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Let (Ω,Σ) be a measurable space, with Σ a sigma-algebra of subset of Ω, and let C be
a nonempty bounded closed convex separable subset of a Banach space X , whose char-
acteristic of noncompact convexity is less than 1, KC(X) the family of all compact con-
vex subsets of X . We prove that a multivalued nonexpansive non-self-random operator
T : Ω×C→ KC(X), 1-χ-contractive mapping, satisfying an inwardness condition has a
random fixed point.
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1. Introduction

In recent years there have appeared various random fixed point theorems for single-
valued and set-valued random operators; see for example, Itoh [7], Ramı́rez [9], Tan and
Yuan [10], Xu [12, 13] Yuan and Yu [15], and references therein.

Ramı́rez [9] proved the existence of random fixed point theorems for a random nonex-
pansive operator in the framework of Banach spaces with a characteristic of noncompact
convexity εα(X) is less than 1. On the other hand, Domı́nguez Benavides and Ramı́rez
[4] proved a fixed point theorem for a set-valued nonexpansive self-mapping and 1-χ-
contractive mapping in the framework of Banach spaces whose characteristic of noncom-
pact convexity associated to the separation measure of noncompactness εβ(X) is less than
1. Domı́nguez Benavides and Ramı́rez [5] proved a fixed point theorem for a multivalued
nonexpansive non-self-mapping and 1-χ-contractive mapping in the framework of Ba-
nach spaces whose characteristic of noncompact convexity associated to the Kuratowski
measure of noncompactness εα(X) is less than 1.

The purpose of the present paper is to prove a random fixed point theorem for mul-
tivalued nonexpansive non-self-random operators which is 1-χ-contractive mapping, in
the framework of Banach spaces with characteristic of noncompact convexity associated
to the separation measure of noncompactness εβ(X) less than 1 and satisfying an inward-
ness condition. Our result can also be seen as an extension of [5, Theorem 3.4].
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2. Preliminaries and notations

We begin with establishing some preliminaries. By (Ω,Σ) we denote a measurable space
with Σ a sigma-algebra of subset of Ω. Let (X ,d) be a metric space. We denote by CL(X)
(resp., CB(X),KC(X)) the family of all nonempty closed (resp., closed bounded, compact
convex) subset of X , and by H the Hausdorff metric on CB(X) induced by d, that is,

H(A,B)=max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

(2.1)

for A,B ∈ CB(X), where d(x,E)= inf{d(x, y) | y ∈ E} is the distance from x to E ⊂ X .
Let C be a nonempty closed subset of a Banach space X . Recall now that a multivalued

mapping T : C→ 2X is said to be upper semicontinuous on C if {x ∈ C : Tx ⊂V} is open
in C whenever V ⊂ X is open; T is said to be lower semicontinuous if T−1(V) := {x ∈ C :
Tx∩V �= ∅}is open in C whenever V ⊂ X is open; and T is said to be continuous if it
is both upper and lower semicontinuous (cf. [1, 2] for details). There is another different
kind of continuity for multivalued operator: T : C→ CB(X) is said to be continuous on
C (with respect to the Hausdorff metric H) if H(Txn,Tx)→ 0 whenever xn→ x. It is not
hard to see (see Deimling [2]) that both definitions of continuity are equivalent if Tx is
compact for every x ∈ C.

If C is a closed convex subset of Banach spaces X , then a multivalued mapping T : C→
CB(X) is said to be a contraction if there exists a constant k ∈ [0,1) such that

H(Tx,Ty)≤ k‖x− y‖, x, y ∈ C, (2.2)

and T is said to be nonexpansive if

H(Tx,Ty)≤ ‖x− y‖, x, y ∈ C. (2.3)

A multivalued operator T : Ω→ 2X is called (Σ)-measurable if, for any open subset B
of X ,

T−1(B)= {ω ∈Ω : T(ω)∩B �= ∅} (2.4)

belongs to Σ. A mapping x : Ω→ X is said to be a measurable selector of a measurable
multivalued operator T : Ω→ 2X if x(·) is measurable and x(ω)∈ T(ω) for all ω∈Ω. An
operator T : Ω×C→ 2X is called a random operator if, for each fixed x ∈ C, the operator
T(·,x) : Ω→ 2X is measurable. We will denote by F(ω) the fixed point set of T(ω,·), that
is,

F(ω) := {x ∈ C : x ∈ T(ω,x)
}
. (2.5)

Note that if we do not assume the existence of fixed point for the deterministic mapping
T(ω,·) : C → 2X , F(ω) may be empty. A measurable operator x : Ω→ C is said to be a
random fixed point of an operator T : Ω×C→ 2X if x(ω)∈ T(ω,x(ω)) for allω∈Ω. Recall
that T : Ω×C→ 2X is continuous if, for each fixed ω ∈Ω, the operator T : (ω,·)→ 2X is
continuous.
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A random operator T : Ω×C→ 2X is said to be nonexpansive if, for each fixed ω ∈Ω,
the map T : (ω,·)→ C is nonexpansive.

