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We introduce a generalized notion of invariance for differential inclusions, using a proxi-
mal aiming condition in terms of proximal normals. A set of sufficient conditions for the
weak and strong invariance in the generalized sense are presented.
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1. Introduction

The existence of solutions and flow invariance for differential inclusions are considered
in [1] by using a generalized concept of solutions, namely, the Euler solutions of differen-
tial equations, without any continuity assumptions. This is done by utilizing a proximal
aiming condition in terms of proximal normals. In a recent paper [2], we generalized the
concept of proximal normal in the spirit of [3], and then, employing a generalized prox-
imal aiming condition, we proved the existence and flow invariance results for solutions
of differential inclusions.

Here in this paper, we consider a generalized notion of invariance, retaining the orig-
inal notion of proximal normals as in [1], and study the corresponding results for dif-
ferential inclusions. This generalized notion of flow invariance is useful in studying the
solution sets of fuzzy differential equations, which will be considered in a separate paper.

2. Preliminaries

Consider the Cauchy problem

x′(t)= f
(
t,x(t)

)
, x

(
t0
)= x0, t0 ≥ 0, (2.1)

where f : [t0,T]×Rn→Rn is any function.
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2 Generalized flow invariance for differential inclusions

Let π = {t0, t1, . . . , tN = T} be a partition of [t0,T]. On the interval [t0, t1], we consider
the differential equation with constant right-hand side

x′(t)= f
(
t0,x0

)
, x

(
t0
)= x0, (2.2)

which has a unique solution, x(t) on [t0, t1]. Let x1 = x(t1). Next, consider, on the interval
[t1, t2], the IVP

x′(t)= f
(
t1,x1

)
, x

(
t1
)= x1. (2.3)

We take x2 = x(t2)= x(t2, t1,x1) as the next node and proceeding in this manner until we
get an arc xπ = xπ(t) defined on all of [t0,T]. The notation xπ is employed to emphasize
the role played by the particular partition π in defining xπ which is the Euler Polygonal
arc corresponding to the partition π. The diameter μπ of the partition π is given by

μπ :=max
{
ti− ti−1 : 1≤ i≤N

}
. (2.4)

By an Euler solution to the IVP (2.1), we mean any arc x(t) which is the uniform limit
of the Euler polygonal arcs xπj , corresponding to some sequence of partitions πj such
that the diameters μπj → 0 as j →∞. Clearly, this Euler arc satifies the initial condition
x(t0)= x0 and the corresponding numberNj of the partition points in πj tends to infinity.

The following theorem, concerning the existence of Euler solutions for (2.1), is proved
in [2].

Theorem 2.1. Assume that
(1) f : [t0,T]×Rn→R and ‖ f (t,x)‖≤ g(t,‖x‖),(t,x)∈ [t0,T]×Rn, where g : [t0,T]×

R+ →R+ is a continuous function, nondecreasing in (t,u);
(2) the maximal solution r(t)= r(t, t0,u0) of the scalar differential equation

u′ = g(t,u), u
(
t0
)= u0 ≥ 0, (2.5)

exists on [t0,T].

Then, there exists an Euler solution x(t)= x(t, t0,x0) of the IVP (2.1) on [t0,T] which
satisfies a Lipschitz condition and any Euler solution of (2.1) has an estimate

∥
∥x(t)− x0

∥
∥≤ r

(
t, t0,

∥
∥x0
∥
∥)−∥∥x0

∥
∥, t ∈ [t0,T

]
. (2.6)

Remark 2.2. We can extend the notion of Euler solution of (2.1) on the interval [t0,T] to
[t0,∞) provided we define f and g on [t0,∞) instead of [t0,T], assume that the maximal
solution on r(t) exists on [t0,∞), and show that Euler solution exists on every [t0,T],
T ∈ (t0,∞).

3. Generalized flow invariance

Let S(t), t ∈ [0,∞) be a family of nonempty closed subsets of Rn. Let x ∈ Rn be such
that (t,x) /∈ {(t,s) : s∈ S(t)}, for all t ≥ 0. Suppose that, for t ≥ 0, there exists an st ∈ S(t)
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such that

∥
∥x− st

∥
∥= ∥∥(t,x)− (t,st

)∥∥= inf
{‖x− s̃‖ : s̃∈ S(t)

}
. (3.1)

The set of all such st ∈ S(t), for each t ≥ 0, is denoted by projS(t)(x). The vector (t,x− st)
determines a proximal normal direction to (t,S(t)) at (t,st). We call any vector ηt of the
form (t,k(x− st)), for any k ≥ 0, a proximal normal (or P-normal) to S(t) at st, at height
t. The set of all ηt obtained in this manner is called a proximal normal cone to S(t) at
st, at a height t and is denoted by NP

S(t)(st). If st ∈ S(t) such that st /∈ projS(t)(x) for all

(t,x) /∈ {(t,s) : s∈ S(t)}, then we set NP
S(t)(st)= {0}. If st /∈ S(t), then NP

S(t) is not defined.

