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Let (Q,X) be a measurable space, with X a sigma-algebra of subset of Q, and let C be
a nonempty bounded closed convex separable subset of a Banach space X, whose char-
acteristic of noncompact convexity is less than 1, KC(X) the family of all compact con-
vex subsets of X. We prove that a multivalued nonexpansive non-self-random operator
T:QxC - KC(X), 1-y-contractive mapping, satisfying an inwardness condition has a
random fixed point.
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1. Introduction

In recent years there have appeared various random fixed point theorems for single-
valued and set-valued random operators; see for example, Itoh [7], Ramirez [9], Tan and
Yuan [10], Xu [12, 13] Yuan and Yu [15], and references therein.

Ramirez [9] proved the existence of random fixed point theorems for a random nonex-
pansive operator in the framework of Banach spaces with a characteristic of noncompact
convexity €,(X) is less than 1. On the other hand, Dominguez Benavides and Ramirez
[4] proved a fixed point theorem for a set-valued nonexpansive self-mapping and 1-y-
contractive mapping in the framework of Banach spaces whose characteristic of noncom-
pact convexity associated to the separation measure of noncompactness g(X) is less than
1. Dominguez Benavides and Ramirez [5] proved a fixed point theorem for a multivalued
nonexpansive non-self-mapping and 1-y-contractive mapping in the framework of Ba-
nach spaces whose characteristic of noncompact convexity associated to the Kuratowski
measure of noncompactness &,(X) is less than 1.

The purpose of the present paper is to prove a random fixed point theorem for mul-
tivalued nonexpansive non-self-random operators which is 1-y-contractive mapping, in
the framework of Banach spaces with characteristic of noncompact convexity associated
to the separation measure of noncompactness £3(X) less than 1 and satisfying an inward-
ness condition. Our result can also be seen as an extension of [5, Theorem 3.4].
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2 Random fixed point multivalued nonexpansive non-self-mappings

2. Preliminaries and notations

We begin with establishing some preliminaries. By (€2,%) we denote a measurable space
with ¥ a sigma-algebra of subset of Q. Let (X, d) be a metric space. We denote by CL(X)
(resp., CB(X), KC(X)) the family of all nonempty closed (resp., closed bounded, compact
convex) subset of X, and by H the Hausdorff metric on CB(X) induced by d, that is,

H(A,B) =max{supd(a,B),supd(b,A)} (2.1)

acA beB

for A,B € CB(X), where d(x,E) = inf{d(x,y) | y € E} is the distance from x to E C X.

Let C be a nonempty closed subset of a Banach space X. Recall now that a multivalued
mapping T : C — 2% is said to be upper semicontinuous on C if {x € C: Tx C V'} is open
in C whenever V C X is open; T is said to be lower semicontinuous if T™!(V):= {x € C:
Tx NV # D}is open in C whenever V C X is open; and T is said to be continuous if it
is both upper and lower semicontinuous (cf. [1, 2] for details). There is another different
kind of continuity for multivalued operator: T : C — CB(X) is said to be continuous on
C (with respect to the Hausdorff metric H) if H(Tx,, Tx) — 0 whenever x, — x. It is not
hard to see (see Deimling [2]) that both definitions of continuity are equivalent if T'x is
compact for every x € C.

If C is a closed convex subset of Banach spaces X, then a multivalued mapping T: C —
CB(X) is said to be a contraction if there exists a constant k € [0,1) such that

H(Tx,Ty) <kllx—yl, xyeC, (2.2)
and T is said to be nonexpansive if
H(Tx,Ty)<lx-yl, xyeC (2.3)

A multivalued operator T : Q — 2% is called (X)-measurable if, for any open subset B
of X,

T-'(B) = {w € Q: T(w) "B # O} (2.4)

belongs to . A mapping x : Q — X is said to be a measurable selector of a measurable
multivalued operator T : Q — 2% if x(-) is measurable and x(w) € T(w) forall w € Q. An
operator T : QO X C — 2% is called a random operator if, for each fixed x € C, the operator
T(-,x): Q — 2% is measurable. We will denote by F(w) the fixed point set of T(w, -), that
is,

