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In the previous work, the authors have considered a discrete-time queueing system and
they have established that, under some assumptions, the stationary queue length distri-
bution for the system with capacity K1 is completely expressed in terms of the stationary
distribution for the system with capacity K0 (> K1). In this paper, we study a sample-path
version of this problem in more general setting, where neither stationarity nor ergodic-
ity is assumed. We establish that, under some assumptions, the empirical queue length
distribution (along through a sample path) for the system with capacity K1 is completely
expressed only in terms of the quantities concerning the corresponding system with ca-
pacity K0 (> K1). Further, we consider a probabilistic setting where the assumptions are
satisfied with probability one, and under the probabilistic setting, we obtain a stochastic
version of our main result. The stochastic version is considered as a generalization of the
author’s previous result, because the probabilistic assumptions are less restrictive.

Copyright © 2006 F. Ishizaki and N. Miyoshi. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that a simple relation holds between the stationary queue length dis-
tribution of an M/GI/1/K0 queue and that of the corresponding M/GI/1/K1 queue (the
same system except for the capacity K1 < K0), that is,

P
(
X (K1)

0 = j
)
= cP

(
X (K0)

0 = j
)

for j = 0, . . . ,K1− 1, (1.1)

where X (Ki)
0 , i= 0,1, denotes a random variable representing the steady-state queue length

in the M/GI/1/Ki queue and c is a constant which is called proportional constant. We
call such a relation the proportional relation. It has been shown that similar proportional
relations also hold for some other queueing systems (see, e.g., [1, 2, 6, 7]).
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2 Sample-path analysis of discrete-time queues

In [7], the authors have considered a discrete-time stationary single-server queueing
system described by the recursion;

Xn+1 =min
[(
Xn− δn

)+
+An+1 +Bn+1,K

]
, n∈ Z, (1.2)

where x+ =max(x,0). Here, Xn (∈ {0, . . . ,K}) denotes the queue length at time n and δn
(∈ {0,1}) represents the virtual departure, that is, a customer leaves the system at time
n only when δn = 1 and Xn > 0, while no customer leaves at time n when δn = 0. Both
An and Bn denote the numbers of customers arriving at time n; the former is from a
stationary arrival process with some regenerative structure and the latter is from an arrival
process controlled according to the queue length. Under some assumptions for {An}n∈Z
and {Bn}n∈Z, the authors have not only established the proportional relations like (1.1)
but also have shown that the proportional constant can be expressed in terms of the
distribution for the system with capacity K = K0 (> K1). This implies that the stationary
queue length distribution of a system with capacity K1 can be completely expressed in
terms of the distribution of the other system with capacity K0 (see [7] for detail).

The proportional relation has rich applications when the proportional constant is
completely expressed in terms of the distribution for one system. For instance, the pro-
portional relation is useful for numerical method to compute performance measures in
a finite-buffer queue (see, e.g., [5, 6]) and for online concurrent performance estimation
for queueing systems with different buffer capacities (see, e.g., [3, 4]). In numerical com-
putation, we can use the proportional relation to evaluate some performance measures
of a finite-buffer queue in terms of the queue-length distribution of the corresponding
infinite-buffer queue, where we exploit the fact that the distributions of infinite-buffer
queues are, in general, computed in efficient and stable ways. On the other hand, in con-
current estimation, we can use the proportional relation to estimate the performance of
multiple queueing systems with different buffer capacities simultaneously by simulating
only one system.

In this paper, we study a sample-path (deterministic) version of the proportional rela-
tion in more general setting, where any probabilistic assumption (such as stationarity or
ergodicity) is not needed. This is quite useful in applying our result to some online control
of queueing systems such as dynamic buffer allocation. Our main result (Theorem 3.7)
shows that under some assumptions (Assumptions 3.1 and 3.5), the empirical queue
length distribution (along through a sample path) for the system with capacity K1 is com-
pletely expressed only in terms of the quantities concerning the corresponding system
with capacity K0 (> K1). In addition to the sample-path (deterministic) version, we con-
sider a probabilistic setting where Assumptions 3.1 and 3.5 are satisfied with probability
one. Under the probabilistic setting, we obtain a stochastic version (Corollary 4.2) of our
main result. The stochastic version is considered as a generalization of [7, Theorem 1],
because the probabilistic assumptions are less restrictive than those in [7].

