17,10,327.41) (18,10,42.77) (18,10,99.38) (20,10,344.16)

0.9 (15,10,18.19) (15,10,63.92) (16,10,334.86) (18,10,41.11) (18,10,91.92) (19,10,346.64)

1.0 (15,10,18.19) (15,10,63.92) (15,10,339.12) (16,10,23.59) (16,10,72.06) (16,10,344.46)
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a probability structure) for replacing a failed component with a spare one, and analyzed
the reliability system in steady state, and obtained some interesting results.
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