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We consider the problems of computing the power and exponential moments EXs and
EetX of square Gaussian random matrices X = A+BWC for positive integer s and real t,
where W is a standard normal random vector and A, B, C are appropriately dimensioned
constant matrices. We solve the problems by a matrix product scalarization technique and
interpret the solutions in system-theoretic terms. The results of the paper are applicable
to Bayesian prediction in multivariate autoregressive time series and mean-reverting dif-
fusion processes.
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1. Introduction

We consider the problems of computing the power moments EXs and the exponential
moments EetX of square Gaussian random matrices

X =A+BWC (1.1)

for positive integer s and real t. Here W is a standard normal random column vector,
further referred to as the source, and A, B, C are appropriately dimensioned constant
matrices.

The power moments problem is relevant to Bayesian prediction of autoregressive time
series wherein the normal-gamma distribution [1, page 140] is used as a conjugate prior
for the unknown parameters; see, also [5, 6, 12].

Being a continuous-time counterpart of the above, the exponential moments arise
from Bayesian forecasting in stochastic diffusion models with affine drift terms whose un-
known parameters are ascribed Gaussian prior distributions; see, for example, [7, pages
279–280] and [9]. In these applications, s and t are interpreted as the time ahead for
which the prediction is to be made.
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Figure 1.1. A product of constant matrices (black squares) alternating with rank-one random ma-
trices (dotted-frame boxes). These last are obtained by multiplying jointly Gaussian random column
vectors (vertical shaded bars) by constant row vectors (horizontal black bars). Regrouping the terms
reduces the matrix product to a Gaussian random column vector (the leftmost bar) multiplied by
scalar Gaussian random variables (solid-frame boxes) and by a constant row vector (the rightmost
bar).

If X is scalar, the solutions to the power and exponential moments problems are pro-
vided by the well-known moment-generating function of a univariate Gaussian distribu-
tion. However as soon as the order of X is greater than one, the problems become com-
plicated by the noncommutativity of the matrix algebra. Nevertheless, if X is generated
by a vector source W as assumed above, the noncommutativity is essentially surmount-
able with the aid of a scalarization technique introduced below which appears to be as
efficacious as it is simple.

The technique applies to products of constant matrices alternating with jointly Gauss-
ian random matrices of rank one as elucidated informally by Figure 1.1. Regrouping the
terms reduces such a product to a rank-one random matrix multiplied by scalar ran-
dom variables, which together have a Gaussian joint distribution. The essentially “scalar-
ized” representation makes it easy to relate the expectation of the matrix product with
the covariance structure of the multipliers. This concluding ingredient of the technique
is accomplished by an extension of the well-known formula for the expectation of the
product of four jointly Gaussian zero-mean random variables [3, Example 4.7.1, page 84]
to an arbitrary even number of such variables.

The matrix product scalarization technique makes it possible to express the power
moments in terms of recursively computed state-space realization matrices of an iterated
linear discrete-time invariant dynamical system. This system-theoretic interpretation en-
ables us to give a tractable closed form solution of the problem and provides a machin-
ery for computing this solution. Moreover, a similar, though different, representation via
continuous-time systems turns out to be valid for the exponential moments. These are
reduced to a univariate integral of another matrix exponential along a pencil of matrices
that, in principle, admits numerical computation by the methods of [10].

The scalarization technique outlined above is inapplicable to the more general situ-
ation where the source W in (1.1) is a standard normal random matrix. In the matrix
source case, however, the power moments problem is amenable to a more sophisticated
graph-theoretic analysis [11].

The paper is organized as follows. Section 2 develops the matrix product scalariza-
tion technique and provides a solution to the power moments problem. Section 3 gives
a system-theoretic interpretation to the solution as well as the necessary background
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material on linear time-invariant systems. In Section 4, a similar system-theoretic for-
malism is developed for the exponential moments problem. Some proofs are relegated to
appendices.

2. Matrix product scalarization

For given matrices A∈Rn×n, B ∈Rn×m, and a given row vector C ∈R1×n, we consider a
Rn×n-valued Gaussian random matrix X of the form (1.1), where

W ���m. (2.1)

Here �m denotes the standard normal distribution on Rm, so that the source W is an
m-dimensional Gaussian random vector with zero mean and identity covariance matrix.
Without loss of generality, it may be assumed that m ≤ n. Unless otherwise indicated,
vectors are organized as columns.

A solution to the problem of computing the sth power moment EXs is provided by the
theorem below. Its proof develops the matrix product scalarization technique outlined in
the introduction. To this end, we associate with the matrixA a map � :U →Rn×n defined
by

�(u)=
∑

k∈Z+

(uA)k = (
In−uA

)−1
(2.2)

on the set

U = {
u∈R : |u| < 1/r(A)

}
. (2.3)

Here Z+ is the set of nonnegative integers, In denotes the identity matrix of order n, and
r(·) is the spectral radius of a square matrix. Furthermore, we introduce a map � : U →
Rn×n by

�(u)=�(u)BBT(�(u)
)T
CTC, (2.4)

where (·)T is the matrix transpose. One verifies that (�(u))2=�(u)Tr�(u), with Tr�(u)=
|C�(u)B|2, and hence the matrix �(u)/Tr�(u) is idempotent. Finally, for every r ∈ N,
we define a map �r :U →Rn×n by