For later convenience, we list the following results related to the concept of measura-
bility.

Lemma 2.1 (Wagner, cf. [11]). Let (X ,d) be a complete separable metric space and F : Ω→
CL(X) a measurable map. Then F has a measurable selector.

Lemma 2.2 (Itoh, cf. [7]). Suppose {Tn} is a sequence of measurable multivalued operator
from Ω to CB(X) and T : Ω→ CB(X) is an operator. If, for each ω ∈Ω, H(Tn(ω),T(ω))→
0, then T is measurable.

Lemma 2.3 (Tan and Yuan, cf. [10]). Let X be a separable metric space and Y a metric
space. If f : Ω×X → Y is measurable in ω ∈Ω and continuous in x ∈ X , and if x : Ω→ X
is measurable, then f (·,x(·)) : Ω→ Y is measurable.

As an easy application of Itoh [7, Proposition 3], we have the following result.

Lemma 2.4. Let C be a closed separable subset of a Banach space X ,T : Ω×C→ C a random
continuous operator, and F : Ω→ 2C a measurable closed-valued operator. Then for any
s > 0, the operator G : Ω→ 2C given by

G(ω)= {x ∈ F(ω) :
∥∥x−T(ω,x)

∥∥ < s
}

, ω ∈Ω, (2.6)

is measurable and so is the operator cl{G(ω)} of the closure of G(ω).

Lemma 2.5 (Domı́nguez Benavidel and Lopez Acedo, cf. [3]). Suppose C is a weakly closed
nonempty separable subset of a Banach spaceX ,F : Ω→ 2X measurable with weakly compact
values, f : Ω×C→ R measurable, continuous and weakly lower semicontinuous function.
Then the marginal function r : Ω→R defined by

r(ω) := inf
x∈F(ω)

f (ω,x) (2.7)

and the marginal map R : Ω→ X defined by

R(ω) := {x ∈ F(ω) : f (ω,x)= r(ω)
}

(2.8)

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty
bounded subset B of X are, respectively, defined as the numbers

α(B)= inf{r > 0 : B can be covered by finitely many sets of diameter≤ r},
χ(B)= inf{r > 0 : B can be covered by finitely many ball of radius≤ r}. (2.9)

The separation measure of noncompacness of a nonempty bounded subset B of X is
defined by

β(B)= sup
{
ε : there exists a sequence

{
xn
}

in B such that sep
({
xn
})≥ ε

}
. (2.10)
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Then a multivalued mapping T : C→ 2X is called γ-condensing (resp., 1-γ-contractive)
where γ = α(·) or χ(·) if, for each bounded subset B of C with γ(B) > 0, there holds the
inequality

γ
(
T(B)

)
< γ(B)

(
resp., γ

(
T(B)

)≤ γ(B)
)
. (2.11)

Here T(B)=⋃x∈B Tx. The random operator T : Ω×C→ 2X is said to be 1-γ-contractive
if, for each ω ∈Ω, the map T : (ω,·)→ 2X is 1-γ-contractive.

Definition 2.1. Let X be a Banach space and φ = α, β, or χ. The modulus of noncompact
convexity associated to φ is defined in the following way:

ΔX ,φ(ε)= inf
{

1−d(0,A) : A⊂ BX is convex, φ(A)≥ ε
}

, (2.12)

where BX is the unit ball of X .

The characteristic of noncompact convexity of X associated with the measure of non-
compactness φ is defined by

εφ(X)= sup
{
ε ≥ 0 : ΔX ,φ(ε)= 0

}
. (2.13)

The following relationshops among the different moduli are easy to obtain

ΔX ,α(ε)≤ ΔX ,β(ε)≤ ΔX ,χ(ε), (2.14)

and consequently

εα(X)≥ εβ(X)≥ εχ(X). (2.15)

When X is a reflexive Banach space, we have some alternative expressions for the moduli
of noncompact convexity associated β and χ:

ΔX ,β(ε)= inf
{

1−‖x‖ :
{
xn
}⊂ BX , x =w− limxn, sep

({
xn
})≥ ε

}
,

ΔX ,χ(ε)= inf
{

1−‖x‖ :
{
xn
}⊂ BX , x =w− limxn, χ

({
xn
})≥ ε

}
.