The remainder of this paper is organized as follows. Section 2 describes a discrete-
time single-server queueing model considered in this paper. In Section 3, we first make a
few assumptions and then show that under the assumptions, the empirical queue length
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distribution for the system with capacity K1 is completely expressed only in terms of the
quantities concerning the corresponding system with capacity K0 (> K1). In Section 4,
we consider a probabilistic setting which satisfies the assumptions made in Section 3 and
generalize [7, Theorem 1].

2. Model

Consider a discrete-time queueing system consisting of a single server and a buffer, where
the buffer capacity may be finite or infinite and K denotes the total system capacity (the
buffer capacity plus one for the server). Time is divided into unit-time intervals called
slots. Let {γn}n≥1 denote an arrival process on Z+, where γn represents the batch size (the
number of customers) arriving at the beginning of the nth slot. An arriving customer that
finds the buffer being full is discarded and lost. Let {δn}n∈Z+ denote a sequence on {0,1}
closely related to the departure process, that is, δn represents the number of customers
departing at the end of the nth slot when the system is not empty in the slot. Let Xn (∈
{0, . . . ,K}), n∈ Z+, denote the queue length (including one in service if any) immediately
after arrival in the nth slot. The dynamics of {Xn}n∈Z+ is then represented by the following
recursion with an initial state X0;

Xn+1 =min
[(
Xn− δn

)+
+ γn+1,K

]
, n∈ Z+. (2.1)

We can interpret {(Xn,δn,γn+1)}n∈Z+ as a sample path extracted from the corresponding
stochastic process, where neither stationarity nor ergodicity is assumed.

Hereafter, we consider two queueing systems both of which are identical to the above
but their system capacities are K0 and K1, respectively, where 0 < K1 < K0 ≤ +∞. We refer
to the system with capacity Ki as Ki-system for i = 0,1, and to emphasize the system
capacity, we put the superscript (Ki) on the quantities associated with the Ki-system.

3. Main result

For any event sequence {En}n∈Z+ , let �(En) denote the long-run average of the indicator
1En , that is,

�
(
En
)= lim

m→∞
1
m

m−1∑

n=0

1En , (3.1)

provided that the limit exists. Note that the subscript n has no rigorous meaning in the
left-hand side of (3.1), which is just the abbreviation of �({En}n∈Z+ ). In this section,

we show under some mild assumptions that �(X (K1)
n = j), j = 0, . . . ,K1, is (if it exists)

completely expressed in terms of the long-run averages concerning the K0-system. The

proof consists of two steps: first, we show in Section 3.1 that �(X (K0)
n = j) and �(X (K1)

n =
j), j = 0, . . . ,K1− 1, are proportionally related. This part may be straightforward from the
classical truncation property of censored processes. However, this is not yet enough to say

that �(X (K1)
n = j), j = 0, . . . ,K1, is completely expressed in terms of the long-run averages

concerning the K0-system. Then in Section 3.2, we verify that the proportional constant
is also expressed in terms of the long-run averages concerning the K0-system.
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3.1. Proportional relation. First we put a basic assumption.

Assumption 3.1. (i) For j = 0,1, . . . ,K1 and i= 0,1, �(X (Ki)
n = j) exists. In addition, for at

least one j = 0,1, . . . ,K1− 1, both �(X (K0)
n = j) and �(X (K1)

n = j) are positive,

(ii) there exist N0 and N1 ∈ Z+ such that X (K0)
N0

= X (K1)
N1

.

The latter part of Assumption 3.1(i) excludes the cases where �(X (K1)
n = K1) = 1 or

�(X (K0)
n ≥K1)= 1. Assumption 3.1(ii) ensures that the set of possible states of {X (K0)

n }n∈Z+

and that of {X (K1)
n }n∈Z+ are not disjoint.