�r(u)= (
�(u)

)r
�(u)= (

Tr�(u)
)r−1

�(u)�(u)=
∑

k∈Z+

ukHr,k, (2.5)

where the matrices Hr,k ∈Rn×n are given by

Hr,k = 1
k!

dk�r(u)
duk

∣∣∣∣
u=0

. (2.6)



4 Moments of Gaussian random matrices

Theorem 2.1. For every s ∈N, the sth power moment of the Gaussian random matrix X
defined by (1.1)–(2.1) can be expressed in terms of (2.6) as

EXs =As +
�s/2�∑

r=1

(2r− 1)!!Hr,s−2r , (2.7)

where �·� is the floor function which sends v ∈R to the largest z ∈ Z not exceeding v.

Proof. Since them-dimensional standard normal distribution �m is symmetric about the
origin,

EXs =
�s/2�∑

r=0

∑

(μ1,...,μ2r+1)∈�2r+1
s−2r

Aμ1 E
2r+1∏
−→
k=2

BWCAμk . (2.8)

Here, for any d ∈N and σ ∈ Z+,

�d
σ =

{(
μ1, . . . ,μd

)∈ Zd+ : μ1 + ···+μd = σ
}

(2.9)

is the set of those d-indices whose entries add up to σ . Since matrices do not commute,
in general, we explicitly indicate the order in which they are multiplied as follows:

b∏
−→
k=a

Mk =Ma×···×Mb =
( b∏
←−
k=a

(
MT

k

)
)T

. (2.10)

For any r ∈N, the matrices which are multiplied on the right-hand side of (2.8) can be
regrouped so as to partially “scalarize” the product,

2r+1∏
−→
k=2

BWCAμk = BWCAμ2

︸ ︷︷ ︸×···×BWCAμ2r+1

︸ ︷︷ ︸

= BWCAμ2BW︸ ︷︷ ︸×···×CAμ2r BW︸ ︷︷ ︸CA
μ2r+1

= BW
( 2r∏

k=2

(
CAμkBW

)
)
CAμ2r+1 .

(2.11)

Thus, the original product of random matrices is reduced to the random vector W mul-
tiplied by the scalar random variables

ηk = CAμkBW , k ∈ {2, . . . ,2r}, (2.12)

where {a, . . . ,b} = [a,b]∩Z is the discrete interval with endpoints a,b ∈ Z satisfying a≤
b. Note that the joint distribution of W and η2, . . . ,η2r is Gaussian with zero mean. To
proceed, we need the following definition.

Definition 2.2. Let S be a linearly ordered set with #S= 2r, where # is the counting mea-
sure and r ∈N. A permutation (α1,β1, . . . ,αr ,βr) of S is called regular if it satisfies αk < βk
for every k ∈ {1, . . . ,r}, and α1 < ··· < αr .
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The class of regular permutations of S will be referred to as �S. Clearly α1 =minS and
αr <maxS for any (α1,β1, . . . ,αr ,βr)∈�S. Note that �S can be identified with all possible
partitions of S into pairs; hence, #�S = (2r− 1)!!.

The class of all possible permutations of S will be referred to as ΠS. Slightly abusing
notation, Π{1,...,r} will be abbreviated as Πr , and we will write �r for the class of regular
permutations associated with the set

�r = {1, . . . ,2r}. (2.13)

For instance, �2 consists of three permutations (1,2,3,4), (1,3,2,4), and (1,4,2,3), with
the number of all possible permutations of �2 being #Π4 = 4!= 24.

Lemma 2.3. Let ξ = (ξk)k∈�r be anR2r-valued Gaussian random vector with zero mean and
covariance matrix Σ= (σjk) j,k∈�r . Then

E
2r∏

k=1

ξk =
∑

(α1,β1,...,αr ,βr )∈�r

r∏

k=1

σαkβk . (2.14)

The assertion of the lemma is well known in the case r = 2; see, for instance, [3, Ex-
ample 4.7.1, page 84]. To make the exposition self-contained, Lemma 2.3 is proved for
arbitrary r in Appendix A.

We will need the following extension of the lemma. Let ξ be an Rm-valued random
vector and let η2, . . . ,η2r be scalar random variables, which together have a zero-mean
Gaussian joint distribution. Then application of (2.14) yields

E

(
ξ

2r∏

k=2

ηk

)
=

∑

(α1,β1,...,αr ,βr )∈�r

E
(
ξηβ1

) r∏

k=2

E
(
ηαkηβk

)

=
2r∑

j=2

E
(
ξηj

)
E

∏

k∈{2,...,2r}\{ j}
ηk.