(2.16)

In order to study the fixed point theory for non-self-mappings, we must introduce
some terminology for boundary condition. The inward set of C at x ∈ C is defined by

IC(x) := {x+ λ(y− x) : λ≥ 0, y ∈ C
}
. (2.17)

Clearly C ⊂ IC(x) and it is not hard to show that IC(x) is a convex set as C does. A
multivalued mapping T : C→ 2X{∅} is said to be inward on C if

Tx ⊂ IC(x) ∀x ∈ C. (2.18)

Let ĪC(x) := x + {λ(z− x) : z ∈ C, λ ≥ 1}. Note that for a convex C, we have ĪC(x) =
IC(x), and T is said to be weakly inward on C if

Tx ⊂ ĪC(x) ∀x ∈ C. (2.19)
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Let C be a nonempty bounded closed subset of Banach spaces X , and {xn} bounded
sequence in X ; we use r(C,{xn}) and A(C,{xn}) to denote the asymptotic radius and the
asymptotic center of {xn} in C, respectively, that is,

r
(
C,
{
xn
})= inf

{
limsup

n

∥∥xn− x
∥∥ : x ∈ C

}
,

A
(
C,
{
xn
})=

{
x ∈ C : limsup

n

∥∥xn− x
∥∥= r

(
C,
{
xn
})}

.
(2.20)

If D is a bounded subset of X , the Chebyshev radius of D relative to C is defined by

rC(D) := inf
{

sup
{‖x− y‖ : y ∈D

}
: x ∈ C

}
. (2.21)

Obviously, the convexity of C implies that A(C,{xn}) is convex. Notice that A(C,{xn})
is a nonempty weakly compact set if C is weakly compact, or C is a closed convex subset
of a reflexive Banach spaces X .

Let {xn} and C be nonempty bounded closed subsets of Banach spaces X . Then {xn}
is called regular with respect to C if r(C,{xn}) = r(C,{xni}) for all subsequences {xni}
of {xn}; while {xn} is called asymptotically uniform with respect to C if A(C,{xn}) =
A(C,{xni}) for all subsequences {xni} of {xn}.
Lemma 2.6 (Goebel [6] and Lim [8]). Let {xn} and C be as above. Then we have the fol-
lowing:

(i) there always exists a subsequence of {xn} which is regular with respect to C;
(ii) if C is separable, then {xn} contains a subsequence which is asymptotically uniform

with respect to C.

Moreover, we also need the following lemma.

Lemma 2.7 (Domı́nguez Benavides and Ramı́rez, cf. [4, Theorem 3.4]). Let C be a closed
convex subset of reflexive Banach spaces X , and let xn be a bounded sequence in C which is
regular with respect to C. Then

rC
(
A
(
C,xn

))≤ (1−ΔX ,β
(
1−
))
r
(
C,
{
xn
})
. (2.22)

Moreover, if X satisfies the nonstrict Opial condition, then

rC
(
A
(
C,xn

))≤ (1−ΔX ,χ
(
1−
))
r
(
C,
{
xn
})
. (2.23)

Lemma 2.8 (Domı́nguez Benavides and Ramı́rez, cf. [5, Theorem 3.2]). Let C be a closed
convex subset of a reflexive Banach space X , and let {xβ : β ∈ D} be a bounded ultranet.
Then

rC
(
A
(
C,xβ

))≤ (1−ΔX ,α
(
1−
))
r
(
C,
{
xβ
})
. (2.24)

The following result are now basic in the fixed point theorem for multivalued map-
pings.



6 Random fixed point multivalued nonexpansive non-self-mappings

Lemma 2.9 (Deimling, cf. [2]). Let X be a Banach space and∅ �=D ⊂ X be closed bounded
convex. Let F : D → 2X be upper semicontinuous γ-condensing with closed convex values,
where γ(·)= α(·) or χ(·). If Fx∩ ID(x) �= ∅ for all x ∈ C, then F has a fixed point. (Here
ID(x) is called the inward set at x defined by ID(x) := {x+ λ(y− x) : λ≥ 0, y ∈D}.)

3. The result

In order to prove our first result, we need the following lemma which is proved along the
proof of Kirk-Massa theorem as it appears in [14].

Lemma 3.1. Let C be a nonempty closed bounded convex separable subset of a Banach space
X . T : C → KC(X) is nonexpansive such that T(C) is a bounded set which satisfies Tx ⊂
IC(x), ∀x ∈ C, {xn} is a sequence in C such that limn d(xn,Txn) = 0. Then there exists a
subsequence {zn} of {xn} such that Tx∩ IA(x) �= ∅,∀x ∈ A :=A(C,{zn}).