Definition 3.1 (generalized flow invariance). The system {(S(t), f ) : t ≥ t0} is said to be
weakly invariant if for all x0 ∈ S(t0), there exists an Euler solution x(t) of (2.1) on [t0,∞)
such that x(t0)= x0 and x(t)∈ S(t), t > t0.

Note that this implies (t,x(t))∈ (t,S(t)), t ≥ t0. Also, if S(t)= S(t0), for all t ≥ t0, then
the above notion of weak invariance coincides with the one given in [1].

Throughout the rest of the paper, we make the following assumption.

Assumption 3.2. For all t > τ, t,τ ∈ [t0,∞) and z ∈Rn,

d2
S(t)(z)≤ d2

S(τ)(z) + (t− τ)2. (3.2)

We can now prove the following result which provides sufficient conditions in terms
of the generalized proximal normal for weak invariance of {(S(t), f ) : t ≥ 0}.
Theorem 3.3. Let f and g satisfy the assumptions of Theorem 2.1 on [t0,∞) and let x(t) be
an Euler solution on [t0,∞) of (2.1). Suppose that x(t) lies in an open set Ω⊂ Rn. Assume
that for every (t,z)∈ [t0,∞)×ω, there exists an st ∈ projS(t)(z) such that

2
〈
f (t,z),

(
z− st

)〉≤ q
(
t,d2

S(t)(z)
)

, (3.3)

where q ∈ C([t0,∞)×R+,R). Suppose also that the maximal solution r(t) = r(t, t0,u0) of
the scalar differential equation u′ = q(t,u), u(t0)= u0 ≥ 0 exists on [t0,∞). Then,

dS(t)
(
x(t)

)≤ r
(
t, t0,d2

S(t0)

(
x0
))
. (3.4)

If, in addition, r(t, t0,0)≡ 0, then (S(t), f ), t ≥ t0, is weakly invariant.

Proof. Let xπ(t) be one polygonal arc in the sequence, converging uniformly to x as per
the definiton of Euler solution of (2.1). We denote, as before, its nodes at ti by xi, i =
0,1, . . . ,N , and hence x(t0) = x0. Let xπ(t) be in Ω for all t0 ≤ t ≤ T , where T ∈ (t0,∞).
Accordingly, there exists for each i an element sti ∈ projs(ti)(xi) such that

2
〈
f
(
ti,xi

)
,xi− sti

〉≤ q
(
ti,
∥
∥xi− sti

∥
∥2
)
. (3.5)
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As in Theorem 2.1, letting ‖x′π‖ ≤ k, we find

d2
S(t1)

(
x1
)≤ d2

S(t0)

(
x1
)

+
(
t1− t0

)2

≤ ∥∥x1− st0
∥
∥2

+
(
t1− t0

)2

≤ (t1− t0
)2

+
∥
∥x1− x0

∥
∥2

+
∥
∥x0− st0

∥
∥2

+ 2
〈
x1− x0,x0− st0

〉

≤ (k2 + 1
)(
t1− t0

)2
+d2

S(t0)

(
x0
)

+ 2
∫ t1

t0

〈
x′π(t),x0− st0

〉
dt

= (k2 + 1
)(
t1− t0

)2
+d2

S(t0)

(
x0
)

+ 2
∫ t1

t0

〈
f
(
t0,x0

)
,x0− st0

〉
dt

≤ (k2 + 1
)(
t1− t0

)2
+d2

S(t0)

(
x0
)

+ q
(
t0,d2

S(t0)

(
x0
))(

t1− t0
)
.

(3.6)

Since similar estimates hold at any node, we have for i= 1,2, . . . ,N ,

d2
S(ti)

(
xi
)≤ d2

S(ti−1)

(
xi−1

)
+
(
k2 + 1

)(
ti− ti−1

)2
+ q
(
ti−1,d2

S(ti−1)

(
xi−1

))(
ti− ti−1

)
. (3.7)

And therefore, it follows that

d2
S(ti)

(
xi
)≤ d2

S(t0)

(
x0
)

+
(
k2 + 1

) i∑

j=1

(
t j − t j−1

)2
+

i∑

j=1

q
(
t j−1,d2

S(t j−1)

(
xj−1

))(
t j − t j−1

)

≤ d2
S(t0)

(
x0
)

+
(
k2 + 1

)
μπ

i∑

j=1

(
t j − t j−1

)2
+

i∑

j=1

q
(
t j−1,d2

S(t j−1)

(
xj−1

))(
t j − t j−1

)

≤ d2

S
(
t0
)
(
x0
)

+
(
k2 + 1

)(
T − t0

)
μπ +

i∑

j=1

q
(
t j−1,d2

S(t j−1)

(
xj−1

))(
t j − t j−1

)
.