(2.15)

Here we made use of the properties that α1 = 1 and (α2,β2, . . . ,αr ,βr) ∈ �{2,...,2r}\{β1}
for any (α1,β1, . . . ,αr ,βr) ∈ �r . More precisely, for every j ∈ {2, . . . ,2r}, the inclusions
(1, j,α2,β2, . . . ,αr ,βr)∈�r and (α2,β2, . . . ,αr ,βr)∈�{2,...,2r}\{ j} are equivalent. The equiv-
alence provides a basis for the recursive generation of the classes �r . Now applying (2.15)
to the random vector ξ =W ���m and to the random variables (2.12), one verifies that

E

(
W

2r∏

k=2

(
CAμkBW

)
)

=
∑

(α1,β1,...,αr ,βr )∈�r

E
(
WCAμβ1BW

) r∏

k=2

E
(
CAμαk BWCAμβk BW

)

=
∑

(α1,β1,...,αr ,βr )∈�r

BT(Aμβ1
)T
CT

r∏

k=2

(
CAμαk BBT(Aμβk

)T
CT

)
.

(2.16)
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Using the last representation and bearing (2.8) and (2.11) in mind, it follows that for any
r ∈N and σ ∈ Z+,

∑

(μ1,...,μ2r+1)∈�2r+1
σ

Aμ1 E
2r+1∏
−→
k=2

BWCAμk

=
∑

(α1,β1,...,αr ,βr )∈�r

∑

(μ1,...,μ2r+1)∈�2r+1
σ

Aμ1BBT(Aμβ1
)T
CTCAμ2r+1

r∏

k=2

(
CAμαk BBT(Aμβk

)T
CT

)
.

(2.17)

Now note that each of the sets (2.9) is invariant under permutations of the entries of the
multi-indices. Therefore, the rightmost sum in (2.17), taken over the set �2r+1

σ for a given
permutation (α1,β1, . . . ,αr ,βr)∈�r , does not depend on the latter. Moreover, the sum is
equal to the matrix Hr,σ defined by (2.6), that is,

Σr,σ =
∑

(μ1,...,μ2r+1)∈�2r+1
σ

Aμ1BBT(Aμ2
)T
CTCAμ2r+1

r∏

k=2

(
CAμ2k−1BBT(Aμ2k

)T
CT

)
=Hr,σ .

(2.18)

Indeed, for any u from the set U in (2.3),

	r(u)=
∑

σ∈Z+

uσΣr,σ

=
∑

(μ1,...,μ2r+1)∈Z2r+1
+

(uA)μ1BBT(uAT)μ2CTC(uA)μ2r+1

r∏

k=2

(
C(uA)μ2k−1BBT(uAT)μ2kCT

)

=�(u)BBT(�(u)
)T
CTC�(u)

∣∣BT(�(u)
)T
CT

∣∣2(r−1) =�r(u),
(2.19)

where we have used (2.2), (2.4), and (2.5). That the functions 	r and �r coincide on
their common domain of analyticity implies the validity of (2.18) for every σ ∈ Z+. Con-
sequently, since #�r = (2r− 1)!!, the relationship (2.17) reads

∑

(μ1,...,μ2r+1)∈�2r+1
σ

Aμ1 E
2r+1∏
−→
k=2

BWCAμk = (2r− 1)!!Hr,σ . (2.20)

Substituting the last representation back to (2.8), we arrive at (2.7), completing the proof
of Theorem 2.1. �

Theorem 2.1 makes it easy to compute the power and exponential moments of the
matrix (1.1) if its expectation is zero. To formulate the corollary below, note that �(0)=
In by (2.2). Hence, by (2.4)–(2.6),

Hr,0 =Dr = (TrD)r−1D, (2.21)

where

D =�(0)= BBTCTC. (2.22)
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In (2.21), we have also used the idempotency of the matrix D/TrD inherited from �(u),
with TrD = |CB|2.

Corollary 2.4. Let X be given by (1.1)–(2.1), where A is zero. Then for any r ∈ N and
t ∈R,

EX2r = (2r− 1)!!(TrD)r−1D, (2.23)

EetX = In +
exp

(
TrDt2/2

)− 1
TrD

D, (2.24)

where the matrix D is defined by (2.22).

Proof. Since A = 0n×n, with 0a×b denoting the (a× b)-matrix of zeros, the map � in
(2.2) is identically constant. Hence, the matrices (2.6) satisfy Hr,k = 0n×n for all r,k ∈N.
Therefore (2.7) yields

EX2r = (2r− 1)!!Hr,0 (2.25)

which, by (2.21)-(2.22), implies (2.23). To prove (2.24), note that in the case considered,
all the odd power moments of X are zero since its distribution inherits from �m the
symmetry about the origin. Consequently, by (2.23) and by the identity (2r)! = (2r −
1)!!r!2r ,

EetX = In +
∑

r∈N

t2r

(2r)!
EX2r

= In +
D

TrD

∑

r∈N

(2r− 1)!!
(2r)!

(
TrDt2

)r

= In +
D

TrD

∑

r∈N

1
r!

(
TrDt2/2

)r
.

(2.26)

The last representation implies (2.24), and the proof of the corollary is complete. �

In the scalar case n = 1, the right-hand side of (2.24) indeed yields the moment-
generating function exp(Dt2/2) of the univariate Gaussian distribution with zero mean
and variance D.