We define a sequence {φ(m,Ki)}m≥1, i= 0,1, by

φ
(
m,Ki

)=min

{
l ≥Ni :

l∑

n=Ni

1{X(Ki)
n ≤K1−1} =m

}
. (3.2)

In other words, φ(m,Ki) represents the first epoch at which the cumulative time of {X (Ki)
n ≤

K1− 1} reaches m after (and including) Ni. Note that under Assumption 3.1, φ(m,Ki) ex-
ists for every m= 1,2, . . . and i= 0,1, and limm→∞φ(m,Ki)= +∞.

The next assumption, which imposes a restriction on the arrival and the departure
processes, is a key to establish the following lemma.

Assumption 3.2. (i) For all m≥ 1, δ(K0)
φ(m,K0) = δ(K1)

φ(m,K1) whenever X (K0)
φ(m,K0) > 0,

(ii) for all m≥ 1, γ(K0)
φ(m,K0)+1 = γ(K1)

φ(m,K1)+1.

In [7], it is assumed in stationary setting that {(δ(K0)
n , A(K0)

n+1 )}n∈Z and {(δ(K1)
n , A(K1)

n+1 )}n∈Z
are stochastically identical, where δ(Ki)

n and A(Ki)
n+1, i = 0,1, are δn and An+1 in (1.2) for

K = Ki, respectively. However, we here impose the corresponding consistency only for

n≥Ni such that X (Ki)
n ≤ K1− 1.

Lemma 3.3. Under Assumptions 3.1 and 3.2, for all m≥ 1,

X (K0)
φ(m,K0) = X (K1)

φ(m,K1). (3.3)

Proof. We prove Lemma 3.3 by induction. Consider the case of m = 1. If X (Ki)
Ni

≤ K1 − 1
for i = 0,1 under Assumption 3.1, then φ(1,Ki) = Ni by the definition (3.2) and we see

that X (K0)
φ(1,K0) = X (K1)

φ(1,K1). On the other hand, if X (Ki)
Ni

= K1, then due to the property of “skip

free to the left” for {X (Ki)
n }n∈Z+ , we have X (K0)

φ(1,K0) = X (K1)
φ(1,K1) = K1 − 1, where the existence

of a finite φ(1,Ki), i= 0,1, is ensured by Assumption 3.1.

We now suppose that (3.3) holds for some m≥ 1. If (X (K0)
φ(m,K0)− δ(K0)

φ(m,K0))
+ + γ(K0)

φ(m,K0)+1 ≤
K1− 1, then due to the system dynamics (2.1), we have under Assumption 3.2 that

X (K0)
φ(m,K0)+1 = X (K1)

φ(m,K1)+1 ≤ K1− 1. (3.4)

We thus see that φ(m+ 1,Ki) = φ(m,Ki) + 1 for i = 0,1, and conclude that X (K0)
φ(m+1,K0) =

X (K1)
φ(m+1,K1). On the other hand, if (X (K0)

φ(m,K0) − δ(K0)
φ(m,K0))

+ + γ(K0)
φ(m,K0)+1 ≥ K1, then due to the
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property of “skip free to the left” for {X (Ki)
n }n∈Z+ , i= 0,1, we conclude that

X (K0)
φ(m+1,K0) = X (K1)

φ(m+1,K1) = K1− 1, (3.5)

where the existence of a finite φ(m+ 1,Ki), i= 0,1, is ensured by Assumption 3.1. �

Lemma 3.3 shows that the censored (truncated) process of {X (K0)
n }n∈Z+ such that the

state space is truncated at K1− 1 coincides with that of {X (K1)
n }n∈Z+ under the stated as-

sumptions. Lemma 3.3 readily leads to the goal of this section.