Lemma 3.1 is part (more or less) of the proof of [5, Theorem 3.4].
The next result states the main result of this work.

Theorem 3.2. Let C be a nonempty closed bounded convex separable subset of Banach
spaces X such that εβ(X) < 1, and T : Ω×C→ KC(X) a multivalued nonexpansive random
operator and 1-χ-contractive mapping, such that for each ω ∈Ω, T(ω,C) is a bounded set,
which satisfies the inwardness condition, that is, for each ω∈Ω,T(ω,x)⊂ IC(x),∀x ∈ C.

Then T has a random fixed point.

Proof. Fix x0 ∈ C, and consider the measurable function x0(ω)≡ x0. For each n≥ 1, de-
fine Tn(ω,·) : C→ KC(X) by

Tn(ω,x)= 1
n
x0(ω) +

(
n− 1
n

)
T(ω,x), ∀x ∈ C. (3.1)

Then Tn(ω,·) is a multivalued contraction and Tn(ω,x)⊂ IC(x),∀x ∈ C. Hence each Tn

has a fixed point zn(ω)∈ C. It is easily seen that d(zn(ω),T(ω,zn(ω)))≤ (1/n)diamC→ 0
as n→∞. Thus the set

Fn(ω)=
{
x ∈ C : d

(
x,T(ω,x)

)≤ 1
n

diamC
}

(3.2)

is nonempty closed and convex. Furthermore, by Lemma 2.4, each Fn is measurable.
Then, by Lemma 2.1, each Fn admits a measurable selector xn(ω) such that

d
(
xn(ω),T

(
ω,xn(ω)

))≤ 1
n

diamC −→ 0 as n−→∞. (3.3)

Define a function f : Ω×C→R+ := [0,∞) by

f (ω,x)= limsup
n

∥∥xn(ω)− x
∥∥, x ∈ C. (3.4)

By Lemma 2.3, it is easily seen that f (·,x) is measurable and f (ω,·) is continuous and
convex, therefore it is a weakly lower semicontinuous function. Note that; condition
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εβ(X) < 1 implies reflexivity (see [1]) and so C is a weakly compact. Hence, by Lemma 2.5,
the marginal functions

r(ω) := inf
x∈C

f (ω,x),

A(ω) := {x ∈ C : f (ω,x)= r(ω)
} (3.5)

are measurable. It is clearly that A(ω) is a weakly compact convex subset of C. For any
ω ∈ Ω, we may assume that the sequence {xn(ω)} is regular with respect to C. Note
that A(ω)= A(C,{xn(ω)}), and r(ω)= r(C,{xn(ω)}). We can apply inequality (2.22) in
Lemma 2.7 to obtain

rC
(
A(ω)

)≤ λr
(
C,
{
xn(ω)

})
, (3.6)

where λ= 1−ΔX ,β(1−) < 1, since εβ(X) < 1.
For each ω ∈ Ω and n ≥ 1, we define the multivalued contraction T1

n(ω,·) : A(ω)→
KC(X) by

T1
n(ω,x)= 1

n
x1(ω) +

(
n− 1
n

)
T(ω,x), (3.7)

for each x ∈ C. By Lemma 3.1, we note that T(ω,x)∩ IA(ω)(x) �= ∅,∀x ∈ A(ω). Since
IA(ω)(x) is convex, it follows that T1

n(ω,·) satisfies the boundary condition, that is,

T1
n(ω,x)∩ IA(ω)(x) �= ∅, ∀x ∈ A(ω). (3.8)

Since T1
n(ω,·) is 1-χ-contractive mapping, it follows by [4, page 382] that T1

n(ω,·) is
χ-condensing. Hence, by Lemma 2.9, T1

n(ω,·) has a fixed point z1
n(ω) ∈ A(ω), that is,

F(ω)∩A(ω) �= ∅. Also it is easily seen that

dist
(
z1
n(ω),T

(
ω,z1

n(ω)
))≤ 1

n
diamC −→ 0 as n−→∞. (3.9)

Thus F1
n(ω) := {x ∈ A(ω) : d(x,T(ω,x)) ≤ (1/n)diamC} is nonempty closed and con-

vex for each n≥ 1. By Lemma 2.4, each F1
n is measurable. Hence, by Lemma 2.1, we can

choose x1
n a measurable selector of F1

n . Thus we have x1
n(ω) ∈ A(ω) and d(x1

n(ω),T(ω,
x1
n(ω)))→ 0 as n→∞. Consider the function f2 : Ω×C→R+ defined by

f2(ω,x)= limsup
n

∥∥x1
n(ω)− x

∥∥, ∀ω ∈Ω. (3.10)