Flw):={xeC:x e T(w,x)}. (2.5)

Note that if we do not assume the existence of fixed point for the deterministic mapping
T(w,-): C — 2%, F(w) may be empty. A measurable operator x : Q — C is said to be a
random fixed point of an operator T : Q x C — 2X if x(w) € T(w,x(w)) forall w € Q. Recall
that T : Q x C — 2% is continuous if, for each fixed w € Q, the operator T : (w,-) — 2% is
continuous.
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A random operator T: Q x C — 2% is said to be nonexpansive if, for each fixed w € Q,
themap T': (w,-) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measura-
bility.
LemMa 2.1 (Wagner, cf. [11]). Let (X,d) be a complete separable metric space and F : Q) —
CL(X) a measurable map. Then F has a measurable selector.

Lemma 2.2 (Itoh, cf. [7]). Suppose {T,} is a sequence of measurable multivalued operator
from Q to CB(X) and T : QO — CB(X) is an operator. If, for each w € Q, H(T,(w), T(w)) —
0, then T is measurable.

Lemma 2.3 (Tan and Yuan, cf. [10]). Let X be a separable metric space and Y a metric
space. If f : QX X — Y is measurable in w € Q and continuous inx € X, and if x: Q — X
is measurable, then f(-,x(-)): Q — Y is measurable.

As an easy application of Itoh [7, Proposition 3], we have the following result.

LEMMA 2.4. Let C be a closed separable subset of a Banach space X, T : QO x C — C a random
continuous operator, and F : Q — 2¢ a measurable closed-valued operator. Then for any
s >0, the operator G : Q — 2¢ given by

G(w) = {x € F(w):||Jx - T(w,x)|| <s}, weQ, (2.6)

is measurable and so is the operator cl{G(w)} of the closure of G(w).

LemMA 2.5 (Dominguez Benavidel and Lopez Acedo, cf. [3]). Suppose C is a weakly closed
nonempty separable subset of a Banach space X, F : Q — 2X measurable with weakly compact
values, f : Q X C — R measurable, continuous and weakly lower semicontinuous function.
Then the marginal function r : Q) — R defined by

r(w):= inf f(w,x) 2.7)

x€F(w)
and the marginal map R : Q — X defined by
R(w):={x € F(w): f(w,x) =r(w)} (2.8)

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty
bounded subset B of X are, respectively, defined as the numbers

a(B) = inf{r > 0: B can be covered by finitely many sets of diameter < r},

x(B) = inf{r > 0: B can be covered by finitely many ball of radius < r}. (29)

The separation measure of noncompacness of a nonempty bounded subset B of X is
defined by

B(B) = sup {¢: there exists a sequence {x,} in B such that sep ({x,}) > ¢}.  (2.10)
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Then a multivalued mapping T : C — 2% is called y-condensing (resp., 1-y-contractive)
where y = a(-) or y(-) if, for each bounded subset B of C with y(B) > 0, there holds the
inequality

y(T(B)) <y(B) (resp., y(T(B)) < y(B)). (2.11)

Here T(B) = Uycp Tx. The random operator T : QO X C — 2X is said to be I-y-contractive
if, for each w € O, the map T': (w,-) — 2X s 1-y-contractive.