3. System theoretic interpretation

Three matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rq×n generate a state-space realization of

a linear operator which maps a sequence i= (ik)k∈Z+ ∈
(
Rm

)Z+ to o= (ok)k∈Z+ ∈
(
Rq

)Z+

through the equations

σk = Aσk−1 +Bik, ok = Cσk, (3.1)
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where σ = (σk)k∈Z+ ∈ (Rn)Z+ satisfies the initial condition σ−1 = 0n×1. The linear operator
is denoted by the ordered triplet (A,B,C) or, interchangeably, by

[
A B

C 0q×m

]
. (3.2)

It is interpreted as a linear discrete-time invariant (LDTI) causal system with input i,
output o, and the internal state σ ; see, for example, [4, pages 90–93] or [8, page 35].

Recall that o is the convolution of i with the impulse response (dk)k∈Z+ ∈
(
Rq×m)Z+ given

by

dk = CAkB = 1
k!

dk
(u)
duk

∣∣∣∣
u=0

, (3.3)

where 
 :U →Rq×m is the transfer function of the system defined on the set (2.3) by


(u)=
∑

k∈Z+

ukdk = C�(u)B, (3.4)

and �(u) is given by (2.2). On the other hand, (3.2) can be regarded as a state-space re-
alization of a linear continuous-time invariant (LCTI) causal system which maps a locally
integrable Rm-valued input i = (it)t∈R+ to an absolutely continuous Rq-valued output
o= (ot)t∈R+ by

d
dt
σt = Aσt +Bit, ot = Cσt, (3.5)

with σ0 = 0n×1. The corresponding map i 	→ o is the Volterra integral operator

ot =
∫ t

0
ct−sisds. (3.6)

Its kernel, ct = CetAB, may be interpreted as the impulse response of the LCTI system.
Accordingly, the transfer function of the system is defined as the Laplace transform of the
kernel so that

�(v)=
∫

R+

e−vtctdt = C
(
vIn−A

)−1
B, v > lnr

(
eA
)
. (3.7)

For simplicity, we consider the transfer functions only for real values of their arguments.
The transfer functions (3.4) and (3.7) of the LDTI and LCTI systems generated by the
same state-space realization triplet are related by

�(v)= v−1

(
v−1). (3.8)

Here v−1 is the transfer function of the LCTI system I= (0,1,1), which we will refer to as
the integrator. If applied to Rm-valued functions, the integrator acts coordinate-wise so
as to correspond to the LCTI system Im = (0m×m,Im,Im).
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As it is well known, each of the classes of LDTI and LCTI systems with rational transfer
functions is closed under the associated composition which corresponds to the convolu-
tion of their impulse responses or, equivalently, to the multiplication of their transfer
functions. In state space, the operation is described immediately below.

Lemma 3.1. Let Σ1 = (A1,B1,C1) and Σ2 = (A2,B2,C2) be conformable state-space real-
ization triplets, so that the output of Σ1 is the input to Σ2. Then the compositions of the
corresponding LDTI and LCTI systems can be computed, respectively, as

Σ2
�d Σ1 =

⎡
⎢⎢⎣

A1 0 B1

B2C1A1 A2 B2C1B1

0 C2 0

⎤
⎥⎥⎦ , (3.9)

Σ2 �c Σ1 =

⎡
⎢⎢⎣

A1 0 B1

B2C1 A2 0

0 C2 0

⎤
⎥⎥⎦ . (3.10)

If the state-space realization triplets on the right-hand side of (3.9) and (3.10) are both con-
sidered as LCTI systems, then these latter satisfy the identity

Σ2 �c Σ1 = I �c
(
Σ2

�d Σ1
)
. (3.11)

To make the exposition self-contained, we prove Lemma 3.1 in Appendix B. Note that
the relations (3.9)–(3.11) are all understood as equalities between linear operators, not
between their state-space realization matrices. In this connection, recall that (TAT−1,
TB,CT−1) and (A,B,C) represent the same system for any conformable nonsingular ma-
trix T .

In (3.11), slightly sacrificing notational consistency, I stands for the class of integrators
Im of the appropriate dimension m. With this interpretation, I commutes with any LCTI
system Σ in the sense that

Iq �c Σ= Σ �c Im, (3.12)

where m and q are the dimensions of the input and output of Σ, respectively.
Let

�d r Σ= Σ �d ··· �d Σ︸ ︷︷ ︸
r times

, (3.13)

respectively,

�c r Σ= Σ �c ··· �c Σ︸ ︷︷ ︸
r times

, (3.14)

denote the r-fold iterate of the LDTI, respectively LCTI, system Σ, so that �d 1Σ and
�c 1Σ coincide with Σ. Using the constructs defined above, it is possible to reformulate
Theorem 2.1 in system-theoretic terms.
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Proposition 3.2. For any r ∈N, the Rn×n-valued sequence (Hr,k)k∈Z+ defined by (2.6) is
the impulse response of the LDTI system

Hr =
( �d r E

) �d F. (3.15)

Here,

E = F �d G= (
A,B,C

)
, (3.16)

F = (
A,In,In

)
, (3.17)

G= (
AT,CTC,BBT), (3.18)

and the state-space realization matrices A∈R2n×2n, B∈R2n×n, and C∈Rn×2n are given by

A=
[

AT 0n×n
BBTAT A

]
, B=

[
CTC
D

]
, C=

[
0n×n In

]
, (3.19)

where the matrix D is defined by (2.22).

