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lished by a synthesis method.
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1. Introduction

Let us recall the classical linear-quadratic (LQ, for short) optimal control problem. Con-
sider the following controlled linear state equation:

ẏ(s)=A(s)y(s) +B(s)u(s), s∈ [t,T],

y(t)= x,
(1.1)

where y(·) is the state, valued in Rn, with the initial state x ∈ Rn at the initial time t ∈
[0,T), u(·) is the control taken from L2(t,T ;Rm) (the space of all square integrable func-
tions valued inRm defined on [t,T]), A(·)∈ C([0,T];Rn×n), and B(·)∈ C([0,T];Rn×m).
The cost functional is defined to be

J
(
t,x;u(·))=

∫ T

t

[〈
Q(s)y(s), y(s)

〉
+
〈
R(s)u(s),u(s)

〉]
ds+

〈
My(T), y(T)

〉
, (1.2)

where Q(·) = Q(·)� ∈ C([0,T];Rn×n), R(·) = R(·)� ∈ C([0,T];Rm×m), and M =M� ∈
Rn×n. The classical LQ problem can be stated as follows.
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2 Existence and uniqueness of globally optimal feedback controls

Problem 1.1 (LQ). For any given (t,x)∈ [0,T)×Rn, find a ut,x(·)∈ L2(t,T ;Rm) such that

J
(
t,x;ut,x(·))= inf

u(·)∈L2
(
t,T ;Rm

) J
(
t,x;u(·))≡V(t,x). (1.3)

Any ut,x(·) ∈ L2(t,T ;Rm) satisfying (1.3) is called an open-loop optimal control of
Problem 1.1 at (t,x). Function V : [0,T]×Rn→R defined in (1.3) is called the open-loop
value function of Problem 1.1. Note that, by definition,

V(T ,x)= 〈Mx,x〉, ∀x ∈Rn. (1.4)

We also emphasize that the open-loop optimal control ut,x(·) depends on the initial con-
dition (t,x).

Classical LQ theory is pretty mature [1, 11], and it has many applications in engineer-
ing as well as various other related fields [1, 4]. Among many other things, the standard
LQ theory says that under some mild conditions, say,

Q(s)≥ 0, R(s)≥ δI , ∀s∈ [0,T], M ≥ 0, (1.5)

where δ > 0, for any (t,x)∈ [0,T)×Rn, Problem 1.1 admits a unique open-loop optimal
control ut,x(·) at (t,x). Moreover, ut,x(·) admits a closed-loop representation, by which
we mean that there exists a unique symmetric matrix-valued function P(·) satisfying a
Riccati differential equation:

Ṗ(s) +P(s)A(s) +A(s)�P(s) +Q(s)−P(s)B(s)R(s)−1B(s)�P(s)= 0, s∈ [0,T],

P(T)=M,
(1.6)

such that

ut,x(s)=−R(s)−1B(s)�P(s)yt,x(s), s∈ [t,T], (1.7)

where yt,x(·) is the state trajectory corresponding to ut,x(·). Note that since P(·) is inde-
pendent of the initial condition (t,x), representation (1.7) is uniform in (t,x).

Representation (1.7) suggests that we might directly consider the following state equa-
tion (compare with (1.1)):

ẏ(s)= A(s)y(s) +B(s)ϕ
(
s, y(s)

)
, s∈ [t,T],

y(t)= x,
(1.8)

with the cost functional

J
(
t,x;ϕ(·,·))=

∫ T

t

[〈
Q(s)y(s), y(s)

〉
+
〈
R(s)ϕ

(
s, y(s)

)
,ϕ
(
s, y(s)

)〉]
ds+

〈
My(T), y(T)

〉
.

(1.9)

In order for the state equation (1.8) to be well-posed, it is natural to require that y 
→
ϕ(s, y) be uniformly Lipschitz. For convenience, let us denote this class of functions by Φ.
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Then, for any ϕ(·,·) ∈Φ, and (t,x) ∈ [0,T]×Rn, the cost functional (1.9) will be well
defined, and we can pose a new optimal control problem as follows.

Problem 1.2 (LQ)F . Find a ϕ(·,·)∈Φ such that

J
(
t,x;ϕ(·,·))= inf

ϕ(·,·)∈Φ
J
(
t,x;ϕ(·,·))≡V(t,x), ∀(t,x)∈ [0,T]×Rn, (1.10)

where and hereafter the superscript “F” means feedback.
Any ϕ(·,·) ∈ Φ satisfying (1.10) is called an optimal control of Problem 1.2, or a

closed-loop optimal control of Problem 1.1. FunctionV : [0,T]×Rn→R defined in (1.10)
is called the closed-loop value function of Problem 1.1.

It turns out that under conditions (1.5) Problems 1.1 and 1.2 are essentially equivalent.
To be more precise, we state the following result.

Proposition 1.3. Let conditions (1.5) hold. Then Riccati equation (1.6) admits a unique
solution P(·) and, for any (t,x)∈ [0,T]×Rn, Problem 1.1 admits a unique open-loop opti-
mal control ut,x(·) at (t,x), which admits a closed-loop representation (1.7). If

ϕ(s, y)=−R(s)−1P(s)B(s)�y, (s, y)∈ [0,T]×Rn, (1.11)

is defined, then ϕ(·,·)∈Φ and it is an optimal control of Problem 1.2. Moreover,

ϕ(s, y)= us,y(s), ∀(s, y)∈ [0,T]×Rn. (1.12)

Further, (1.11) is the only optimal control of Problem 1.2.

The above result roughly tells us that, for Problem 1.1, an open-loop optimal control
admits a closed-loop representation, and it leads to a closed-loop optimal control. Con-
versely, any closed-loop optimal control must be a linear feedback control, and it leads to
an open-loop optimal control.

The above seems to be a perfect story. However, in a number of interesting physical
problems, it is necessary to impose some additional constraints upon the control and/or
the state. Examples are control with piecewise constraints [14], and energy constraints
[7], control with linear constraints [3], state constraints [8, 9], and path constraints
[12, 17], state and control with linear inequality constraints [6, 10, 16] and quadratic
constraints [13], and so forth. It should be pointed out that all the above-mentioned
works only involved open-loop controls, for which one can apply Pontryagin’s maximum
principle. We have not seen works touched the constrained closed-loop control prob-
lems, to the author’s best knowledge. This author has discussed LQ control problem with
constrained state linear feedback [18]

ϕ(s, y)= K(s)y,
∥
∥K(s)

∥
∥≤ k, (1.13)

where k is a given constant. In this paper, we consider the feedback controls ϕ(·,·) that
satisfy the following constraint:

∥
∥ϕ(s, y)

∥
∥≤ k‖y‖, (s, y)∈ [0,T]×Rn, (1.14)

for some given constant k > 0. Clearly this situation is a natural extension of (1.13).