Lemma 3.4. Under Assumptions 3.1 and 3.2, for j = 0, . . . ,K1− 1,

C0�
(
X (K0)
n = j

)
= C1�

(
X (K1)
n = j

)
, (3.6)

where Ci, i= 0,1, denotes the limit

Ci = lim
m→∞

φ
(
m,Ki

)

m
. (3.7)

Proof. First, we claim the existence of Ci, i= 0,1, in (3.7). Note that, under Assumption

3.1, �(X (Ki)
n ≤ K1− 1) exists and is positive, and limm→∞φ(m,Ki)= +∞ for i= 0,1. Then,

using
∑φ(m,Ki)

n=Ni
1{X(Ki)

n ≤K1−1} =m for i= 0,1, by the definition of φ, we obtain

�
(
X (Ki)
n ≤ K1− 1

)= lim
m→∞

1
φ
(
m,Ki

)
⎡
⎣
φ(m,Ki)∑

n=Ni

1{X(Ki)
n ≤K1−1} +

Ni−1∑

n=1

1{X(Ki)
n ≤K1−1}

⎤
⎦

= lim
m→∞

m

φ
(
m,Ki

) = 1
Ci
.

(3.8)

We therefore see that Ci exists and is equal to 1/P(X (Ki)
n ≤ K1− 1) (≥ 1) for i= 0,1.

Now, we show the relation (3.6). Similar to the above, we have for i = 0,1, and j =
0, . . . ,K1− 1,

�
(
X (Ki)
n = j

)= lim
m→∞

1
φ
(
m,Ki

)
φ(m,Ki)∑

n=Ni

1{X(Ki)
n = j}. (3.9)

Here, from Lemma 3.3, we have
∑φ(m,K0)

n=N0
1{X(K0)

n = j} =
∑φ(m,K1)

n=N1
1{X(K1)

n = j} for m≥ 1 and j =
0, . . . ,K1− 1, and thus, dividing both the sides by m,

φ
(
m,K0

)

m

1
φ
(
m,K0

)
φ(m,K0)∑

n=N0

1{X(K0)
n = j} =

φ
(
m,K1

)

m

1
φ
(
m,K1

)
φ(m,K1)∑

n=N1

1{X(K1)
n = j}. (3.10)

Hence, taking m to infinity, we derive (3.6). �
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3.2. Proportional constant. In general, to determine the proportional constant C0/C1

appearing in (3.6), we need some quantities for both K0- and K1-systems, for example,

both �(X (K0)
n ≤ K1− 1) and �(X (K1)

n ≤ K1− 1). However, with some additional assump-
tions, we can express the proportional constant C0/C1 only in terms of the quantities
concerning K0-system. For such a purpose, we replace Assumption 3.2 with the follow-
ing.

Assumption 3.5. (i) For all m≥ 1, δ(K0)
φ(m,K0) = δ(K1)

φ(m,K1),

(ii) the arrival process {γ(Ki)
n }n≥1, i = 0,1, is separable such that γ(Ki)

n = A(Ki)
n + B(Ki)

n ,

A(Ki)
n ≥ 0, B(Ki)

n ≥ 0, n≥ 1, where
(
A(K0)
φ(m,K0)+1, B(K0)

φ(m,K0)+1

)
=
(
A(K1)
φ(m,K1)+1, B(K1)

φ(m,K1)+1

)
. (3.11)

Furthermore, the following relations hold together with the existence of the limits:

�
(
X (Ki)
n = K1

)
�
(
X (Ki)
n = K1, δ(Ki)

n = 1, γ(Ki)
n+1 = 0

)

=�
(
X (Ki)
n = K1, B(Ki)

n+1 = 0
)

�
(
X (Ki)
n = K1, δ(Ki)

n = 1, A(Ki)
n+1 = 0

)
.

(3.12)

Also,

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)
=�

(
δ(K1)
n = 1, A(K1)

n+1 = 0
)

, (3.13)

�
(
X (K0)
n = K1, B(K0)

n+1 = 0
)

�
(
X (K0)
n = K1

) =
�
(
X (K1)
n = K1, B(K1)

n+1 = 0
)

�
(
X (K1)
n = K1

) , (3.14)

provided that the denominators are positive.

Note that Assumption 3.5(i) slightly strengthens Assumption 3.2(i). Also, (3.11) cor-

responds to Assumption 3.2(ii) and is the consequence of separating {γ(Ki)
n }n≥1. There-

fore, Lemmas 3.3 and 3.4 remain to hold under Assumptions 3.1 and 3.5. The intu-
itive meaning of (3.12) is that the empirical conditional probability of B(Ki)

n+1 = 0, given

X (Ki)
n = K1, is irrelevant to the event {δ(Ki)

n = 1, A(Ki)
n+1 = 0} for i = 0,1. Also, (3.13) and

(3.14) mean that the empirical probabilities of those events are identical in K0- and K1-
systems.