Proof. By (2.2), � and BBT�TCTC are the transfer functions of the LDTI systems F and
G defined by (3.17) and (3.18). Hence, their product � in (2.4) is the transfer function of
the LDTI system E given by (3.16). Its state-space realization matrices (3.19) are obtained
by applying (3.9) of Lemma 3.1. It now remains to note that �r in (2.5) is the transfer
function of the LDTI system Hr in (3.15), and the proposition is proved. �

Besides the system-theoretic interpretation of Theorem 2.1, Proposition 3.2 encapsu-
lates a useful formalism for computing the power moments of the matrixX in (1.1). More
precisely,

Hr,k = CrAk
rBr , (3.20)

where Ar ∈ R(2r+1)n×(2r+1)n, Br ∈ R(2r+1)n×n, and Cr ∈ Rn×(2r+1)n are the state-space real-
ization matrices of the LDTI system (3.15), that is,

Hr =
(

Ar ,Br ,Cr
)
. (3.21)

The three matrices can be calculated recursively in r. Indeed, applying (3.9) of Lemma 3.1
to the recurrence relation Hr+1 = E �d Hr and using (3.19), we arrive at the equations

Ar+1 =
[

Ar 0(2r+1)n×2n

BCrAr A

]
, Br+1 =

[
Br

BCrBr

]
, (3.22)

Cr =
[

0n×2rn In
]

, (3.23)

with initial conditions

A0 = A, B0 = C0 = In. (3.24)
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Clearly, both Ar and Br in (3.22) are submatrices of Ar+1 and Br+1, respectively, with Ar

being block lower triangular. From (3.19) and from the special structure of the matrices
Cr in (3.23), it follows that

Cr+1Ar+1 =
[
DCrAr CA

]
, Cr+1Br+1 =DCrBr , (3.25)

where CA = [BBTAT | A]. In particular, by a straightforward induction, the rightmost
relations in (3.24) and in (3.25) imply that CrBr =Dr for all r ∈ Z+.

Note that the proposed system-theoretic implementation (3.20)–(3.25) of the solution
(2.7) to the problem of computing the power moment EXs of (1.1) is expensive for large
s, because the order of the matrix Ar grows linearly in r.

4. Exponential moments

The theorem below shows that the solution to the exponential moments problem also
admits a system-theoretic representation, intrinsically related to that in Proposition 3.2.

Theorem 4.1. The exponential moments of the Gaussian random matrix X defined by
(1.1)–(2.1) are representable as

EetX = etA +
∑

r∈N
(2r− 1)!!Mr(t), t ∈R+, (4.1)

where Mr :R+→Rn×n is the impulse response of the LCTI system

Hr =
(

�c r E
)

�c F. (4.2)

Here

E= F �c G= (A,B,C), (4.3)

where F and G are defined by (3.17)–(3.18), and the matrix C is given in (3.19), while
A∈R2n×2n and B∈R2n×n are defined by

A=
[

AT 0n×n
BBT A

]
, B=

[
CTC
0n×n

]
. (4.4)

The proof of Theorem 4.1 is given in Appendix C. Applying (3.10) of Lemma 3.1 to
the recurrence relation Hr+1 = E �c Hr which follows from (4.2), we obtain that

Hr =
(

Ar ,Br ,Cr
)
, (4.5)

where the matrix Cr is given by (3.23) as before, while Ar and Br satisfy the equations

Ar+1 =
[

Ar 0(2r+1)n×2n

BCr A

]
, Br+1 =

[
Br

02n×n

]
, (4.6)

with

A0 =A, B0 = In. (4.7)
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In view of (4.5), the impulse response Mr of the LCTI system (4.2) takes the form

Mr(t)= CretAr Br . (4.8)

By a straightforward induction, (4.6)–(4.7) and (4.4) imply that for every r ∈N,

Ar =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0n×n 0n×n 0n×n 0n×n
CTC AT 0n×n 0n×n 0n×n
0n×n BBT A 0n×n 0n×n
0n×n 0n×n CTC AT 0n×n
0n×n 0n×n 0n×n BBT A

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Br =
[

In
02rn×n

]
. (4.9)

In particular, Ar is the principal submatrix, of order (2r + 1)n, of an infinite block two-
diagonal matrix where the blocks A alternate with AT along the main diagonal and CTC
alternate with BBT on the subdiagonal.

Let ⊗ denote the Kronecker product of matrices, and χ2
1 stands for the χ2-distribution

[13, pages 183–184] with one degree of freedom.

Theorem 4.2. The exponential moments (4.1) of the Gaussian random matrix X defined
by (1.1)–(2.1) are given by

EetX = PnEexp

(
t

[
A ω1BBT

ω2CTC AT

])
PT
n , t ∈R+. (4.10)

Here ω1 and ω2 are arbitrary scalar random variables satisfying ω1ω2 �� χ2
1 , and

Pn =
[

1
∣∣0
]
⊗ In =

[
In
∣∣0n×n

]
. (4.11)

We prove Theorem 4.2 in Appendix D. Note that (4.10) extends from R+ to the com-
plex plane by a standard argument using the uniqueness theorem for analytic functions.