4 Existence and uniqueness of globally optimal feedback controls

To make the above type constraints more appealing, let us present an interesting ex-
ample. Suppose that an aircraft flies in a convection layer which satisfies international
atmosphere standard. The flight depends on its airscrew. Suppose that the biggest turn
velocity of the airscrew is given, then the biggest impetus of the aircraft is a linear func-
tion of the air density of its position. If we let the control variable u be the impetus of the
aircraft, let variable h be the height of the position of the aircraft, and let ρ(h) be the air
density depending on h, then the following constraint holds:

∣
∣u(h)

∣
∣≤ Cρ(h), (1.15)

whereC is a fixed constant. According to the international atmosphere standard, it follows
that

ρ(h)= ρ0

(
1− ah

T0

)g/aR−1

, (1.16)

where ρ0 is the air density at the the sea lever, T0 is the temperature at the the sea lever, a
is the descending rate of temperature, g is the acceleration of gravity, and R is a constant
[15].

Now if we take y= f (h)=(1− ah/T0)g/aR−1 as the state variable, then û(y)≡ u( f −1(y))
satisfies

∣
∣û(y)

∣
∣≤ Cρ0y = Cρ0|y|, (1.17)

which has the form of (1.14).
The purpose of this paper is to study an optimal control problem for (1.8)-(1.9) with

the constraint (1.14). Let us now make it precise.
For given (k, t,x)∈ (0,+∞)× [0,T)×Rn, denote by �F

k (t,x) the set of all measurable
functions ϕ : [0,T]×Rn→Rm satisfying (1.14) and state equation (1.8) admits a unique
strong solution for the given initial condition (t,x). Further, let

�F
k =

⋂

(t,x)∈[0,T)×Rn
�F

k (t,x). (1.18)

Any ϕ(·,·) ∈ �F
k is called a feedback control. Note that �F

k contains all the functions
ϕ(·,·) ∈ Φ (i.e., y 
→ ϕ(s, y) is uniformly Lipschitz) satisfying ϕ(·,0) = 0. But, �F

k may
also contain functions that are not in Φ. Here is an example.

Example 1.4. Let n=m= 1, A= 0, B = 1, and k = 1. Let

ϕ(s, y)=
⎧
⎪⎨

⎪⎩

−y
∣
∣
∣
∣sin

(
1
y

)∣∣
∣
∣, y �= 0,

0, y = 0,
(1.19)

for all s∈ [0,T]. Clearly, it is not uniformly Lipschitz on any neighborhood of y = 0, for
any given s∈ [0,T]. Note that

∣
∣ϕ(s, y)

∣
∣≤ |y| = k|y|, ∀(s, y)∈ [0,T]×R. (1.20)
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Thus, (1.14) holds with k = 1. Further, state equation (1.8) under the above feedback
control reads

ẏ(s)= ϕ(s, y(s)
)
, s∈ [t,T],

y(t)= x. (1.21)

If x > 0, any solution to the above equation fulfills

y(s)∈ [xet−s,x]⊆ [xet−T ,x
] ∀s∈ [t,T]. (1.22)

Since ϕ(s,·) is Lipschitz on [xt−T ,x], The solution of (1.21) is unique. The case x < 0 is
similar. For x = 0, any solution y(·) of (1.21) satisfies

d

ds
y2(s)=−2y(s)2

∣
∣
∣
∣sin

(
1
y(s)

)∣∣
∣
∣χ{y(s) �=0} ≤ 0, (1.23)

leading to y(·)= 0, which is the unique solution of (1.21). Therefore ϕ∈�F
k .

From the above, we realize that the structure of �F
k is complicated. Hence, it is by no

means obvious to check if a constructed feedback control, which might not be uniformly
Lipschitz, belongs to �F

k . Now, for any ϕ(·,·)∈�F
k , the cost functional (1.9) is well de-

fined. Hence we can pose the following constrained feedback control problem in our LQ
framework.

Problem 1.5 (LQ)Fk (t,x). For the given (t,x)∈ [0,T]×Rn, find a ϕt,x(·,·)∈�F
k (t,x) such

that

J
(
t,x;ϕt,x(·,·))= inf

ϕ(·,·)∈�F
k (t,x)

J
(
t,x;ϕ(·,·))≡V k

(t,x). (1.24)

We refer to the above as a local constrained closed-loop LQ problem. The following is re-
ferred to as a global constrained closed-loop LQ problem.

Problem 1.6 (LQ)Fk . Find a ϕ(·,·)∈�F
k such that (1.24) holds for all (t,x)∈ [0,T]×Rn.

We emphasize that ϕt,x(·,·) in Problem 1.5 might depend on (t,x), whereas that in
Problem 1.6 is required to be uniform in (t,x) ∈ [0,T]×Rn. Therefore, any ϕt,x(·,·) ∈
�F

k satisfying (1.24) is called an optimal control of Problem 1.5, or a locally optimal closed-
loop control of Problem 1.6, and if ϕt,x(·,·)≡ϕ(·,·) satisfying (1.24) for all (t,x)∈[0,T]×
Rn is called a globally optimal closed-loop control of Problem 1.6, we call V

k
(·,·) the value

function of Problem 1.6.

We point out that due to the structure of �F
k , Problem 1.6 is a nonstandard (open-

loop) optimal control problem. Hence, we do not expect to have the same Hamilton-

Jacobi-Bellman (HJB, for short) equation for V
k
(·,·) and Pontraygin-type maximum

principle as a first-order necessary conditions for any optimal control ϕ(·,·). Further,

even if we are in an LQ framework, in general, the value function V
k
(·,·) might be non-

quadratic with respect to the state variable (see Section 2 for an example). Thus, the Ric-
cati equation technique (which is usually used for nonconstrained LQ problems) does not
apply here either! All the above makes the currently problem interesting and challenging.



6 Existence and uniqueness of globally optimal feedback controls

Our approach is to introduce a special type of open-loop optimal control problem
via which we will obtain a kind of equivalence of our constrained closed-loop optimal
control problem to a standard (open-loop) optimal control problem for which standard
optimal control theory can apply.

The rest of this paper is organized as follows. In Section 2, we introduce an open-
loop optimal control with a special type of admissible controls. A relationship between
such an open-loop control problem and the original closed-loop control problem is pre-
sented. Some properties of the corresponding value function will also be discussed. In
Section 3, we introduce a standard open-loop optimal control problem which is essen-
tially equivalent to the previous introduced open-loop control problem. Then the ex-
istence and uniqueness of the globally optimal closed-loop control is established by a
synthesis method.

2. Preliminary results

In this section, we will introduce and discuss an open-loop constrained LQ problem
which will be useful to study our constrained closed-loop control problem. In what fol-
lows, we fix a k ∈ (0,+∞).