The following lemma shows that the proportional constant C0/C1 can be expressed
only in terms of the quantities concerning K0-system under Assumptions 3.1 and 3.5.

Lemma 3.6. Under Assumptions 3.1 and 3.5, we have

C0

C1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)

�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

) if �
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)
> 0,

1, otherwise.

(3.15)

Proof. If �(δ(K0)
n =1,A(K0)

n+1 =0)=0, then under Assumption 3.1, �(X (K0)
n = j∗)=�(X (K1)

n =
j∗)=1, and the result is trivial, where j∗ is such that j∗=X (K0)

N0
=X (K1)

N1
in Assumption 3.1.
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Suppose that �(δ(K0)
n = 1, A(K0)

n+1 = 0) > 0. Then, we show below that

C0�
(
X (K0)
n ≤ K1− 1, δ(K0)

n = 1, A(K0)
n+1 = 0

)
= C1�

(
X (K1)
n ≤ K1− 1, δ(K1)

n = 1, A(K1)
n+1 = 0

)
,

(3.16)

C0�
(
X (K0)
n = K1, δ(K0)

n = 1, A(K0)
n+1 = 0

)
= C1�

(
X (K1)
n = K1, δ(K1)

n = 1, A(K1)
n+1 = 0

)
,
(3.17)

together with the existence of the limits in (3.16) (note that the existence of the limits in
(3.17) is assumed in (3.12)). Once (3.16) and (3.17) are provided, summing each side of

them and noting that {X (K1)
n ≤ K1} is certain, we obtain

C0�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

)
= C1�

(
δ(K1)
n = 1, A(K1)

n+1 = 0
)
. (3.18)

Therefore, (3.15) is derived by applying (3.13).
We first derive (3.16). From Lemma 3.3 with Assumptions 3.1 and 3.5,

φ(m,K0)∑

n=N0

1{X(K0)
n ≤K1−1,δ

(K0)
n =1,A

(K0)
n+1 =0} =

φ(m,K1)∑

n=N1

1{X(K1)
n ≤K1−1,δ

(K1)
n =1,A

(K1)
n+1 =0}. (3.19)

Thus, dividing both the sides by m and taking m to infinity, we have (3.16) under As-
sumptions 3.1 and 3.5, where the existence of the limits in (3.16) is ensured since

�
(
X (K1)
n ≤ K1− 1, δ(K1)

n = 1, A(K1)
n+1 = 0

)

=�
(
δ(K1)
n = 1, A(K1)

n+1 = 0
)
−�

(
X (K1)
n = K1, δ(K1)

n = 1, A(K1)
n+1 = 0

)
,

(3.20)

and the two terms in the right-hand side above exist under Assumption 3.5.
Now, we show (3.17). From Lemma 3.3 with Assumptions 3.1 and 3.5, we have

φ(m,K0)∑

n=N0

1{X(K0)
n ≤K1−1,X

(K0)
n+1 ≥K1} =

φ(m,K1)∑

n=N1

1{X(K1)
n ≤K1−1,X

(K1)
n+1 ≥K1}. (3.21)

Thus, dividing both the sides by m and taking m to infinity, we have under Assumption
3.1,

C0�
(
X (K0)
n ≤ K1− 1,X (K0)

n+1 ≥ K1

)
= C1�

(
X (K1)
n ≤ K1− 1,X (K1)

n+1 ≥ K1

)
, (3.22)

provided that the limits exist. When the limits above exist, due to the level-crossing argu-
ment under Assumption 3.1, we have for i= 0,1,

�
(
X (Ki)
n ≤ K1− 1,X (Ki)

n+1 ≥ K1

)
=�

(
X (Ki)
n ≥ K1,X (Ki)

n+1 ≤ K1− 1
)