The significance of Theorem 4.2 is as follows. Despite the presence of two random
variables on the right-hand side of (4.10), them-variate integral of the matrix exponential
in EetX is reduced to a univariate integral of another matrix exponential along a pencil of
matrices. Indeed, if ω is a standard normal random variable, then ω2 �� χ2

1, and hence,
application of (4.10) with ω1 = ω2 = ω gives

EetX = PnEexp

(
t

[
A 0n×n

0n×n AT

]
+ωt

[
0n×n BBT

CTC 0n×n

])
PT
n . (4.12)
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The matrix exponential on the right-hand side of (4.12) is applied to a Gaussian random
matrix whose order is twice the order of X . However, in contrast to the m-dimensional
source (2.1) in the original matrix, the random perturbation ω in the new matrix is one-
dimensional. By the discussion above, (4.12) remains valid if we replace ω with |ω|, yield-
ing

EetX =
√

2
π
Pn

∫

R+

exp

(
t

[
A wBBT

wCTC AT

]
− w2

2
I2n

)
dwPT

n . (4.13)

Alternatively, putting ω1 ≡ 1 and ω2 �� χ2
1 in (4.10) and recalling the PDF of the χ2

1-law
e−z/2/

√
2πz, we obtain

EetX = 1√
2π

Pn

∫

R+

exp

(
t

[
A BBT

zCTC AT

]
− z

2
I2n

)
dz√
z
PT
n . (4.14)

Further reduction of the integrals on the right-hand side of (4.13) and (4.14) constitutes,
to our best knowledge, an open problem. From the practical point of view, these univari-
ate integrals are, in principle, amenable to numerical computation using the methods of
[10].

Appendices

A. Proof of Lemma 2.3

Consider the moment-generating function of the random vector ξ which maps u =
(uk)k∈�r ∈R2r to

ψ(u)= Eeu
Tξ = exp

(
1
2
uTΣu

)
=

∑

j∈Z+

1
j!

(
1
2

∑

α,β∈�r

σαβuαuβ

) j

=
∑

j∈Z+

1
(2 j)!!

∑

α1,β1,...,αj ,βj∈�r

j∏

k=1

σαkβkuαkuβk ,

(A.1)

where we have used the identity j!2 j = (2 j)!!. Only those terms on the right-hand side
of (A.1) for which j = r and (α1,β1, . . . ,αr ,βr) is a permutation of the set �r in (2.13),
contribute to the expectation on the left-hand side of (2.14). Thus

E
2r∏

k=1

ξk = ∂2rψ(u)
∂u1 ···∂u2r

∣∣∣∣
u=02r×1

= 1
(2r)!!

∑

(α1,β1,...,αr ,βr )∈Π2r

r∏

k=1

σαkβk , (A.2)

where Π2r is the class of all possible permutations of �r . For any γ = (γ1, . . . ,γr) ∈ Πr ,
let Eγ be the operator which synchronously permutes the odd and even entries of a (2r)-
dimensional vector so that

Eγ
(
α1,β1, . . . ,αr ,βr

)= (
αγ1 ,βγ1 , . . . ,αγr ,βγr

)
. (A.3)
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Let Tk be the transposition which exchanges the (2k− 1)th and (2k)th entries, leaving all
others fixed. Clearly, the maps Eγ and T1, . . . ,Tr commute with each other. For any binary
word δ = (δ1, . . . ,δr)∈ {0,1}r of length r, let

Tδ = Tδ1
1 ◦ ··· ◦Tδr

r . (A.4)

As a function of p = (α1,β1, . . . ,αr ,βr)∈Π2r , the quantity
∏r

k=1 σαkβk in (A.2) is invariant
with respect to the group of transformations p 	→ (Eγ ◦Tδ)(p); the invariance under Tk
follows from the symmetry of the covariance matrix Σ. The action of the group partitions
the set Π2r into equivalence classes, invariant under the group. Each of these classes is
representable as the orbit Cr,p of the group on a unique regular permutation p ∈ �r ,
where

Cr,p =
{(
Eγ ◦Tδ

)
(p) : γ ∈Πr , δ ∈ {0,1}r}. (A.5)

Clearly, #Cr,p = r!2r = (2r)!!. Therefore, the sum on the right-hand side of (A.2) can be
reduced to a sum over regular permutations as follows:

E
2r∏

k=1

ξk = 1
(2r)!!

∑

p∈�r

∑

(α1,β1,...,αr ,βr )∈Cr,p

r∏

k=1

σαkβk =
∑

(α1,β1,...,αr ,βr )∈�r

r∏

k=1

σαkβk . (A.6)

The last representation coincides with (2.14), thereby completing the proof of the lemma.