As above, f2 is a measurable function and weakly lower semicontunuous function. Then
the marginal functions

r2(ω) := inf
x∈A(ω)

f2(ω,x),

A1(ω) := {x ∈ A(ω) : f2(ω,x)= r2(ω)
} (3.11)

are measurable. Since A1(ω)= A(A(ω),{x1
n(ω)}), it follows that A1(ω) is a weakly com-

pact and convex. Moreover, we also note that r2(ω)= r(A(ω),{x1
n(ω)}). Again reasoning
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as above, for any ω ∈Ω, we can assume that the sequence {x1
n(ω)} is regular with respect

to A1(ω). Moreover, we proceed as above using Lemmas 3.1 and 2.7 to obtain that

T
(
ω,x(ω)

)∩ IA1

(
x(ω)

) �= ∅ ∀x(ω)∈A1 =A
(
A(ω),

{
x1
n(ω)

})
,

rC
(
A1)≤ λr

(
A(ω),

{
x1
n(ω)

})≤ λrC
(
A(ω)

)
.

(3.12)

By induction, for each m ≥ 1, we take a sequence {xmn (ω)}n ⊆ Am−1 such that rC(Am) ≤
λmrC(A(ω)) and limn d(xmn (ω),T(ω,xmn (ω)))= 0 for each fixed ω ∈Ω, where Am := A(C,
{xmn (ω)}). Since diamRm(ω)≤2rC(Rm(ω)) and λ<1, it follows that limm→∞diamRm(ω)=
0. Note that {Rm(ω)} is a descending sequence of weakly compact subset of C for each
ω ∈Ω. Thus we have ∩mRm(ω)= {z(ω)} for some z(ω)∈ C. Furthermore, we see that

H
(
Rm(ω),

{
z(ω)

})≤ diamRm(ω)−→ 0 as n−→ +∞. (3.13)

Therefore, by Lemma 2.2, z(ω) is measurable. Finally, we will show that z(ω) is a fixed
point of T . Indeed, for each m≥ 1, we have

d
(
z(ω),T

(
ω,z(ω)

))≤ ∥∥z(ω)− xmn (ω)
∥∥+d

(
xmn (ω),T

(
ω,xmn (ω)

))
+H

(
T
(
ω,xmn (ω)

)
,T
(
ω,z(ω)

))
≤ 2
∥∥z(ω)− xmn (ω)

∥∥+d
(
xmn (ω),T(ω,xmn (ω)

))
≤ 2diamRm(ω) +d

(
xmn (ω),T

(
ω,xmn (ω)

))
.

(3.14)

Taking the upper limit as n→∞,

d
(
z(ω),T

(
ω,z(ω)

))≤ 2diamRm(ω). (3.15)

Finally, taking limit in m in both sides, we obtain z(ω)∈ T(ω,z(ω)). �

Theorem 3.3. Let C be a nonempty closed bounded convex separable subset of Banach
spaces X such that εα(X) < 1, and T : Ω×C→ KC(X) a multivalued nonexpansive random
operator and 1-χ-contractive nonexpansive mapping, such that for each ω ∈Ω,T(ω,C) is a
bounded set, which satisfies the inwardness condition, that is, for each ω ∈ Ω,T(ω,x) ⊂
IC(x),∀x ∈ C.

Then T has a random fixed point.

Proof. Following from Theorem 3.2 and using Lemma 2.8. �

Corollary 3.4. Let C be a nonempty closed bounded convex subset of Banach spaces X
such that εβ(X) < 1. If T : C→ KC(X) is a multivalued nonexpansive and 1-χ-contractive
nonexpansive mapping, such that T(C) is a bounded set, which satisfies the inwardness con-
dition, that is, for each Tx ⊂ IC(x),∀x ∈ C.

Then T has a fixed point.

Corollary 3.5 (Domı́nguez Benavides and Ramı́rez, cf. [5, Theorem 3.4]). Let X be
Banach spaces such that εα(X) < 1, and C a nonempty closed bounded convex subset of X .
If T : C → KC(X) is nonexpansive and 1-χ-contractive nonexpansive mapping, such that
T(C) is a bounded set, which satisfies Tx ⊂ IC(x)∀x ∈ C, then T has a fixed point.
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Birkhäuser, Basel, 1997.

[2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1974.
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