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We study the existence, uniqueness, and stability of random solutions of a general class
of nonlinear stochastic integral equations by using the Banach fixed point theorem. The
results obtained in this paper generalize the results of Szynal and Wedrychowicz (1993).
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1. Introduction

Stochastic or random integral equations are extremely important in the study of many
physical phenomena in life sciences and engineering [3, 14, 16]. There are currently two
basic versions of stochastic integral equations being studied by probabilists and math-
ematical statisticians, namely, those integral equations involving Ito-Doob type of sto-
chastic integrals and those which can be formed as probabilistic analogues of classical
deterministic integral equations whose formulation involves the usual Lebesgue integral.
Equations of the later category have been studied extensively.

Several papers have appeared on the problem of existence of solutions of nonlinear
stochastic integral equations, and the results are established by using various fixed point
techniques [1, 6-11]. Further, asymptotic behavior and stability of solutions of stochastic
integral equations are discussed in [2, 4, 5, 12, 13]. In this paper we will prove an existence
and uniqueness theorem for a general class of nonlinear stochastic integral equations
and to investigate the asymptotic behavior of their solutions. The results are based on a
construction of the real Banach space of tempered functions, which contains the space
D([0,)) of real right continuous functions having left-hand limits. The results of this
paper generalize the results of Szynal and Wedrychowicz [15].

2. Preliminaries

Let (R,B,7) be a measurable space with the Lebesgue measure v on (R,B), where B de-
notes the Borel o-field of subsets of R. Let L,(R,B,7), 1 < p < oo, denote the set of all
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y-measurable functions x : R — R, such that the functions |x(-)|? are v-measurable. The
norm of x € L,(R, B, v) is defined by

Il = (| |x(t>|"dv<t))1/p. (2.1)

Let L([0,)) = Lo ([0,0),B,v) be the space of v-essentially bounded functions on
[0,00). Assume that p(-) € L([0,00)) is a fixed positive function. The triplet (Q,A, P) de-
notes a complete probability space. By £ (Ry,L,(Q,A,P), p) (or shortly £¥) we mean a
space of all functions x(#, -) in R, which are integrable with respect to Lebesgue measure
v, with values X (¢) being random variables in L,(Q,A,P), and the topology is generated

by

Il = [ p6yy —esssupl (s, (), 22)

se[0,t]

where v — esssup (o lx(s) Iz, is taken with respect to the Lebesgue measure v. It is

proved that the space 58{’ with the norm || - ||, is a Banach space [2, 15].
Consider the following nonlinear stochastic integral equations:

M .t
X(tw) =h(t,X(t;w)) + zj fi(t,s, X (s;w);w)ds
o
1 (2.3)
N -t
t ZJ gi(t,s,X(ssw)sw)dB(s;w), t=0,
2170

where
(i) w € Q, and Q is the supporting set of a complete probability measure space
(Q, A, P) with A being o-algebra and P the probability measure;
(ii) X (t;w) is the unknown random process;
(iii) h(t,x) is a map from R, X R into R;
(iv) fi(t,s;,Xsw),i=1,...,M, and g;(t,5,X;w), j = 1,...,N, are maps from Ry X R; X
Rx Qinto R;
(v) B(t;w), where t € R, is a martingale process.

The first part of the stochastic integral (2.3) is to be understood as an ordinary
Lebesgue integral with probabilistic characterization, while the second part is an Ito-
Doob stochastic integral. With respect to the random process 3(t; w) we will assume that,
for each t € R;, a minimal o-algebra A; C A is defined such that 3(t;w) is measurable
with respect to A;. Further we assume that {A;,t € R, } is an increasing family such that

(a) the random process {3(t;w), A;:t € R} is a real martingale;
(b) there is a real continuous nondecreasing function F(¢) such that for s < t we have

E{|B(w) - Btw) |*} = E{|B(t;w) — B(t;w)|* | A} = F(t) = F(s),  Pae. (2.4)

Definition 2.1. A process X (t;w) is said to be a random solution if [| X (¢)|l, € L1([0,))
and satisfies the stochastic integral (2.3).
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Definition 2.2. A random solution X (t;w) is said to be asymptotically stable in mean-
square sense if

lim L X (0)dv(t) = . (2.5)

3. Main results

TuEOREM 3.1. Suppose that the functions h, f;, i = 1,..., M, and g, j = 1,...,N, satisfy the
following Lipschitz conditions for X(t;w), Y (t;w) € Eﬂf:
(1) |h(t, X (tw)) —h(t, Y(t;w))| < KIX(t;w) — Y (t;w)| P a.s. for K > 0;
(ii) | fi(t,s, X (sw);w) — fi(t,s, Y (s;w)sw)| < ai(t,ssw)| X (w) = Y(Ew)| Pas., i=1,
..., M, for nonnegative functions a;(t,s;w) belonging to L« (Q, A, P) with |la;(t,s)|| =
P —esssup,,cq lai(t,s;w)l, and a;(t,s;w), i = 1,..., M, are continuous for t € Ry;
(i) |g;(t,5, X (s;w);w) — gi(t,s, Y (ssw);w)| < bj(t,s;w)|X(w) = Y(Ew)| Pas., j=1,
...,N, for nonnegative functions b;(t,s;w) belonging to Lo (), A, P), and b;(t,s;w),
i=1,...,N, are continuous for t € Ry;
(iv) let Q = K + SUP, (g o0) ity Jo 1ai(t,5) 1 ds + Sup,c (g ) (X001 fo 1B (t,5) 1ds) > be
such that0 < Q< 1.
Then there exists a unique solution X € ¥} to (2.3).