B. Proof of Lemma 3.1

Let σ , i, and ω be, respectively, the internal state, input, and output of the LDTI system
Σ1 described by

σk = A1σk−1 +B1ik, ωk = C1σk. (B.1)

The sequence ω is also the input to the LDTI system Σ2 whose internal state s and output
o are governed by

sk = A2sk−1 +B2ωk, ok = C2sk. (B.2)

Substitution of (B.1) to the leftmost equation in (B.2) transforms the latter to sk =
B2C1A1σk−1 +A2sk−1 +B2C1B1ik. Combining the last equation with (B.1) and with (B.2),
and assembling the internal state sequences σ and s to

S=
[
σ
s

]
, (B.3)

one verifies that the operator Σ2
�d Σ1 relating o with i is described by the equations

Sk =
[

A1 0
B2C1A1 A2

]
Sk−1 +

[
B1

B2C1B1

]
ik,

ok =
[

0 C2

]
Sk,

(B.4)
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which yield (3.9). The proof of (3.10) below almost verbatim replicates the treatment of
the discrete-time case above. The LCTI systems Σ1 and Σ2 are governed by

d
dt
σt = A1σt +B1it, ωt = C1σt, (B.5)

d
dt
st = A2st +B2ωt, ot = C2st. (B.6)

Substitution of the rightmost equation in (B.5) to the leftmost equation in (B.6) yields
(d/dt)st = B2C1σt +A2st. Combining this last equation with the remaining ones in (B.5)
and in (B.6), and assembling σ and s as in (B.3), we obtain

d
dt
St =

[
A1 0
B2C1 A2

]
St +

[
B1

0

]
it,

ot =
[

0 C2

]
St,

(B.7)

from whence (3.10) follows. To prove (3.11), we write the transfer function of the LCTI
system Σ2 �c Σ1 computed on the right-hand side of (3.10) as

�Σ2 �c Σ1 (v)=�Σ2 (v)�Σ1 (v)

= v−2
Σ2

(
v−1)
Σ1

(
v−1)

= v−2
Σ2
�d Σ1

(
v−1)= v−1�Σ2

�d Σ1 (v),

(B.8)

where we have used (3.8) twice. The right-hand side of (B.8) is the transfer function of the
LCTI system I �c

(
Σ2

�d Σ1
)
, establishing (3.10) and completing the proof of the lemma.

C. Proof of Theorem 4.1

From (2.7) of Theorem 2.1, it follows that

EetX = etA +
+∞∑

s=2

ts

s!

�s/2�∑

r=1

(2r− 1)!!Hr,s−2r

= etA +
∑

r∈N
(2r− 1)!!Mr(t),

(C.1)

where

Mr(t)=
∑

k∈Z+

t2r+k

(2r + k)!
Hr,k. (C.2)

The interchangeability of sums in (C.1), as well as the absolute summability of the series,
follows from the bound

sup
r∈N,k∈Z+

ln
∥∥Hr,k

∥∥

r + k
< +∞, (C.3)



16 Moments of Gaussian random matrices

where ‖ · ‖ is a matrix norm. For every r ∈ N, the function Mr in (C.2) coincides with
the (2r)-fold integral of the function Jr :R+→Rn×n defined by

Jr(t)=
∑

k∈Z+

tk

k!
Hr,k. (C.4)

More precisely,

Mr(t)=
∫ t

0

∫ t2r

0
···

∫ t3

0

∫ t2

0︸ ︷︷ ︸
2r times

Jr(t1)dt1dt2×···×dt2r−1dt2r . (C.5)

Substituting (3.20) into (C.4) yields

Jr(t)= Cr

∑

k∈Z+

(
tAr

)k

k!
Br = CretAr Br . (C.6)

Thus, Jr is the impulse response associated with the state-space realization triplet (3.21),
this time interpreted as an LCTI system. Therefore, by (C.5) and by (3.15)–(3.16), the
function Mr is the impulse response of the LCTI system

(
�c 2r I

)
�c Hr =

(
�c 2r I

)
�c
(
F �d G �d Hr−1

)

= (
�c 2r−1 I

)
�c F �c

(
G �d Hr−1

)

= (
�c 2(r−1) I

)
�c F �c G �c Hr−1

= E �c
(

�c 2(r−1) I
)

�c Hr−1

= (
�c r E

)
�c F =Hr .

(C.7)

Here, I is the integrator (see Section 3), and we have used the identity (3.11), the com-
mutative property of the integrator (3.12), and the definitions (4.2) and (4.3). It follows
from (3.10) of Lemma 3.1 that the state-space realization matrices of the LCTI system E
can be computed by (4.4) and by the rightmost relation in (3.19), completing the proof
of the theorem.

D. Proof of Theorem 4.2

To prove the theorem, we will need the two subsidiary results immediately below.

Lemma D.1. Let Σ= (A,B,C) be an LCTI system with equally dimensioned input and out-
put. Then

∑

r∈N
�c r Σ= (�−Σ)−1−�= (A+BC,B,C), (D.1)

where � is the identity operator.
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The convergence of the series on the left-hand side of (D.1) is ensured by general re-
sults on the Neumann series associated with linear Volterra integral equations of the sec-
ond kind. The rest of Lemma D.1 is well known in system theory; see, for example, [4,
page 656]. To make the exposition self-contained, we prove it below following the line of
[2, Proposition 6.4.1, page 81].