(3.8)

We now consider the sequence xπj (t) of polygonal arcs converging to x(t). Since the last
estimate is true at every node, μπj → 0 as j →∞, and the same k applies to each xπ , we
deduce in the limit the integral inequality

d2
S(t)

(
x(t)

)≤ d2
S(t0)

(
x0
)

+
∫ t

t0
q
(
τ,d2

S(τ)

(
x(τ)

))
dτ, t0 ≤ t ≤ T , (3.9)

which is the same as

d2
S(t)

(
x(t)

)≤ r
(
t, t0,d2

S(t0)(x0)
)
. (3.10)

If r(t, t0,0) ≡ 0, then assuming x0 ∈ S(t0) implies x(t) ∈ S(t) for t ≥ t0 and therefore the
system (S(t), f ), t ≥ t0, is weakly invariant. The proof is complete. �

4. Weak invariance for differential inclusions

Consider the IVP for the differential inclusion

x′ ∈ F(t,x), x
(
t0
)= x0, (4.1)
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where F satisfies the following hypotheses:
(a) F is a nonempty convex set for each (t,x)∈R+×Rn;
(b) F is upper semicontinuous;
(c) v ∈ F(t,x) implies that ‖v‖ ≤ g(t,‖x‖), where g ∈ C[R2

+,R+], g(t,w) is nonde-
creasing in w, and the maximal solution r(t)= r(t, t0,w0), of the scalar differential
equation

w′ = g(t,w), w(0)=w0 ≥ 0, (4.2)

exists on [0,∞).
We recall the notions of lower and upper Hamiltonians, which are functions fromR×

Rn×Rn as follows:

h(t,x, p)= min
v∈F(t,x)

〈p,v〉, H(t,x, p)= max
v∈F(t,x)

〈p,v〉. (4.3)

We are now in a position to discuss the existence and weak invariance of (S(t),F).

Theorem 4.1. Assume that for each t ≥ t0 and every st ∈ S(t),

h
(
t,st,NP

S(t)

(
st
))≤ 0. (4.4)

Suppose further that g(t,u) is subadditive in u, for each t. Then the system (S(t),F), t ≥ t0,
is weakly invariant.

Proof. For each t ∈ [t0,∞) and x ∈Rn, choose st = st(x)∈ projS(t)(x), and let vt in F(t,st),
minimize over F(t,st) the function vt→〈vt,x−st〉.

Set fp(t,x)= vt. Since x− st ∈NP
S(t)(st), we have 〈 fP(t,x),x− st〉 ≤ 0. This implies that

the main assumption of Theorem 3.3 with q(t,u) = 0 is satisfied. If s0 ∈ S(t0) is a given
element, then for each t ≥ t0,

∥
∥ fp(t,x)

∥
∥= ∥∥vt

∥
∥≤ g

(
t,
∥
∥st
∥
∥)= g

(
t,
∥
∥st − x+ x

∥
∥)

≤ g
(
t,
∥
∥st − x

∥
∥)+ g

(
t,‖x‖)

≤ g
(
t,
∥
∥s0− x

∥
∥)+ g

(
t,
∣
∣t− t0

∣
∣2)

+ g
(
t,‖x‖)

≤ 2g
(
t,‖x‖)+ g

(
t,
∥
∥s0
∥
∥)+ g

(
t,
∣
∣t− t0

∣
∣2)= g̃

(
t,‖x‖).

(4.5)

Clearly g̃(t,u) ∈ C([t0,T]×R+,R+) and g̃(t,u) is nondecreasing in (t,u). Thus fp(t,x)
satisfies the nonlinear growth condition required by Theorem 2.1. Thus, by Theorem 3.3,
for any x(0)= x0, we have x(t)∈ S(t), on [t0,∞).

The proof will be complete if we show that x(t) is a solution of (4.2). Since fP is not a
selection of F, let us define another multifunction as follows:

for each t ≥ t0, FS(t)(t,x)= co
{
F(t,st) : st ∈ projS(t)(x)

}
. (4.6)

It can be verified that fP(t,x) is a selection for FS(t)(t,x), that FS(t) satisfies the hypoth-
esis made at the beginning of this section, and that FS(t)(t,x)= F(t,x) for x ∈ S(t). Since
we know that an Euler solution x(t) of any selection fp of FS(t) is also a solution of (4.2),
it follows that x′(t) ∈ FS(t)(t,x(t)) a.e. Since F = FS(t) on S(t) and x(t) ∈ S(t), t ≥ t0, it
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follows that x(t) is a solution of (4.2), and therefore (S(t),F) is weakly invariant. The
proof is complete. �

5. Strong invariance

We begin with the following definiton.