First, for any given (t,x) ∈ [0,T)×Rn, let �t,x
k be the set of all open-loop controls

u(·)∈ L2(t,T ;Rm) such that

∥
∥u(s)

∥
∥≤ k∥∥yt,x(s)

∥
∥, a.e. s∈ [t,T], (2.1)

with yt,x(·) being the state trajectory of (1.1) corresponding to u(·). If we let Ψ(·,·) be
the fundamental solution of A(·), that is,

d

dt
Ψ(t,s)=A(t)Ψ(t,s), Ψ(s,s)= I , (2.2)

then

yt,x(s)=Ψ(s, t)x+
∫ s

t
Ψ(s,τ)B(τ)u(τ)dτ, ∀s∈ [t,T]. (2.3)

Thus, (2.1) is equivalent to

∥
∥u(s)

∥
∥≤ k

∥
∥
∥
∥Ψ(s, t)x+

∫ s

t
Ψ(s,τ)B(τ)u(τ)dτ

∥
∥
∥
∥, a.e. s∈ [t,T]. (2.4)

We see that this constraint is nonconvex. Thus, the set �t,x
k is nonconvex. Consequently,

�t,x
k must be a proper subset of L2(t,T ;Rm). On the other hand, we clearly have the

closedness of �t,x
k under the norm of L2(t,T ;Rm), and, by Gronwall’s inequality, �t,x

k

is bounded. The following result is more interesting and will be useful.

Proposition 2.1. Let (t,x)∈ [0,T)×Rn and u(·)∈�t,x
k . Let yt,x(·) be the corresponding

state trajectory. Then the following are equivalent.
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(i) For any s∈ [t,T],

yt,x(s)= 0. (2.5)

(ii) For some s∈ [t,T], (2.5) holds.
(iii) x = 0.

Proof. Let Ψ(·,·) be the fundamental solution of A(·). Then

yt,x(r)=Ψ(r,s)yt,x(s) +
∫ r

s
Ψ(r,τ)B(τ)u(τ)dτ, ∀r,s∈ [t,T]. (2.6)

Thus,

∥
∥yt,x(r)

∥
∥≤ C∥∥yt,x(s)

∥
∥+Ck

∫ r

s

∥
∥B(τ)

∥
∥
∥
∥yt,x(τ)

∥
∥dτ, (2.7)

hereafter C will represent an absolute constant, which can be different from line to line.
Hence, by Gronwall’s inequality, we have

∥
∥yt,x(r)

∥
∥≤ C∥∥yt,x(s)

∥
∥, ∀r,s∈ [t,T]. (2.8)

Then the equivalence of (i)–(iii) is obvious. �

We now introduce the following definition.

Definition 2.2. Given an initial condition (t,x)∈ [0,T)×Rn and a feedback control ϕ∈
�F

k ,
(i) an open-loop control defined by

u(·)= ϕ(·, yt,x(·)), s∈ [t,T], (2.9)

is called an open-loop control associated with the feedback control ϕ(·,·) ∈�F
k

at (t,x);
(ii) a set � ⊆ �t,x

k is called the open-loop control set associated with the feedback
control set �⊆�F

k at (t,x) if � consists of all open-loop controls that associated
with some feedback controls in � at (t,x); denote �F

k (t,x) to be the open-loop
control set associated with �F

k at (t,x).

We point out that the map ϕ(·,·) 
→ u(·) in Definition 2.2(i) is not necessarily one-
to-one. In another word, different feedback controls might lead to the same open-loop
control. Similarly, a set � ⊆�t,x

k might be associated with more than one � ⊆ �F
k at

(t,x). The following result gives the relation between �F
k (t,x) and �t,x

k .

Lemma 2.3. Let (t,x)∈ [0,T)×Rn. Then �t,x
k coincides with �F

k (t,x).

Proof. According to the above definition, for any ϕ(·,·) ∈ �F
k , the open-loop control

u(·) associated with ϕ(·,·) belongs to �t,x
k . This shows that �F

k (t,x)⊆�t,x
k . On the other

hand, for any open-loop control û(·) ∈�t,x
k , we would like to find a feedback control

ϕ(·,·) such that û(·) is an open-loop control associated with it. In fact, by Proposition 2.1,
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yt,x(s) �= 0 for all s∈ [t,T] if and only if x �= 0. Now, if the initial state x = 0, then ‖û(s)‖ ≤
k‖yt,x(s)‖ = 0, s ∈ [t,T]. Clearly, û(s) ≡ 0 is the open-loop control associated with the
following feedback control in �F

k :

ϕ(·,·)= 0, (s, y)∈ [0,T]×Rn. (2.10)

If x �= 0, we take the linear feedback control ϕ(·,·) as follows:

ϕ(s, y)= χ[t,T](s)
û(s)yt,x(s)�

〈
yt,x(s), yt,x(s)

〉 y, (s, y)∈ [0,T]×Rn, (2.11)

which fulfills (1.13). By the fact that (1.8) under the above feedback control admits a
unique solution, we see that ϕ∈�F

k with which û(·) is the open-loop control associated.
This proves our result. �

Now we introduce an open-loop LQ problem with constraints as follows.

Problem 2.4 (LQ)k. For any (t,x)∈ [0,T)×Rn, find a ut,x(·)∈�t,x
k such that

J
(
t,x;ut,x(·))= inf

u(·)∈�t,x
k

J
(
t,x;u(·)) def= Vk(t,x). (2.12)

We call ut,x(·) an optimal open-loop control of Problem 2.4 at (t,x), and call Vk(·,·)
the open-loop value function of Problem 2.4. Note that since �t,x

k is not even convex,
Problem 2.4 is not a standard optimal control problem. Since every feedback control
ϕ(·,·)∈�F

k has the same cost as its associated open-loop control, it follows from Lemma
2.3 that for any (t,x)∈ [0,T]×Rn,

Vk(t,x)= inf
u(·)∈�t,x

k

J
(
t,x;u(·))= inf

u(·)∈�F
k (t,x)

J
(
t,x;u(·))

= inf
ϕ(·,·)∈�F

k

J
(
t,x;ϕ(·,·))≡V k

(t,x),
(2.13)

which indicates that Problem 1.6 has the same value as Problem 2.4. The following propo-
sition gives a a further relationship between Problems 1.6 and 2.4.

Proposition 2.5. (i) For any given initial condition (t,x), if feedback control ϕ(·,·)∈�F
k

satisfies

J
(
t,x;ϕ

)= inf
ϕ(·,·)∈�F

k

J(t,x;ϕ), (2.14)

then the open-loop control u(·) associated with ϕ(·,·) solves Problem 2.4 at (t,x).
(ii) Let (t,x) ∈ [0,T)×Rn. If the open-loop control Problem 2.4 admits a solution at

(t,x), then there exists a ϕ(·,·)∈�F
k such that

J
(
t,x;ϕ(·,·))= inf

ϕ(·,·)∈�F
k

J
(
t,x;ϕ(·,·)). (2.15)
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Proof. (i) Suppose the ϕ(·,·)∈�F
k solves Problem 1.6 at (t,x), and let u(·) be the associ-

ated open-loop control. If u(·) is not optimal for Problem 2.4 at (t,x), then there exists a
û(·)∈�t,x

k satisfying

J
(
t,x; û(·)) < J(t,x;u(·)). (2.16)