=�
(
X (Ki)
n = K1,δ(Ki)

n = 1,γ(Ki)
n+1 = 0

)
,

(3.23)
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where the second equality follows from (2.1) through the property of “skip free to the

left” for {X (Ki)
n }n∈Z+ , i = 0,1. We here see that all the limits in (3.23) (and then those

in (3.22)) exist because �(X (Ki)
n = K1,δ(Ki)

n = 1,γ(Ki)
n+1 = 0), i = 0,1, is assumed to exist in

Assumption 3.5. From (3.22) and (3.23), we have

C0�
(
X (K0)
n = K1,δ(K0)

n = 1,γ(K0)
n+1 = 0

)
= C1�

(
X (K1)
n = K1,δ(K1)

n = 1,γ(K1)
n+1 = 0

)
. (3.24)

Hereafter, we separately treat the three cases: (a) �(X (K0)
n = K1) > 0 and �(X (K1)

n =
K1) > 0, (b) either �(X (K0)

n = K1) = 0 or �(X (K1)
n = K1) = 0, and (c) �(X (K0)

n = K1) =
�(X (K1)

n = K1)= 0. In the case (a), we have from (3.12) that, for i= 0,1,

�
(
X (Ki)
n = K1,δ(Ki)

n = 1,γ(Ki)
n+1 = 0

)

=�
(
X (Ki)
n = K1, δ(Ki)

n = 1, A(Ki)
n+1 = 0

)�
(
X (Ki)
n = K1,B(Ki)

n+1 = 0
)

�
(
X (Ki)
n = K1

) .
(3.25)

Hence, substituting (3.25) into (3.24) and then using (3.14), we derive (3.17).

Next we consider the case (b). Suppose here that �(X (K0)
n = K1) > 0 and �(X (K1)

n =
K1)= 0. Since �(X (K1)

n = K1,δ(K1)
n = 1,γ(K1)

n+1 = 0)= 0 in this case, using (3.12) only in the
left-hand side of (3.24), we obtain

C0�
(
X (K0)
n = K1, δ(K0)

n = 1, A(K0)
n+1 = 0

)�
(
X (K0)
n = K1, B(K0)

n+1 = 0
)

�
(
X (K0)
n = K1

) = 0. (3.26)

Here, if �(X (K0)
n = K1) > 0 and �(X (K0)

n = K1,B(K0)
n+1 = 0)= 0, it contradicts with �(X (K0)

n ≤
K1 − 1) > 0 under Assumption 3.1. Thus, we have �(X (K0)

n = K1,B(K0)
n+1 = 0) > 0. Also, re-

calling that C0 > 0 under Assumption 3.1, we see from (3.26) that

�
(
X (K0)
n = K1, δ(K0)

n = 1, A(K0)
n+1 = 0

)
= 0. (3.27)

On the other hand, �(X (K1)
n = K1)= 0 clearly implies

�
(
X (K1)
n = K1, δ(K1)

n = 1, A(K1)
n+1 = 0

)
= 0, (3.28)

and (3.17) follows. For the case of �(X (K0)
n = K1)= 0 and �(X (K1)

n = K1) > 0, we can also
derive (3.17) by the similar argument.

Finally, in the case (c), �(X (Ki)
n = K1, δ(Ki)

n = 1, A(Ki)
n+1 = 0) = 0 for i = 0,1, and (3.17)

immediately follows. �
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The following theorem is a direct conclusion of Lemmas 3.4 and 3.6.

Theorem 3.7. Suppose that Assumptions 3.1 and 3.5 hold. If �(δ(K0)
n = 1, A(K0)

n+1 = 0)= 0,

then there exists some j∗ ∈ {0, . . . ,K1 − 1} such that �(X (K0)
n = j∗) =�(X (K1)

n = j∗) = 1.

On the other hand, if �(δ(K0)
n = 1, A(K0)

n+1 = 0) > 0, then

�
(
X (K1)
n = j

)
=

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)

�
(
X (K0)
n = j

)

�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

) , for j = 0, . . . ,K1− 1,

�
(
X (K1)
n = K1

)
= 1−

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)

�
(
X (K0)
n ≤ K1− 1

)

�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

) .