Definition 2.1. Let X be a Banach space and ¢ = a, 3, or y. The modulus of noncompact
convexity associated to ¢ is defined in the following way:

Ax¢(e) =inf {1 —d(0,A) : A C By is convex, $(A) > &}, (2.12)

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of non-
compactness ¢ is defined by

g(X) = sup {e = 0: Ax¢(e) = 0}. (2.13)
The following relationshops among the different moduli are easy to obtain
Ax.a(€) < Axp(e) < Ay, (e), (2.14)
and consequently
ea(X) = e(X) = g, (X). (2.15)

When X is a reflexive Banach space, we have some alternative expressions for the moduli
of noncompact convexity associated § and y:

Axp(e) =inf {1 — x| : {xs} C Bx, x = w —limx,, sep ({x»}) = ¢},
Ax () = inf {1 — |Ix[l : {x,} C Bx, x = w —limx,, y({x.}) > €}. (2.16)

In order to study the fixed point theory for non-self-mappings, we must introduce
some terminology for boundary condition. The inward set of C at x € C is defined by

Ic(x):={x+AMy—x):A>0, y e C}l. (2.17)

Clearly C C I¢(x) and it is not hard to show that Io(x) is a convex set as C does. A
multivalued mapping T : C — 2X{@} is said to be inward on C if

Tx Clc(x) VxeC. (2.18)

Let Ic(x) := x+ {A(z = x) : z € C, A = 1}. Note that for a convex C, we have Io(x) =
Ic(x), and T is said to be weakly inward on C if

TxClc(x) VxeC (2.19)
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Let C be a nonempty bounded closed subset of Banach spaces X, and {x,} bounded
sequence in X; we use r(C, {x,}) and A(C, {x,}) to denote the asymptotic radius and the
asymptotic center of {x,} in C, respectively, that is,

r(C{xn}) = inf{limsup”xn —x||:x€ C},
" (2.20)
A(Cx,}) = {x eC: limnsup||x,, —x||=r(C, {xn})}

If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by
re(D):=inf {sup{llx—yll: y € D} :x € C}. (2.21)

Obviously, the convexity of C implies that A(C, {x,}) is convex. Notice that A(C, {x,})
is a nonempty weakly compact set if C is weakly compact, or C is a closed convex subset
of a reflexive Banach spaces X.

Let {x,} and C be nonempty bounded closed subsets of Banach spaces X. Then {x;,}
is called regular with respect to C if 7(C,{x,}) = r(C,{xy,}) for all subsequences {x,,}
of {x,}; while {x,} is called asymptotically uniform with respect to C if A(C,{x,}) =
A(C, {xy,}) for all subsequences {x,,} of {x,}.

LEmMMA 2.6 (Goebel [6] and Lim [8]). Let {x,} and C be as above. Then we have the fol-
lowing:
(i) there always exists a subsequence of {x,} which is regular with respect to C;
(ii) if C is separable, then {x,} contains a subsequence which is asymptotically uniform
with respect to C.

Moreover, we also need the following lemma.

LemMa 2.7 (Dominguez Benavides and Ramirez, cf. [4, Theorem 3.4]). Let C be a closed
convex subset of reflexive Banach spaces X, and let x,, be a bounded sequence in C which is
regular with respect to C. Then

re(A(Coxn)) = (1= Axp(17))r(Co{xa}). (2.22)
Moreover, if X satisfies the nonstrict Opial condition, then
rc(A(Coxn)) < (1= Axy (17))r(C, {xn}). (2.23)

LemMA 2.8 (Dominguez Benavides and Ramirez, cf. [5, Theorem 3.2]). Let C be a closed
convex subset of a reflexive Banach space X, and let {xg : § € D} be a bounded ultranet.
Then

re(A(Coxp)) = (1= Axa(17))7(C {xp}). (2.24)

The following result are now basic in the fixed point theorem for multivalued map-
pings.
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LemMma 2.9 (Deimling, cf. [2]). Let X be a Banach space and & # D C X be closed bounded
convex. Let F: D — 2% be upper semicontinuous y-condensing with closed convex values,
where y(-) = a(-) or (). If Fx N Ip(x) # @ for all x € C, then F has a fixed point. (Here
Ip(x) is called the inward set at x defined by Ip(x) := {x+A(y —x):A >0, y € D}.)

3. The result

In order to prove our first result, we need the following lemma which is proved along the
proof of Kirk-Massa theorem as it appears in [14].