By Lemma 2.3, there exists a feedback control ϕ̂(·,·)∈�F
k such that its associated open-

loop control is û(·). But then

J
(
t,x; ϕ̂(·,·))= J(t,x; û(·)) < J(t,x;u(·))= J(t,x;ϕ(·,·)), (2.17)

which contradicts the optimality of ϕ(·,·).
(ii) Let u(·) be a solution of Problem 2.4 at (t,x). As in the proof of Lemma 2.3, we

construct a feedback control ϕ(·,·) by (2.10) or (2.11), respectively, for the cases of x = 0
and x �= 0, respectively. Since the open-loop control u(·) has the same cost as the feedback
control ϕ(·,·), the following equation follows from (2.13):

V
k
(t,x)= J(t,x;ϕ(·,·))= J(t,x;u(·))=Vk(t,x). (2.18)

This shows that (2.15) holds. �

Note that since in general �t,x
k is strictly smaller than L2(t,T ;Rm), one has

V(t,x)≡ inf
u(·)∈L2(t,T ;Rm)

J
(
t,x,u(·))≤Vk(t,x), (2.19)

and strict inequality could hold. We know that x 
→ V(t,x) is quadratic. The following
example shows that the value function Vk(t,x) could be nonquadratic in the state x,
which implies that the strict inequality in the above must hold somewhere.

Example 2.6. Let n= 2, m= 1, A= 0, B = (1,1)�, Q = R=W = I2, and k = 1, where I2 is
the (2× 2) unit matrix. The value function Vk(·,·) satisfies the following equation (see
Section 3 for an explanation):

Vt(t,x, y) + 2
(
x2 + y2)−∣∣Vx(t,x, y) +Vy(t,x, y)

∣
∣

·
√
x2 + y2 = 0, if

∣
∣Vx(t,x, y) +Vy(t,x, y)

∣
∣≥ 2

√
x2 + y2,

Vt(t,x, y) +
(
x2 + y2)− 1

4

[
Vx(t,x, y) +Vy(t,x, y)

]2

= 0, if
∣
∣Vx(t,x, y) +Vy(t,x, y)

∣
∣ < 2

√
x2 + y2,

V(T ,x)= x2 + y2.

(2.20)

Suppose that there exists a symmetric matrix-valued function P̂(·)=
(
p1(t) p2(t)
p2(t) p3(t)

)
∈ C([0,

T];R2×2), such that

Vk(t,x, y)=
〈(

p1(t) p2(t)
p2(t) p3(t)

)(
x
y

)

,

(
x
y

)〉

. (2.21)
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Then P̂(T)= I2, and by the continuity of P̂(·) there exists an interval [T0,T] such that

∥
∥P̂(t)− P̂(T)

∥
∥≤ ε, t ∈ [T0,T], (2.22)

for some given 0 < ε < 1−√2/2. Let ξ = (1,1). Take a neighborhood of ξ,

Ωδ(ξ)≡ {(x, y) | ∥∥(x, y)− ξ∥∥ < δ}, (2.23)

with δ > 0 small enough so that any point (x, y)∈Ωδ(ξ) satisfies

∥
∥
∥
∥

1
2

[
Vk
x (t,x, y) +Vk

y (t,x, y)
]∥∥
∥
∥

=
∥
∥
∥
∥
∥(1,1)P̂(t)

(
x
y

)∥∥
∥
∥
∥≥

∥
∥
∥
∥
∥(1,1)P̂(T)

(
x
y

)∥∥
∥
∥
∥−

√
2
∥
∥
∥P̂(t)− P̂(T)

∥
∥
∥

∥
∥
∥
∥
∥

(
x
y

)∥∥
∥
∥
∥

= |x+ y|−√2ε
√
x2 + y2 >

√
x2 + y2.

(2.24)

Note that in the current case, (2.20) reads

〈(
ṗ1(t) ṗ2(t)
ṗ2(t) ṗ3(t)

)(
x
y

)

,

(
x
y

)〉

+ 2
(
x2 + y2)

= ∣∣p1(t)x+ p2(t)x+ p2(t)y + p3(t)y
∣
∣
√
x2 + y2.

(2.25)

Clearly, for (t,x, y) ∈ [T0,T]×Ωδ(ξ), the left-hand side is quadratic in (x, y), whereas
the right-hand side is nonquadratic in (x, y). This leads to a contradiction. Therefore, the
value function Vk(t,x, y) must not be quadratic in (x, y).

By a direct calculation, it follows that

Vt(T ,ξ)= 2 > 4
(√

2− 1
)=Vk

t (T ,ξ), (2.26)

which, together with V(T ,ξ)=Vk(T ,ξ), implies that

V(t,ξ) < Vk(t,ξ) (2.27)

holds on some interval [T̂ ,T], for ξ in a bounded domain.

3. Main results

In this section, we first introduce a standard open-loop optimal control problem, via
which we will construct a globally optimal closed-loop control which uniquely solves
Problem 1.6. In what follows, we will assume condition (1.5).

By the discussion in Section 2, we know that Problem 2.4 has a very close connec-
tion with Problem 1.6. Hence, it is a hope that one can solve Problem 1.6 via solving
Problem 2.4. But Problem 2.4 is not a standard open-loop optimal control problem. Con-
sequently, many standard results are not applicable. To overcome the difficulty, we will
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introduce a standard open-loop optimal control problem which is essentially equivalent
to Problem 2.4. More precisely, we consider the following system:

ẏ(s)= A(s)y(s) +B(s)K(s)y(s), s∈ [t,T],

y(t)= x ∈Rn,
(3.1)

where K(·) is the control variable belonging to the admissible control set

�k
def= {

K(·)∈ L2(0,T ;Rm×n) | ∥∥K(s)
∥
∥≤ k}. (3.2)

The corresponding cost functional is defined by

J
(
t,x;K(·))=

∫ T

t

[〈
Q(s)y(s), y(s)

〉
+
〈
R(s)K(s)y(s),K(s)y(s)

〉]
ds+

〈
My(T), y(T)

〉
.

(3.3)

We propose following problem.