Proof. For processes X,Y € $%, define the process GX — GY by
GX(t;w) — GY (w) = h(t,X(t;w)) — h(t, y(t;w))

Mt
+i_zlj0 [fi(t,5, X (ssw);w) — fi(t,s, Y (ssw);w) | ds o)

N ¢
+ Z L [gi (65X (sw)w) —gj (s, Y(sw);w) |dB(ssw).
=1

By assumptions on (¢;w) and for X € #F, one can get the following estimate:

L bi(£,5)X (s)dB(s)

L,

N N 12
> s(ZJO||bj<t,s>||||x<s>||L2dF<s>) 62
j=1 j=1

Let

0

N .t
K(t) = ZJ [gi(t,5, X (s;w);w) — g (t,5, Y (ssw)sw) |dB(s;w). (3.3)
j=1
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Now, from hypothesis (iii) and (3.2), we have

J: p(t)y —esssup||K(s)|[,,dv(t)

s€[0,t]

(s, ;X (3w);w)

= I p(t)y —esssup
0

s€[0,t]
—gi (s, X (Tsw);w) [dB(T;w)|| dr(t)
L,
< J p(t)v—esssup =Y (msw) [ dB(T;w)|| dv(t)
0 s€[0,t] L,

s€[0,t]

1/2
SL () — esssup (ZJ b, 0| PlIX(2) - Y(2)] 2 dF(s) ) dv(t)

- N s 172
< L p(t)y—esssupy — esssup||X () - Y(1)]|,, (Z L ||bj(5,T)||2dF(S)) dv(t)
j=1

s€[0,t] 7€(0,s]

12
< Jo sup ( J [[b(t,s )|’ dF s)) p(t)y —esssup||X(s) = Y(s)||, dv(t)

te[0,00) s€[0,t]

N o o
< sup (ZLHbj(t,s)szF(s)) L p(t)y —esssup[|X(s) = Y(s)[|, dv(t).

te[0,00) j=1 se[0,t]
(3.4)
Let
L(t) = ZI (s, X(ssw);w) — fi(t,s, Y(ssw);w) |ds. (3.5)
Then, by hypothesis (ii), we have
J p(t)y —esssup||L(s)||,, dv(t)
0 s€[0,t]
<[ pt —esssupzjna,srnnx (0= Y@l drdv(s (.6)

se(0,t] =1

< sup ZJ [lai(t,s)] |dsJ p(t)y —esssup||X(s) — Y(s)[, dv(t).

te[0,0) j=1 s€[0,t]
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Combining the above three inequalities and (i), we get

IGX - GY|l, = ij(t)v —esssup||[(GX)(s) = (GY)(s)||,dv(¢)

s€[0,t]

< KJ“p(t)v —esssup||X(s) — Y (s)||,dv(t)
0 se[0,t]

i (3.7)
+ Jo p(t)y —esssup||L(s)|[,, dv(t)

s€[0,t]

+ JO p(t)y —esssup||K(s)|[, dv(t) < QIIX - Y|,

s€[0,t]

which proves that G is a continuous function. Further, G is a contraction mapping, since
Q < 1, and therefore by the Banach fixed point theorem, there exists a unique X such that
GX = X, which is the solution of (2.3). O

Remark 3.2. Let h(t,X(t;w)) € D([0,)). By Theorem 3.1 the solution X(t;w) to (2.3)
belongs to D([0, c0)), satisfying
%im I p(t)v —esssup || X(s)||, dv(t) = 0. (3.8)
el P

se[0,t]

Remark 3.3. 1f p(t) = 1 for t € Ry, then the random solution of (2.3) is asymptotically
stable in the sense of Definition 2.2.

Next we consider the stochastic integral equation of the form
N ¢
X(tw) = h(tX(Ew) + S J gi(t—sX(t—swhiw)e(swds, t20,  (3.9)
j=1"0
which is equivalent to the following equation:
N -t
X(tw) =h(t,X(tw)) + Z J gi(s:X(sw);w)e(t — s;w)ds, (3.10)
j=1"°

where e(t — s;w) € Lo (Q,A,P).

THEOREM 3.4. Suppose that for X(t;w), Y (t;w) € 55}17,
(1) h(t,X(tw)) —h(t,Y(t;w))| < KIX(t;w) — Y (t;w)| P a.s. for K > 0;
(i) Igj(s; X (ssw)sw) — gi(s, Y(s;w);w)| < bj(ssw)|X(s;w) — Y(s;w)| Pas. j =1,...,N,
where bj(s;w) € Lo (Q,A, P);
(iii) let M = K +5Up,c (0,00 S1o1 [o 105 () | le(t = 5)IIds be such that 0 < M < 1.
Then there exists a unique solution X € 55{7 to (3.9) such that

lim L p(t)y — esssup|[X(5)] |, dv(t) = 0. (3.11)

se[0,t]
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Remark 3.5. 1f p(t) = 1 for t € Ry, then the random solution to (3.9) is asymptotically
stable in the sense that

limsup% <K, K>0, (3.12)

whenever [;° u(t)dv(t) < co. Hence we conclude that exponential stability is a particular
case of this result.
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