LemMma 3.1. Let C be a nonempty closed bounded convex separable subset of a Banach space
X. T:C— KC(X) is nonexpansive such that T(C) is a bounded set which satisfies Tx C
Ic(x), Vx € C, {x,} is a sequence in C such that lim, d(x,, Tx,) = 0. Then there exists a
subsequence {z,} of {x,} such that Tx N I4(x) # @, Vx € A:= A(C,{z,}).

Lemma 3.1 is part (more or less) of the proof of [5, Theorem 3.4].
The next result states the main result of this work.

THEOREM 3.2. Let C be a nonempty closed bounded convex separable subset of Banach

spaces X such that €g(X) < 1, and T : O x C — KC(X) a multivalued nonexpansive random

operator and 1-y-contractive mapping, such that for each w € Q, T(w,C) is a bounded set,

which satisfies the inwardness condition, that is, for each w € Q, T(w,x) C Ic(x),Vx € C.
Then T has a random fixed point.

Proof. Fix xy € C, and consider the measurable function x¢(w) = xo. For each n > 1, de-
fine T,(w,-) : C — KC(X) by
1 n—1
(@) = —x0(w) + (—n )T(w,x), VxeC (3.1)

Then T,(w, -) is a multivalued contraction and T,(w,x) C Ic(x), Vx € C. Hence each T},
has a fixed point z,(w) € C. It is easily seen that d(z,(w), T(w,z,(w))) < (1/n)diamC — 0
as n — oo, Thus the set

Fu(w) = {x € Cid(x T(wyx)) < diamc} (3.2)

1
n

is nonempty closed and convex. Furthermore, by Lemma 2.4, each F, is measurable.
Then, by Lemma 2.1, each F,, admits a measurable selector x,(w) such that

d(x,(w), T (w,%,(w))) <

S |

diamC — 0 asn — oo, (3.3)
Define a function f : QX C — R* :=[0,0) by

f(w,x) = limsup||x,(w) = x||, x€C (3.4)

By Lemma 2.3, it is easily seen that f(-,x) is measurable and f(w,-) is continuous and
convex, therefore it is a weakly lower semicontinuous function. Note that; condition



S. Plubtieng and P. Kumam 7

£5(X) < 1implies reflexivity (see [1]) and so C is a weakly compact. Hence, by Lemma 2.5,
the marginal functions

r(w):= irelgf(w,x),

(3.5)
Alw):={xeC: f(w,x) =r(w)}

are measurable. It is clearly that A(w) is a weakly compact convex subset of C. For any
w € Q, we may assume that the sequence {x,(w)} is regular with respect to C. Note
that A(w) = A(C, {x,(w)}), and r(w) = r(C, {x,(w)}). We can apply inequality (2.22) in
Lemma 2.7 to obtain

re(A(w)) < Ar(C, {xy(w)}), (3.6)

where A = 1 - Ax g(17) < 1, since gg(X) < 1.
For each w € Q and n > 1, we define the multivalued contraction T}(w, ) : A(w) —
KC(X) by

n—

T (w,%) = Lx1 () + ( 1)T(w,x), (3.7)
n

for each x € C. By Lemma 3.1, we note that T(w,x) N L4 (x) # &, Vx € A(w). Since
Li(w)(x) is convex, it follows that T} (w, -) satisfies the boundary condition, that is,

T w,x) NI (x) + D, Vx € A(w). (3.8)

Since T} (w,-) is 1-y-contractive mapping, it follows by [4, page 382] that T}(w,-) is
x-condensing. Hence, by Lemma 2.9, T}(w,-) has a fixed point z}(w) € A(w), that is,
F(w) N A(w) # @. Also it is easily seen that

dist (z)(w), T (w,z}:(w))) < =diamC — 0 asn — oo. (3.9)