Problem 3.1 (LQ)Lk . For any given (t,x)∈ [0,T]×Rn, find a K(·)∈�k such that

J
(
t,x;K(·))= inf

K(·)∈�k

J
(
t,x;K(·))≡ V̂ k(t,x), (3.4)

where and hereafter the superscript “L” means linearity.
Denote

�L
k

def= {
ϕ(s, y)= K(s)y, ∀(s, y)∈ [0,T]×Rn | K(·)∈�k

}⊆�F
k . (3.5)

It is clear that Problem 3.1 is a linear feedback control problem. We call V̂ k(·,·) the
value function of Problem 3.1. Note that Problem 3.1 is a standard (nonlinear) open-loop
optimal control problem. By the classical optimal control theory, V̂ k(·,·) is the unique
viscosity solution of the following HJB equation:

Vt(t,x) + min
‖K‖≤k

{〈
Vx(t,x),A(t)x+B(t)Kx

〉
+
〈
Q(t)x,x

〉

+
〈
R(t)Kx,Kx

〉}= 0, (t,x)∈ [0,T]×Rn,

V(T ,x)= 〈Mx,x〉.
(3.6)

Note that feedback controls (2.10) and (2.11) belong to the above linear feedback control
set �L

k . In fact, we can show that �t,x
k is also an open-loop control set associated with �L

k .
Thus

V̂ k(t,x)=V k
(t,x)=Vk(t,x), (t,x)∈ [0,T]×Rn. (3.7)

Consequently, V
k
(·,·) also satisfies the above HJB equation in the viscosity solution

sense. Note that the value function V(·,·) of Problem 1.1 satisfies the following HJB
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equation in the classical sense (and therefore also in the sense of viscosity solutions):

Vt(t,x) + inf
u∈Rm

{〈
Vx(t,x),A(t)x+B(t)u

〉
+
〈
Q(t)x,x

〉

+
〈
R(t)u,u

〉}= 0, (t,x)∈ [0,T]×Rn,

V(T ,x)= 〈Mx,x〉.
(3.8)

We see that (3.6) and (3.8) are significantly different. As an example, (2.20) is the value
function equation of Example 2.6. Furthermore, we have the following results similar to
Proposition 2.5.

Proposition 3.2. (i) If K(·) is a solution to Problem 3.1 at (t,x) and y(·) is the corre-
sponding state trajectory of (3.1), then open-loop control

u(·)= K(·)y(·) (3.9)

solves Problem 2.4 at (t,x).
(ii) If for given (t,x)∈ [0,T]×Rn, there exists a ut,x(·) solving Problem 2.4 at (t,x) and

yt,x(·) is corresponding state trajectory of (1.1), then the control

K(·)=

⎧
⎪⎪⎨

⎪⎪⎩

0, if x = 0,

χ[t,T](·) ut,x(·)yt,x(·)�
〈
yt,x(·), yt,x(·)〉 , if x �= 0,

(3.10)

solves Problem 3.1 at (t,x).

We emphasize that the significance of the above result is that the solution of Problem
2.4 can be derived by that of Problem 3.1 which is a standard open-loop optimal control
problem.

Next, we present results on the existence and uniqueness of the solution to Problem
2.4.

Theorem 3.3. Let (1.5) hold. Then for any (t,x) ∈ [0,T]×Rn, Problem 2.4 admits an
open-loop optimal control at (t,x).

Proof. By Proposition 3.2, it is clear that we need only to prove that there exists a K(·)∈
�k which solves Problem 3.1 at (t,x). Note that the set

{(
Z0,Z)∈R×Rn | Z0 ≥

〈
y,Q(s)y

〉
+
〈
Ky,R(s)Ky

〉
,

Z =A(s)y +B(s)Ky, for some ‖K‖ ≤ k} (3.11)

is convex and closed for any (s, y) ∈ [t,T]×Rn. Thus, the so-called Cesari condition
holds [5], which implies the existence of K(·). Clearly, the open-loop control associated
with ϕ(s, y)= K(s)y solves Problem 2.4 at (t,x) by Proposition 3.2. �

To obtain the uniqueness of the optimal open-loop control for Problem 2.4, we need
the following lemma.
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Lemma 3.4. Let (1.5) hold and let Q(·) be uniformly positive definite. Then there exists a
δ > 0 such that the following two-point boundary value problem has at most one solution for
any (k, t,x)∈ [0,δ]× [0,T]×Rn (s is suppressed below):

ẏ =Ay−min
{

1
2

∥
∥B�ψ

∥
∥,k‖y‖

}
BB�ψ
∥
∥B�ψ

∥
∥ ,

ψ̇ =−A�ψ − 2Qy +

[∥
∥B�ψ

∥
∥

‖y‖ − 2k

]+

min

{∥
∥B�ψ

∥
∥

2‖y‖ ,k

}

y,

y(t)= x, ψ(T)= 2My(T),

(3.12)

where [c]+ =max{c,0} and, as a convention, assume that

min
{

1
2

∥
∥B�ψ

∥
∥,k‖y‖

}
BB�ψ
∥
∥B�ψ

∥
∥ = 0, for B�ψ = 0,

[∥
∥B�ψ

∥
∥

‖y‖ − 2k

]+

min

{∥
∥B�ψ

∥
∥

2‖y‖ ,k

}

y = 0, for y = 0.

(3.13)

Proof. Suppose that (y(·),ψ(·)) is a solution to (3.12). Then similar to the proof of
Proposition 2.1, using the first equation in (3.12), for any r,s∈ [t,T],

∥
∥y(r)

∥
∥≤ C∥∥y(s)

∥
∥+Ck

∫ r

s

∥
∥B(τ)

∥
∥
∥
∥y(τ)

∥
∥dτ. (3.14)

Hence, by Gronwall’s inequality, we have
∥
∥y(r)

∥
∥≤ C∥∥y(s)

∥
∥, ∀r,s∈ [t,T]. (3.15)

Next, from the second equation in (3.12) and the terminal condition, we have

∥
∥ψ(s)

∥
∥≤ C∥∥y(T)

∥
∥+C

∫ T

s

(
k
∥
∥ψ(τ)

∥
∥+

∥
∥y(τ)

∥
∥)dτ. (3.16)

By Gronwall’s inequality, together with (3.15), we have

∥
∥ψ(s)

∥
∥≤ C∥∥y(T)

∥
∥+C

∫ T

s

∥
∥y(τ)

∥
∥dτ

≤ C∥∥y(s)
∥
∥+C

∫ T

s

∥
∥y(s)

∥
∥dτ ≤ C∥∥y(s)

∥
∥,

(3.17)

where C is independent of (k, t,x)∈ [0,K0]× [0,T]×Rn (K0 is a fixed positive constant).
Now, suppose that (y1(·),ψ1(·)) and (y2(·),ψ2(·)) are two solutions of (3.12) for the

fixed (t,x). Therefore (3.16) and (3.17) hold for (yi(·),ψi(·)), i= 1,2. Let
(
y(·),ψ(·))= (y1(·)− y2(·),ψ1(·)−ψ2(·)). (3.18)

Then

y(t)= 0, ψ(T)= 2My(T). (3.19)
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To prove the uniqueness of (3.12), we need the following estimate. First, it follows
from (3.12) and (3.16) that

