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A partially observed dynamic germ-grain model with renewal dropping process is consid-
ered. The expected fraction of free area function is estimated by a product integral-type
estimator. Uniform consistency and asymptotic Gaussianity of the estimator are proved.
Confidence bands and simulation results are also provided.
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1. Introduction

In this paper we study an estimation problem for the expected fraction of free area func-
tion (EFFAF) of a partially observed dynamic germ-grain model with renewal dropping
process. The problem is studied in R2, but all results may be extended to Rd, d ≥ 2.

The mechanism is as follows. At any time of a renewal process, a disk of random
bounded area drops on the plane R2 with center uniformly distributed in a convex re-
gion C. At any time t, the union of dropped disks forms a germ-grain model Θ(t) (see
[11]). As a function of t, and because of its evolution in time, we call Θ= {Θ(t) : t ≥ 0}
dynamic germ-grain model (DGGM).

We are interested in the FFAF of a convex closed set B ⊂ C. It is the function Δ= {Δ(t) :
t ≥ 0} defined by

Δ(t) := �
(
B \Θ(t)

)

�(B)
, t ≥ 0, (1.1)

where � denotes Lebesgue measure and B \Θ(t)= B∩ (Θ(t))c is the set difference.
The EFFAF ω = {ω(t) : t ≥ 0} is defined by

ω(t) := E[Δ(t)
]= E

[
�
(
B \Θ(t)

)

�(B)

]
, t ≥ 0. (1.2)
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2 Volume estimation

Note that if the realization of the DGGM Θ is completely observable, the FFAF is (more
or less easily) computable. Furthermore, if Θ is spatially partially observable within a
bounded windows, the EFFAF ω may be estimated by standard methods of spatial statis-
tics (see [10, 11]).

However, in this paper, having in mind the example below, we consider a different
situation. That is, we suppose that the dropping times and the areas of the dropping disks
are observable but the positions of the dropped disks are not, so that a different estimation
problem arises for ω.

Example 1.1 (bombing problem). Suppose a bombing activity is taking place on a region
C ⊂R2. Bombs of random destructive power are dropped on C at a time which is related
to a renewal process. Each bomb will strike a random point in C and destroy a circular
region with its center in the struck point and an area proportional to its destructive power.
An observer would like to know the fraction of nondestroyed area function of a target B ⊂
C, that is, the realization of Δ. He is able to register the throwing times and the destructive
power of each bomb. Because of the presence of obscuring objects (clouds, hills, etc.), he
cannot observe the point struck by each bomb. So an estimate of ω is required.

We are looking for an estimator of ω that enjoys good asymptotic properties as the re-
gion C grows. Note that when C is big enough, assuming that the disk areas are bounded,
the edge effects may be considered negligible.

As is well known in geometric probability,

ω(t)= P[0 �∈Θ(t)
]= P[τ > t], t ≥ 0, (1.3)

where 0∈ B is a fixed test point, and τ is the hitting time (see [11]) of the point 0 by the
DGGM Θ. So ω is a kind of survival function of the position 0.

Following standard methods of survival analysis, one could think of estimating ω by a
Kaplan-Meier-type estimator. The point is that the needed data, that is, the hitting times
τ1, . . . ,τn of conveniently chosen test points O1, . . . ,On, are not observables in our model.
So we have to find another estimation method.

In the paper [6], the dropping process of disks was supposed to be a nonhomogeneous
Poisson process, a product integral-type estimator was proposed for ω and its properties
where established by extensive use of martingale theory.

In this paper, we consider a more general case of a renewal dropping process. As we
will see, the asymptotic result in part (b) of Theorem 2.1 again will suggest to consider
a product integral-type estimator in the renewal case. We will also show that the chosen
estimator has good asymptotic properties.

The paper is organized as follows. In Section 2, we describe the model in detail. First
we prove a result and then derive from it the EFFAF estimator. Section 3 is devoted to
asymptotic properties. Uniform consistency and asymptotic Gaussianity of the estimator
are proved. Furthermore, an estimator of the variance function is defined and its uniform
consistency is proved. In Section 4, the results of Section 3 are used to find confidence
bands. Furthermore, in the same section, we provide results of numerical simulations. In
Section 5, we briefly consider the Poisson dropping process case.
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We assume all random variables considered in the paper are defined on the same prob-
ability space (Ω,�,P).

In what follows, the symbol ⇒ will denote the weak convergence of sequences of ran-
dom processes or random variables, see [2].

2. Model, notations, and preliminary results

As already mentioned, we are looking for an estimator of the EFFAF with good asymptotic
properties as the region of interest increases. So we fix the time interval for observations
to be, say, [0,T] and, as usual in spatial statistics, consider a convex averaging sequence
{Cn : n≥ 1}, as defined in [5, page 332], that is,

(1) Cn ⊂R2 is a convex Borel set;
(2) Cn ⊂ Cn+1, for n= 1,2, . . . ;
(3) r(Cn)→∞, n→∞, where r(Cn) := sup{r > 0 : Cn contains a ball of radius r}.