Proof of Lemma D.1. Let i and σ be the input and the internal state of Σ, respectively.
Then the operator �−Σ : i 	→ o is governed by

d
dt
σt =Aσt +Bit, ot = it −Cσt, (D.2)

and is invertible on the space of locally integrable functions. Expressing i in terms of σ
and o from the rightmost equation in (D.2) and substituting the result into the leftmost
equation, we obtain that the inverse operator (�−Σ)−1 : o 	→ i is described by

d
dt
σt = (A+BC)σt +Bot, it = Cσt + ot. (D.3)

The state-space representation of (�−Σ)−1−� is now obtained by subtracting ot from
both parts of the rightmost equation in (D.3), that establishes (D.1) and completes the
proof of the lemma. �

Lemma D.2. Let Q be a square matrix partitioned into four blocks as follows:

Q =
[
Q11 Q12

Q21 Q22

]
, (D.4)

where Q11 ∈Ra×a and Q22 ∈Rb×b. Let f be a function, analytic in a neighbourhood of the
origin, and such that the radius of convergence of its Taylor series expansion is greater than
r(Q). Then for every λ∈R \ {0},

P f
(
Qλ

)
PT = P f (Q)PT, (D.5)

where

Qλ =
[

Q11 λQ12

λ−1Q21 Q22

]
, P =

[
Ia 0a×b

]
. (D.6)

The assertion of the last lemma means the invariance of the appropriate principal sub-
matrices of f (Q) under the balanced rescaling of the off-diagonal blocks of Q controlled
by the parameter λ.

Proof of Lemma D.2. For any λ �= 0, the matrix Qλ is obtained from Q =Q1 by the simi-
larity transformation

Qλ = T−1
λ QTλ, Tλ =

[
Ia 0a×b

0b×a λIb

]
. (D.7)
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Hence,

f (Qλ)= T−1
λ f (Q)Tλ. (D.8)

Since PT−1
λ = P and TλPT = PT, the left multiplication by P and the right multiplication

by PT of both parts of (D.8) yield (D.5), completing the proof of the lemma. �

Now turn to the proof of Theorem 4.2. Let ζ be a χ2
1-distributed random variable,

ζ �� χ2
1 . (D.9)

For any t ∈R+, we introduce the Rn×n-valued random matrix

K(ζ , t)=
∑

r∈N
ζrMr(t), (D.10)

where Mr are the impulse responses of the LCTI systems (4.2) defined in Theorem 4.1.
With probability one, the series on the right-hand side of (D.10) is absolutely summable
and its convergence is uniform in t over any bounded subset of R+. Recalling that for
any r ∈N, the rth moment of (D.9) is Eζr = (2r− 1)!!, and applying Fubini’s theorem, it
follows from (4.1) and (D.10) that

EetX = etA + EK(ζ , t). (D.11)

From (4.2), it follows that K(ζ ,·) :R+→Rn×n is the impulse response of the LCTI system

Lζ =
(
∑

r∈N
�c r (ζ E)

)
�c F, (D.12)

where ζ E is an LCTI system associated with (4.3) as follows:

ζ E= (A,ζ B,C). (D.13)

Both Lζ and ζE are random linear operators acting on the space of locally integrable Rn-
valued functions on R+. Applying Lemma D.1 to the system Σ= ζ E in (D.13) and using
(3.17), one verifies that the operator Lζ in (D.12) admits a finite-dimensional state-space
representation,

Lζ = (A+ζ BC,ζ B,C) �c
(
A,In,In

)
. (D.14)
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Calculating the right-hand side of (D.14) using (3.10) of Lemma 3.1 and recalling (3.19)
and (4.4), we obtain

Lζ =

⎡
⎢⎢⎣

A 0n×2n In
ζ B A+ζ BC 02n×n

0n×n C 0n×n

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

A 0n×n 0n×n In
ζCTC AT ζCTC 0n×n
0n×n BBT A 0n×n
0n×n 0n×n In 0n×n

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

A 0n×n 0n×n In
0n×n A BBT In
0n×n ζCTC AT 0n×n
−In In 0n×n 0n×n

⎤
⎥⎥⎥⎥⎦
.

(D.15)

The reduction to the rightmost state-space representation in (D.15) is achieved by the
similarity transformation

T

⎡
⎢⎢⎣

A 0n×n 0n×n
ζCTC AT ζCTC

0n×n BBT A

⎤
⎥⎥⎦T

−1 =

⎡
⎢⎢⎣

A 0n×n 0n×n
0n×n A BBT

0n×n ζCTC AT

⎤
⎥⎥⎦ , (D.16)

where

T =
⎡
⎢⎣

1 0 0
1 0 1
0 1 0

⎤
⎥⎦⊗ In, T−1 =

⎡
⎢⎣

1 0 0
0 0 1
−1 1 0

⎤
⎥⎦⊗ In. (D.17)

By the block-diagonal structure of the matrix on the right-hand side of (D.16), the system
Lζ in (D.15) splits into two autonomous LCTI subsystems so that its impulse response
(D.10) takes the form

K(ζ , t)=−eAt +Pn exp

(
t

[
A BBT

ζCTC AT

])
PT
n , (D.18)

where the definition (4.11) has been used. Substituting (D.18) into (D.11) yields

EetX = PnEexp

(
t

[
A BBT

ζCTC AT

])
PT
n . (D.19)

Applying Lemma D.2 to the matrix exponential on the right-hand side of (D.19), one
verifies that

Pn exp

(
t

[
A BBT

ζCTC AT

])
PT
n = Pn exp

(
t

[
A ω1BBT

ω2CTC AT

])
PT
n (D.20)

for anyω1 andω2 satisfyingω1ω2 = ζ . Therefore, combining (D.20) with (D.19), we arrive
at (4.10), completing the proof of the theorem.
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