〈
y,dψ/ds

〉
+
〈
y,A�ψ

〉
+ 2

〈
y,Qy

〉

=
〈

y,

[∥
∥B�ψ2

∥
∥

∥
∥y2

∥
∥ − 2k

]+

min

{∥
∥B�ψ2

∥
∥

2
∥
∥y2

∥
∥ ,k

}

y

〉

+

〈

y,

[∥
∥B�ψ1

∥
∥

∥
∥y1

∥
∥ − 2k

]+

min

{∥
∥B�ψ1

∥
∥

2
∥
∥y1

∥
∥ ,k

}

y1

〉

−
〈

y,

[∥
∥B�ψ2

∥
∥

∥
∥y2

∥
∥ − 2k

]+

min

{∥
∥B�ψ2

∥
∥

2
∥
∥y2

∥
∥ ,k

}

y1

〉

≤ kC∥∥y∥∥2
+ k

∥
∥y
∥
∥
∥
∥y1

∥
∥

∣
∣
∣
∣
∣
∣

[∥
∥B�ψ1

∥
∥

∥
∥y1

∥
∥ − 2k

]+

−
[∥
∥B�ψ2

∥
∥

∥
∥y2

∥
∥ − 2k

]+
∣
∣
∣
∣
∣
∣

≤ kC∥∥y∥∥2
+ k

∥
∥y
∥
∥
∥
∥y1

∥
∥

∣
∣
∣
∣
∣

∥
∥B�ψ1

∥
∥

∥
∥y1

∥
∥ −

∥
∥B�ψ2

∥
∥

∥
∥y2

∥
∥

∣
∣
∣
∣
∣

≤ kC∥∥y∥∥2
+ k

∥
∥y
∥
∥‖B‖

[
∥
∥ψ1−ψ2

∥
∥+

∥
∥ψ2

∥
∥

∥
∥y2

∥
∥
∥
∥y1− y2

∥
∥
]

≤ kC∥∥y∥∥(∥∥y∥∥+
∥
∥ψ
∥
∥).

(3.20)

Next,
〈
dy

ds
,ψ
%
− 〈Ay,ψ

〉

=−min
{

1
2

∥
∥B�ψ1

∥
∥,k

∥
∥y1

∥
∥
}〈(

B�ψ1∥
∥B�ψ1

∥
∥ −

B�ψ2∥
∥B�ψ2

∥
∥

)

,B�ψ

〉

−
〈[

min
{

1
2

∥
∥B�ψ1

∥
∥,k

∥
∥y1

∥
∥
}
−min

{
1
2

∥
∥B�ψ2

∥
∥,k

∥
∥y2

∥
∥
}]

BB�ψ2∥
∥B�ψ2

∥
∥ ,ψ

%

≤ 0 +
∣
∣k
∥
∥y1

∥
∥− k∥∥y2

∥
∥
∣
∣

∣
∣
∣
∣
∣

〈
BB�ψ2∥
∥B�ψ2

∥
∥ ,ψ

〉∣∣
∣
∣
∣≤ k

∥
∥y
∥
∥‖B‖∥∥ψ∥∥≤ kC∥∥y∥∥∥∥ψ∥∥.

(3.21)

Finally, we can obtain by a similar method as (3.20)

1
2

d
(∥
∥ψ
∥
∥2
)

ds
= 〈ψ,ψ/ds

〉≥−〈ψ,A�ψ
〉− 2

〈
ψ,Qy

〉− kC∥∥ψ∥∥(∥∥y∥∥+
∥
∥ψ
∥
∥)

≥−C
(∥
∥ψ
∥
∥2

+
∥
∥ψ
∥
∥
∥
∥y
∥
∥
)
≥−C∥∥ψ∥∥2−C∥∥y∥∥2

,

(3.22)

which leads to

d
(
e2C(s−T)

∥
∥ψ
∥
∥2
)

ds
≥−2Ce2C(s−T)

∥
∥y(s)

∥
∥2
. (3.23)
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Hence, one has

∫ T

s

∥
∥ψ(τ)

∥
∥2
dτ ≤ C

[∥
∥ψ(T)

∥
∥2

+
∫ T

s

∥
∥y(τ)

∥
∥2
dτ
]
. (3.24)

Now we show the uniqueness of the solution to (3.12). SinceQ(·) is uniformly positive
definite on [0,T], one has

q� min
t∈[0,T]

min
η �=0

{〈
η,Q(t)η

〉

〈η,η〉

}

> 0. (3.25)

It follows from (3.19), (3.20), (3.21), (3.24), and (3.25) that

〈
y(T),My(T)

〉= 〈y(T),ψ(T)
〉− 〈y(t),ψ(t)

〉

=
∫ T

t

〈
y(s),

dψ(s)
ds

%
+
〈
dy(s)
ds

,ψ(s)
%
ds

≤
∫ T

t
−2
〈
y(s),Q(s)y(s)

〉
+ kC

∥
∥y(s)

∥
∥(
∥
∥y(s)

∥
∥+

∥
∥ψ(s)

∥
∥)ds

≤
∫ T

t

[
− 2q

∥
∥y(s)

∥
∥2

+ kC
∥
∥y(s)

∥
∥2

+ kC
∥
∥ψ(s)

∥
∥2
]
ds

≤
∫ T

t

[
− 2q‖y(s)

∥
∥2

+ kC
∥
∥y(s)

∥
∥2
]
ds+ kC

∥
∥ψ(T)

∥
∥2

=
∫ T

t
−(2q− kC)

∥
∥y(s)

∥
∥2
ds+ kC

〈
My(T),My(T)

〉

≤
∫ T

t
−(2q− kC)

∥
∥y(s)

∥
∥2
ds+ kC

〈
y(T),My(T)

〉
,

(3.26)

where the last inequality holds because

〈
M̂x,M̂x

〉≤ ∥∥M̂∥
∥〈x,M̂x

〉
(3.27)

for any positive semidefinite matrix M̂ ∈Rn×n and x ∈Rn. Thus

(1− kC)
〈
y(T),My(T)

〉≤
∫ T

t
−(2q− kC)

∥
∥y(s)

∥
∥2
ds. (3.28)

Let δ � min{1/C,2q/C}. If k < δ, the above implies

y(·)≡ 0, (3.29)

which, together with (3.19) and (3.24), leads to

ψ(·)≡ 0. (3.30)

Therefore the two-point boundary value problem (3.11) admits at most one solution. �
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Remark 3.5. A rough estimate shows that a lower bound of δ will be 1/C3, where C3 is
defined as follows: if

a= sup
t∈[0,T]

∥
∥A(t)

∥
∥, b = sup

t∈[0,T]

∥
∥B(t)

∥
∥,

k0 = sup
t∈[0,T]

∥
∥B�(t)P(t)

∥
∥, q = sup

t∈[0,T]

∥
∥Q(t)

∥
∥,

C1 =max{1,2q,b}exp(at), C2 = C1T exp
(
k0C1T + aT + bT

)
,

(3.31)

then

C3 = 2C2T exp
(
2C2T

)
. (3.32)

Besides, the condition that Q(·) is uniformly positive definite can be replaced by another
condition that matrix M is positive definite, to ensure the uniqueness of the solution for
the two-point boundary value problem (3.12). Here we omit the proof.

Now we present the uniqueness of the solution for Problem 2.4.

Theorem 3.6. Let (1.5) hold and let Q(·) be uniformly positive definite. Then there exists a
δ > 0 such that for any given (k, t,x)∈ [0,δ]× [0,T)×Rn, Problem 2.4 admits at most one
solution at (t,x).