Note that cn := �(Cn)→∞, as n→∞.
We have in mind a model in which the mean interdropping time is inversely propor-

tional to the area of the region Cn. That is, on a bigger region there is a bigger dropping
rate. First we consider an underlying renewal process N = {N(t) : t ≥ 0}:

N(t) :=max

[

k :
∑

1≤i≤k
Ui ≤ t

]

, t ≥ 0, (2.1)

where as usual U ′
i s are i.i.d. positive random variables with mean μU and variance σ2

U . If
t < U1, it is assumed N(t) := 0. In our model, the dropping process on Cn is the renewal
process Nn = {Nn(t) : t ≥ 0} defined by

Nn(t) :=N
(
cnt
)
, t ≥ 0. (2.2)

Hence,

Nn(t) :=max

[

k :
∑

1≤i≤k
Uni ≤ t

]

, t ≥ 0, where Uni := Ui

cn
. (2.3)

At any renewal time Tni =Un1 + ···+Uni of Nn a disk Dni = B(Xni,
√
Ani/π) of random

area Ani drops on R2 with random center Xni ∈ Cn.
About disk centers and areas, we assume that, for any n≥ 1,
(A1) Xn1, . . . ,Xnm, . . . is a sequence of i.i.d. random variables uniformly distributed on

Cn;
(A2) An1, . . . ,Anm, . . . is a sequence of i.i.d. bounded random variables with mean μA,

second moment μ(2)
A , finite variance σ2

A, and finite first four moments,
(A3) we further assume that the families of random variables {Xnm : m ≥ 1}, {Anm :

m≥ 1} and {Nn(t) : t ≥ 0} are independent of each other.
For any t ≥ 0, we denote by Θn(t)= {Θn(t,ω), ω ∈Ω} the random closed set (germ-

grain model) composed by the union of the random disks dropped up to time t,

Θn(t) :=
⋃

1≤i≤Nn(t)

Dni =
⋃

Tni≤t
Dni, t ≥ 0. (2.4)
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In the following, θn(t), Δn(t), and ωn(t) will denote, respectively, the area of Θn(t), the
fraction area FFAF, and the expected fraction area EFFAF at time t. That is,

θn(t) := �
(
Θn(t)

)
, Δn(t) := 1− θn(t)

cn
, ωn(t) := E[Δn(t)

]
. (2.5)

Theorem 2.1 below gives an insight into a possible approach in estimating ωn(t). How-
ever, we first recall two useful results about renewal processes (see [2, equation (14.29),
page 154] and [8, Theorem 4.2, page 188]). If N is a renewal process, as defined in (2.1),
then

sup
0≤s≤t

1
t

∣
∣
∣
∣N(s)− s

μU

∣
∣
∣
∣=⇒ 0, as t −→∞, (2.6)

E
[
N(t)

]

t
−→ 1

μU
, as t −→∞. (2.7)

These results have the following implications on the dropping processes (Nn). Being

sup
0≤t≤T

∣
∣
∣
∣
Nn(t)
cn

− t

μU

∣
∣
∣
∣≤ T · sup

0≤u≤cnT

1
cnT

∣
∣
∣
∣N(u)− u

μU

∣
∣
∣
∣, (2.8)

by (2.6) it follows that

sup
0≤t≤T

∣
∣
∣
∣
Nn(t)
cn

− t

μU

∣
∣
∣
∣=⇒ 0, as n−→∞. (2.9)

By (2.7) it follows that, for any t ∈ [0,T],

E
[
Nn(t)

]

cn
= t · E

[
N
(
cnt
)]

cnt
−→ t

μU
, as n−→∞. (2.10)

Let us now state and prove the following useful result.

Theorem 2.1. Define, for any n≥ 1 and t ≥ 0,

�n(t) :=
(

1− μA
cn

)Nn(t)

, �(t) := exp
(
− μA
μU

t
)
. (2.11)

Then the following hold:
(a) ωn(t)= E[�n(t)], for any t ≥ 0;
(b) sup0≤t≤T |ωn(t)−�(t)| → 0, as n→∞.

Proof. (a) Let 0∈ B be a fixed test point and Dni the generic disk dropped on Cn. Because
of the independence assumption (A3) and uniformity of the disk center distributions, by
well-known results in geometric probability, we have

P
[
0 �∈Dni

]= 1− μA
cn

. (2.12)
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Again because of the independence assumption,

ωn(t)= E[E[Δn(t) |Nn(t)
]]= E[P[0 �∈Θn(t) |Nn(t)

]]

= E
[(

1− μA
cn

)Nn(t)
]

= E[�n(t)
]
,

(2.13)

and hence (a) is proved.
(b) Since, for any t ≥ 0,

�n(t) := exp
(
Nn(t)
cn

· ln
(
1−μA/cn

)

μA/cn
·μA

)
, (2.14)

in view of (2.9) and equicontinuity of the exponential in [−T ,0], we have

sup
0≤t≤T

∣
∣�n(t)−�(t)