Definition 5.1. The multifunction F is said to be locally Lipschitz in x, uniformly in t,
provided that for all t ∈ [t0,∞), each x ∈ Rn admits a neighborhood U = U(x) and a
positive constant K = K(x) such that

x1,x2 ∈U =⇒ F
(
t,x2

)⊆ F
(
t,x1

)
+K

∥
∥x1− x2

∥
∥B, (5.1)

where B is the closed unit ball, centred at 0.

For the remainder of this section, we make the following assumption, which is stronger
than Assumption 3.2.

Assumption 5.2. For all t > τ, t,τ ∈ [t0,∞), and z ∈Rn,

dS(t)(z)≤ dS(τ)(z). (5.2)

Theorem 5.3. Let (S(t),F) be weakly invariant and let F be locally Lipschitz in x. Then
there exists a feedback selection gP for F under which S(t) is invariant.

Proof. Let fP(t,x) be defined as in Theorem 4.1. Then, fp(t,x) lies in F(st), where st ∈
projS(t)(x). Define, for each t ≥ t0, gP(t,x) to be an element in F(T ,x) closest to fP(T ,x)
so that gP is a selection for F.

Now, suppose x0 ∈ S(t0) and [t0,T] is any interval. We will show that any Euler solu-
tion y(t) on [t0,T] from x0 generated by gP is such that y(t)∈ S(t), t ∈ [t0,T]. We know
there is a bound for y(t) on [t0,T] such that ‖y(t)− x0‖ < M. Let K be the Lipschitz
constant for F on B[x0,M0].

If ‖x− x0‖ <M, then
∥
∥st − x0

∥
∥≤ ∥∥st − x

∥
∥+

∥
∥x− x0

∥
∥

= dS(t)(x) +
∥
∥x− x0

∥
∥

≤ dS(t0)
(
x0
)

+
∣
∣t− t0

∣
∣+

∥
∥x− x0

∥
∥

≤ 2
∥
∥x− x0

∥
∥+

∣
∣T − t0

∣
∣

<M0.

(5.3)

Since 〈sp(t,x),x− st〉 ≤ 0, we obtain the following estimate:

〈
gP(t,x),x− st

〉= 〈 fP(t,x),x− st
〉

+
〈
gP(t,x)− fP(t,x),x− st

〉

≤ ∥∥gP(t,x)− fP(t,x)
∥
∥
∥
∥x− st

∥
∥2

= Kd2
S(t)(x).

(5.4)



T. G. Bhaskar and V. Lakshmikantham 7

Thus, by [1, Exercise 2.2], and an application of Gronwall inequality, we get

dS(t)
(
y(t)

)≤ dS(t0)
(
x0
)
eKt, t ∈ [t0,T

]
. (5.5)

Since x0 ∈ S(t0), this implies that y(t)∈ S(t), t ∈ [t0,T], T ∈ (t0,∞).
We can now prove the strong invariance of the system (S(t),F). �

Theorem 5.4. Let F be locally Lipschitz and suppose that for each t ≥ t0 and every st ∈ S(t),

H
(
t,x,NS(t)

(
st
))≤ 0, ∀S(t). (5.6)

Then, (S(t),F), t ≥ t0, is strongly invariant.

Proof. Let y(t) be any solution for F on [t0,T] for each t, with y(t0) = x0 ∈ S(0). As a
consequence of Theorem 5.3, there exists an f such that y(t) is an Euler solution of the
IVP x′ = f (t,x), x(t0) = x0. As in Theorem 5.3, if M > 0 is such that all Euler solutions
x(t) of this IVP satisfy ‖x(t)− x0‖ <M, then ‖st − x‖ ≤M0, where st ∈ projS(t)(x). This
means that st ∈ B(x0,M0).

Let K be the Lipschitz constant for F on B(x0,M0) and consider any x ∈ B(x0,M0) and
st ∈ projS(t)(x). Then, x− st ∈ NP

S(t)(st). Since f (t,x) ∈ F(t,x), there exists v ∈ F(t,st) so
that

∥
∥v− f (t,x)

∥
∥≤ K

∥
∥st − x

∥
∥= KdS(t)(x). (5.7)

This leads us to

〈
f (t,x),x− st

〉≤ Kd2
S(t)(x). (5.8)

Using an argument similar to Theorem 5.3, we conclude that y(t)∈ S(t), t ∈ [t0,T], since
x0 ∈ S(t0). Since T ∈ (t0,∞), we have that (S(t),F), t ≥ t0, is strongly invariant and the
proof is complete. �
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