S | =

Thus F}(w) := {x € A(w) : d(x, T(w,x)) < (1/n)diam C} is nonempty closed and con-
vex for each n > 1. By Lemma 2.4, each F} is measurable. Hence, by Lemma 2.1, we can
choose x} a measurable selector of F}. Thus we have x}(w) € A(w) and d(x(w), T(w,
xi(w))) — 0 as n — oo, Consider the function f, : QO X C — R defined by

fr(w,x) = limsup||x}(w) — x||, VweQ. (3.10)

As above, f, is a measurable function and weakly lower semicontunuous function. Then
the marginal functions
n(w):= inf fH(wx),
x€A(w) (31 1)
Al(w):={x € A(w): f(w,x) = r(w)}
are measurable. Since A!(w) = A(A(w), {x}(w)}), it follows that A!(w) is a weakly com-
pact and convex. Moreover, we also note that r;(w) = r(A(w), {x}(w)}). Again reasoning
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as above, for any w € (), we can assume that the sequence {x}(w)} is regular with respect
to Al(w). Moreover, we proceed as above using Lemmas 3.1 and 2.7 to obtain that
T(w,x(w)) NIy (x(w)) # @ Vx(w) € A' = A(A(w), {x}(@)}),

3.12
re(A1) = Ar(A@), [x(@)]) = Mre(A(w)). (3-12)

By induction, for each m > 1, we take a sequence {x7(w)}, € A™ ! such that rc(A™) <
AMre(A(w)) and lim, d(x7(w), T (w,x"(w))) = 0 for each fixed w € Q, where A™ := A(C,
{2 (w)}). Since diam Ry, (w) < 2r¢(Ry(w)) and A < 1, it follows that lim,,—. . diam Ry, (w) =
0. Note that {R,,(w)} is a descending sequence of weakly compact subset of C for each
w € Q. Thus we have N,R,,(w) = {z(w)} for some z(w) € C. Furthermore, we see that

HR,(w),{z(w)}) < diamR,,(w) — 0 asn — +oo. (3.13)

Therefore, by Lemma 2.2, z(w) is measurable. Finally, we will show that z(w) is a fixed
point of T. Indeed, for each m = 1, we have

d(z(w), T(w,z(w))) <||z(w) = 2 ()| + d (x)(w), T (w, ) ()))
+H(T(w,x)(w)), T (w,z(w)))

< 2e@) - @[+ @) Tw @) Y
<2diamR,,(w) +d(x"(w), T (w,x"(w))).
Taking the upper limit as n — oo,
d(z(w), T(w,z(w))) < 2diamR,,(w). (3.15)
Finally, taking limit in m in both sides, we obtain z(w) € T(w,z(w)). O

THEOREM 3.3. Let C be a nonempty closed bounded convex separable subset of Banach
spaces X such that €,(X) < 1, and T : Q X C — KC(X) a multivalued nonexpansive random
operator and 1-x-contractive nonexpansive mapping, such that for each w € Q, T(w,C) is a
bounded set, which satisfies the inwardness condition, that is, for each w € Q,T(w,x) C
Ic(x),Vx eC.

Then T has a random fixed point.

Proof. Following from Theorem 3.2 and using Lemma 2.8. O

CoROLLARY 3.4. Let C be a nonempty closed bounded convex subset of Banach spaces X
such that €3(X) < 1. If T : C — KC(X) is a multivalued nonexpansive and 1-y-contractive
nonexpansive mapping, such that T(C) is a bounded set, which satisfies the inwardness con-
dition, that is, for each Tx C Ic(x),Vx € C.

Then T has a fixed point.

CoroLLARY 3.5 (Dominguez Benavides and Ramirez, cf. [5, Theorem 3.4]). Let X be
Banach spaces such that e,(X) < 1, and C a nonempty closed bounded convex subset of X.
If T: C — KC(X) is nonexpansive and 1-y-contractive nonexpansive mapping, such that
T(C) is a bounded set, which satisfies Tx C Ic(x) Vx € C, then T has a fixed point.
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