(3.29)

4. Stochastic version of our main result

In Section 3, we have established Theorem 3.7, which may be considered as a sample-path
version of [7, Theorem 1]. From this point of view, Assumption 3.1 in this paper corre-
sponds to [7, Assumption 2(ii)], and Assumption 3.5 in this paper corresponds to [7,
Assumptions 1(ii) and 2(i)]. However, we can consider probabilistic settings that satisfy
Assumption 3.5 with probability one and are less restrictive than [7, Assumptions 1(ii)
and 2(i)]. The following assumption is an example of such probabilistic settings.

Assumption 4.1. (i) For n ∈ Z+, given X (Ki)
n , i = 0,1, B(Ki)

n+1 is conditionally independent

of all other random elements. Further, P(B(K0)
φ(n,K0)+1 = k | X (K0)

φ(n,K0) = j)= P(B(K1)
φ(n,K1)+1 = k |

X (K1)
φ(n,K1) = j) for all j ∈ {0, . . . ,K1− 1}, k ∈ Z+ and n∈ Z. In addition, P(B(Ki)

n+1 = 0 | X (Ki)
n =

K1), i= 0,1, is invariant in n∈ Z+ and P(B(K0)
n+1 =0 | X (K0)

n =K1)=P(B(K1)
n+1 =0 | X (K1)

n =K1),
(ii) for all n ∈ Z, i ∈ {0,1} and j ∈ Z+, P(δ(K0)

φ(n,K0) = i,A(K0)
φ(n,K0)+1 = j) = P(δ(K1)

φ(n,K1) =
i,A(K1)

φ(n,K1)+1 = j). In addition, for all n∈ Z+, P(δ(K0)
n =1,A(K0)

n+1 =0)=P(δ(K1)
n =1,A(K1)

n+1 =0).

Assumption 4.1 is less restrictive than [7, Assumptions 1(ii) and 2(i)] in the follow-
ing sense: [7, Assumption 1(ii)] requires a time-invariant control rule for the controlled

stream {B(Ki)
n }, but Assumption 4.1(i) allows some time-variant control rules. Further-

more, [7, Assumption 1(ii)] requires P(B(K0)
n+1 = k | X (K0)

n = K1) = P(B(K1)
n+1 = k | X (K1)

n =
K1) for all k ∈ Z+, but Assumption 4.1(i) requires only for k = 0. Under [7, Assumption

2(i)], it is necessary that {(δ(Ki)
n ,A(Ki)

n+1)} regenerates whenever the event {δ(Ki)
n = 1,A(Ki)

n+1 =
0} occurs. But under Assumption 4.1(ii), it is sufficient that {(δ(Ki)

n ,A(Ki)
n+1)} regenerates

only when the event {δ(Ki)
n = 1,A(Ki)

n+1 = 0,X (Ki)
n = K1} occurs. Furthermore, Assumption

4.1 does not require the stationarity of {(δ(Ki)
n , A(Ki)

n+1, B(Ki)
n+1)}, but [7, Assumptions 1(ii)

and 2(i)] do.
The following corollary can be considered as a more general result than [7, Theorem

1] and it reduces to that if {X (Ki)
n }, i= 0,1, is stationary and ergodic and {(A(Ki)

n , δ(Ki)
n )} is

stationary.
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Corollary 4.2. Suppose that Assumption 3.1 is satisfied with probability one. Further, sup-

pose that �(δ(K0)
n = 1, A(K0)

n+1 = 0) > 0 with probability one. Then, under Assumption 4.1,

�
(
X (K1)
n = j

)
=

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)

�
(
X (K0)
n = j

)

�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

) , for j = 0, . . . ,K1− 1,

�
(
X (K1)
n = K1

)
= 1−

�
(
δ(K0)
n = 1, A(K0)

n+1 = 0
)

�
(
X (K0)
n ≤ K1− 1

)

�
(
X (K0)
n ≤ K1, δ(K0)

n = 1, A(K0)
n+1 = 0

)

(4.1)

hold with probability one, provided that the limits in (4.1) exist with probability one.
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