Proof. Without loss of generality, we assume that R = I . Clearly, control u(·) = 0 is the
unique admissible open-loop control of Problem 2.4 at (0,0). Thus it is also optimal. Now
we fix x �= 0.

Suppose that y1(·), y2(·) are corresponding state trajectories, respectively, for optimal
open-loop control u1(·), u2(·) of Problem 2.4 at (t,x). Then y1(s) �= 0, y2(s) �= 0 for any
s∈ [t,T] by Proposition 2.1. As shown in Proposition 3.2,

Ki(·)= ui(·)y�i (·)
∥
∥yi(·)

∥
∥2 , i= 1,2, (3.33)

solve Problem 3.1 at (t,x). By Pontraygin’s maximum principle, there exist adjoint func-
tions ψ1(·) and ψ2(·) such that

ẏi =Ayi +BKiyi,

ψ̇i =−
(
A+BKi

)�
ψi− 2Qyi− 2K

�
i K i yi,

yi(t)= x, ψi(T)= 2Myi(T),

(3.34)

〈
ψi,Ayi +BKiyi

〉
+
〈
Kiyi,Kiyi

〉≤ 〈ψi,Ayi +BK yi
〉

+
〈
Kyi,Kyi

〉
(3.35)

hold for any K ∈ Rm×n, ‖K‖ ≤ k. But it is a pity that K cannot be obtained directly by
the above. Note that ui = Kiyi solves the following problem:

min
‖u‖≤k‖yi‖

{〈
ψi, Ayi +Bu

〉
+
〈
u,u

〉}
, (3.36)
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respectively, for i= 1,2. Geometrically, ui is nothing but the projection of the vector ζi =
−(1/2)B�ψi onto the convex set Ωi = {ξ ∈Rm | ‖ξ‖ ≤ k‖yi‖}. Thus we denote

ui ≡ PΩi

(
ζi
)=−min

{
1
2

∥
∥B�ψi

∥
∥,k

∥
∥yi

∥
∥
}

B�ψi∥
∥B�ψi

∥
∥ , (3.37)

where PΩi is the projection onto Ωi. Then the representation of Ki is derived by (3.33):

Ki =−min
{

(1/2)
∥
∥B�ψi

∥
∥,k

∥
∥yi

∥
∥}B�ψiy�i

∥
∥B�ψi

∥
∥
∥
∥yi

∥
∥2 . (3.38)

Substitute the above equation into (3.34). We have that both (y1,ψ1) and (y2,ψ2) can solve
the two-point boundary value problem (3.12). By Lemma 3.4, (y1,ψ1)= (y2,ψ2) holds if
k is small enough, which implies u1 = u2 by (3.37). In a word, there exists a constant
δ > 0 such that Problem 2.4 admits at most one optimal open-loop control at (t,x) when
k < δ. �

We emphasize that an optimal control has the following representation:

u(s)=−min
{

1
2

∥
∥B�(s)ψ(s)

∥
∥,k

∥
∥y(s)

∥
∥
}

B�(s)ψ(s)
∥
∥B�(s)ψ(s)

∥
∥ , s∈ [t,T], (3.39)

by the proof of the above theorem as (3.37) if it exists, where (y(·),ψ(·)) is the corre-
sponding state variable and adjoint variable. Further, the solution to Problem 2.4 at (t,x)
fulfills

u(·)∈ C([t,T];Rm
)
, (t,x)∈ [0,T)×Rn, (3.40)

which follows from the continuity of y(·) and ψ(·).
We are now at the position to state and prove the main result of this section.

Theorem 3.7. Let (1.5) hold and let Q(·) be uniformly positive definite. Then there exists
a δ > 0 such that Problem 1.6 admits a unique globally optimal continuous feedback control
for any k ≤ δ.

Proof. By Lemma 3.4 and Theorem 3.6, Problem 2.4 admits a unique solution at (t,x) if
k is small enough for any given (t,x) ∈ [0,T]×Rn. We denote ut,x(·) to be the solution
to Problem 2.4 at (t,x), and yt,x(·) to be the corresponding optimal trajectory. Construct
a feedback control ϕ : [0,T)×Rn→Rm by the synthesis method as follows:

ϕ(t,x)= ut,x(t), (t,x)∈ [0,T]×Rn, (3.41)

which is well defined by the continuity of ut,x(·). Further, (1.14) holds by the definition
of control set �t,x

k .
We prove that ϕ solves Problem 1.6 by three steps. First, we prove the continuity of

ϕ(·,·). As shown in the proof of Theorem 3.6, there exists a ψt,x which together with the
state variable yt,x, satisfies (3.12). On the other hand, Lemma 3.4 indicates that (3.12)
admits at most one solution. Therefore, adjoint variable ψt,x is unique and determined
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by the initial condition (t,x). Thus, function ψ : [0,T]×Rn→Rn,

ψ(t,x)= ψt,x(t), (t,x)∈ [0,T]×Rn, (3.42)

is also well defined. By the classical result on the continuous dependence of the solution
with respect to the parameter, we obtain that the function ψ(·,·) is continuous.

Let Ω(x)= {ξ ∈Rm | ‖ξ‖ ≤ k‖x‖}. Thus

∥
∥PΩ(x)(ξ)−PΩ(y)(ξ)

∥
∥≤ ∣∣k‖x‖− k‖y‖∣∣, (3.43)

is valid for any ξ ∈Rn since Ω(x) and Ω(y) are concentric spheres. Further

∥
∥PΩ(x)(ξ)−PΩ(x)(η)

∥
∥≤ ‖ξ −η‖, ξ,η ∈Rn, (3.44)

holds by properties of the convex set [2]. It follows by the above two equations and (3.37)
that

∥
∥ϕ(t,x)−ϕ(t0,x0

)∥∥= ∥∥ut,x(t)−ut0,x0
(
t0
)∥∥

=
∥
∥
∥
∥PΩ(x)

(
− 1

2
B�(t)ψt,x(t)

)
−PΩ(y)

(
− 1

2
B�
(
t0
)
ψt0,x0

(
t0
)
)∥∥
∥
∥

≤
∥
∥
∥
∥PΩ(x)

(
− 1

2
B�(t)ψt,x(t)

)
−PΩ(x)

(
− 1

2
B�(t0)ψt0,x0

(
t0
)
)∥∥
∥
∥

+
∥
∥
∥
∥PΩ(x)

(
− 1

2
B�
(
t0
)
ψt0,x0

(
t0
)
)
−PΩ(y)

(
− 1

2
B�
(
t0
)
ψt0,x0

(
t0
)
)∥∥
∥
∥

≤
∥
∥
∥
∥−

1
2
B�(t)ψt,x(t) +

1
2
B�
(
t0
)
ψt0,x0

(
t0
)
∥
∥
∥
∥+

∣
∣k‖x‖− k∥∥x0

∥
∥
∣
∣

=
∥
∥
∥
∥−

1
2
B�(t)ψ(t,x) +

1
2
B�
(
t0
)
ψ
(
t0,x0

)
∥
∥
∥
∥+

∣
∣k‖x‖− k∥∥x0

∥
∥
∣
∣.

(3.45)

Thus function ϕ(t,·) is continuous due to the continuity of ψ(·,·) and B(·).
Second, we prove the uniqueness of solution to the state equation under control ϕ(·,·)

for any initial condition. To this aim, let (t,x) be given. Then the adjoint variable ψt,x(t)
satisfies

ψ(t,x)= ψt,x(t)∈D1,+
x Vk(t,x)

≡
{
p ∈Rn | lim

y→x
Vk(t, y)−Vk(t,x)−〈p, y− x〉

‖y− x‖ ≤ 0
}

,
(3.46)

by the relationship between the adjoint variable and the value function for the Problem
3.1 (see [19]). Thus, the following equation holds:

Vk(t,z)≤Vk(t, y) +
∫ 1

0

〈
ψ
(
t, y + τ(z− y)

)
,z− y

〉
dτ, (3.47)
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for any z, y ∈Rn. Now take z = x and let y→ x. It follows from the continuity of function
ψ(·,·) that

0≤ lim
y→x

Vk(t, y)−Vk(t,x)− ∫ 1
0

〈
ψ
(
t,x+ τ(x− y)

)
, y− x〉dτ

‖y− x‖

= lim
y→x

Vk(t, y)−Vk(t,x)− 〈ψ(t,x), y− x〉
‖y− x‖ ,

(3.48)

which, together with ψ(t,x)= ψt,x(t)∈D1,+
x Vk(t,x), implies that Vk

x (·,·) exists and

Vk
x (t,x)= ψ(t,x), (t,x)∈ [0,T]×Rn. (3.49)

Further, Vk
x (·,·) is continuous because of the continuity of function ψ(·,·).

On the other hand, it follows by the continuity of ψ(·,·) and ϕ(·,·) that

1
s− t

[
Vk(s,x)−Vk(t,x)

]

= 1
s− t

[
Vk
(
s, yt,x(s)

)−Vk(t,x)
]− 1

s− t
[
Vk
(
s, yt,x(s)

)−Vk(s,x)
]

= 1
s− t

[
J
(
s, yt,x(s);ut,x(·))− J(t,x;ut,x(·))]

− 1
s− t

∫ s

t

〈
Vk
x

(
s, yt,x(τ)

)
,A(τ)yt,x(τ) +B(τ)ut,x(τ)

〉
dτ

=−〈x,Q(t)x
〉− 〈ut,x(t),R(t)ut,x(t)

〉
+ o(s− t)

− 1
s− t

∫ s

t

〈
ψ
(
s, yt,x(τ)

)
,A(τ)yt,x(τ) +B(τ)ϕ

(
τ, yt,x(τ)

)〉
dτ

=−〈x,Q(t)x
〉− 〈ϕ(t,x),R(t)ϕ(t,x)

〉− 〈ψ(t,x),A(t)x+B(t)ϕ(t,x)
〉

+ o(s− t)
=−〈x,Q(t)x

〉− 〈ϕ(t,x),R(t)ϕ(t,x)
〉− 〈Vk

x (t,x),A(t)x+B(t)ϕ(t,x)
〉

+ o(s− t).
(3.50)

Thus Vk
t (t,x) exists and

Vk
t (t,x) +

〈
Vk
x (t,x),A(t)x+B(t)ϕ(t,x)

〉

=−〈x,Q(t)x
〉

+
〈
ϕ(t,x),R(t)ϕ(t,x)

〉
, (t,x)∈ [0,T]×Rn.

(3.51)

Furthermore, the continuity of ϕ(·,·) leads to that of Vk
t (·,·). Therefore the regularity of

value function holds.
Let us proceed to prove that the solution of (1.8) is unique under the feedback control

ϕ(·,·). By Bellman’s dynamic programming, ut,x(·) ∣∣[s,T] solves Problem 2.4 at (s, yt,x(s)),
for all t < s < T , where ut,x(·) |[s,T] is a restriction of ut,x(·) on [s,T]. It follows from the
uniqueness of the solution of Problem 2.4 at (s, yt,x(s)) that

ut,x(s)= us,yt,x(s)(s)= ϕ(s, yt,x(s)
)
. (3.52)
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Thus

ẏt,x(s)=A(s)yt,x(s) +B(s)ut,x(s)

=A(s)yt,x(s) +B(s)ϕ
(
s, yt,x(s)

)
, s∈ [t,T],

yt,x(t)= x,

(3.53)

which shows that yt,x(·) is a solution to (1.8) under ϕ(·,·) for the given (t,x). Suppose
that y1(·) is another solution, which is different from yt,x(·). Denote u1(·)= ϕ(·, y1(·)).
Then the following equation holds by (3.51):

J
(
t,x;u1(·))

=
∫ T

t

[〈
y1(s),Q(s)y1(s)

〉
+
〈
u1(s),R(s)u1(s)

〉]
ds+

〈
My1(T), y1(T)

〉

=
∫ T

t

[〈y1(s),Q(s)y1(s)
〉

+
〈
ϕ
(
s, y1(s)

)
,R(s)ϕ

(
s, y1(s)

)〉]
ds+

〈
My1(T), y1(T)

〉

=−
∫ T

t

[
Vk
t

(
s, y1(s)

)
+Vk

x

(
s, y1(s)

)]
ds+

〈
My1(T), y1(T)

〉

=−
∫ T

t

dVk
(
s, y1(s)

)

ds
ds+Vk

(
T , y1(T)

)

=Vk
(
t, y1(t)

)=Vk(t,x).
(3.54)

Thus u1(·)= ut,x(·) holds by the uniqueness of the solution to Problem 2.4 at (t,x), which
implies y1(·) = yt,x(·). This indicates that (1.8) under feedback control ϕ(·,·) admits a
unique solution. Therefore, the continuous feedback control ϕ(·,·) belongs to �F

k .
Third. It follows by (3.52) that ut,x(·) is the open-loop control associated with the

feedback ϕ at (t,x). Then,

J
(
t,x;ϕ

)= J(t,x;ut,xk
)=Vk(t,x)=V k

(t,x). (3.55)

Therefore this feedback control ϕ(·,·) solves Problem 1.6. By the uniqueness of solution
for Problem 2.4 at (t,x), the optimal feedback control is also unique. Thus the proof is
completed. �

In above theorem, the assumption on the “smallness of k” is purely technical to ensure
that the two-point boundary value problem (3.12) admits a unique solution, it is left
open whether this is the case in general.

To conclude this paper, we indicate a process of solving Problem 1.6. For any (t,x) ∈
[0,T] × Rn, one first solves the two-point boundary value problem(3.12) to obtain
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(yt,x(·),ψt,x(·)). Then define ut,x(·) by (3.39). Finally, define set ϕ(·,·) by (3.41). This
ϕ(·,·) will be the optimal closed-loop control of Problem 1.6.
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