∣
∣=⇒ 0, as n−→∞. (2.15)

Because sup0≤t≤T |�n(t)−�(t)| ≤ 1 and

sup
0≤t≤T

∣
∣ωn(t)−�(t)

∣
∣≤ E

[
sup

0≤t≤T

∣
∣�n(t)−�(t)

∣
∣
]

, (2.16)

then (b) follows by dominated convergence arguments. �

We now deduce from Theorem 2.1 a possible approach for estimating the expected
fraction area EFFAF ωn. Note that

�(t)= e−Λ(t) =
∏

s≤t

(
1−dΛ(s)

)
, 0≤ t ≤ T , (2.17)

where
∏

denotes product integral (see [1, Section II.6] or [7]), and

Λ(s)= μA
μU

s. (2.18)

Statement (b) in Theorem 2.1 suggests an estimator for ωn(t) of the following type:

�̂n(t) :=
∏

s≤t

(
1−dΛ̂n(s)

)
, 0≤ t ≤ T , (2.19)

where Λ̂n should be a good estimator for Λ. A natural estimator for Λ is the normalized
cumulative sum process Λ̂n = {Λ̂n(t); 0≤ t ≤ T} defined by

Λ̂n(t) := 1
cn

Nn(t)∑

i=1

Ani, 0≤ t ≤ T. (2.20)

Note that, with Λ̂n as above, it is true that

�̂n(t)=
∏

Tni≤t

(
1− Ani

cn

)
, 0≤ t ≤ T. (2.21)
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3. Asymptotic results

In this section, we state and prove the uniform consistency and asymptotic Gaussianity

of the estimator �̂n.

Theorem 3.1 (uniform consistency). With the same definitions and notations as in the

previous sections, the process �̂n is a uniform consistent estimator of the EFFAF ωn, that is,

sup
0≤t≤T

∣
∣�̂n(t)−ωn(t)

∣
∣=⇒ 0, as n−→∞. (3.1)

Proof. Note that

sup
0≤t≤T

∣
∣�̂n(t)−ωn(t)

∣
∣

≤ sup
0≤t≤T

∣
∣�̂n(t)−�n(t)

∣
∣+ sup

0≤t≤T

∣
∣�n(t)−�(t)

∣
∣+ sup

0≤t≤T

∣
∣ωn(t)−�(t)

∣
∣.

(3.2)

Because of statement (b) in Theorem 2.1 and (2.15), we have only to prove that

sup
0≤t≤T

∣
∣�̂n(t)−�n(t)

∣
∣=⇒ 0, as n−→∞. (3.3)

Note that

�n(t) :=
∏

s≤t

(
1−dΛn(s)

)
, with Λn(s) := μA

cn
Nn(s). (3.4)

In view of (2.19) and the continuity of the product-integrals (see [1, page 114] or [7]),
the convergence in (3.3) will follow if we prove that

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣=⇒ 0, as n−→∞. (3.5)

For any ε > 0 and m≥ 1, by (A3),

E
[
I
(

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣≥ ε

)
− Nn(T)σ2

A

c2
nε2

|Nn(T)=m
]

= E
[

I

(

sup
k≤m

∣
∣
∣
∣
∣

∑

1≤i≤k

(
Ani−μA

)
∣
∣
∣
∣
∣≥ cnε

)

− Var
(∑

1≤k≤m
(
Ani−μA

))

c2
nε2

]

= P
[

sup
k≤m

∣
∣
∣
∣
∣

∑

1≤i≤k

(
Ani−μA

)
∣
∣
∣
∣
∣≥ cnε

]

− Var
(∑

1≤k≤m
(
Ani−μA

))

c2
nε2

(3.6)

and the last term is ≤ 0 by Kolmogorov inequality. It follows that

E
[
I
(

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣≥ ε

)
− Nn(T)σ2

A

c2
nε2

|Nn(T)
]
≤ 0 (3.7)
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and then

E
[
I
(

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣≥ ε

)
− Nn(T)σ2

A

c2
nε2

]

= E
[
E
[
I
(

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣≥ ε

)
− Nn(T)σ2

A

c2
nε2

|Nn(T)
]]
≤ 0.

(3.8)

So

P
[

sup
0≤t≤T

∣
∣Λ̂n(t)−Λn(t)

∣
∣≥ ε

]
≤ E

[
Nn(T)

]
σ2
A

c2
nε2

(3.9)

and (3.5) follows from (2.10). �

Theorem 3.2 (asymptotic Gaussianity). The process ��
n = {��

n (t) : 0 ≤ t ≤ T}, defined
by

��
n (t) :=√cn

(
�̂n(t)−�n(t)

�n(t)

)

, 0≤ t ≤ T , (3.10)

converges to W(v):

��
n =⇒W(v), as n−→∞, (3.11)

where W is a standard Brownian motion on [0,T], and v = {v(t) := σ2
A ·φ(t), with φ(t) :=

t/μU , 0≤ t ≤ T}.
Proof. Let us define the process �Λ

n = {�Λ
n (t) : 0≤ t ≤ T} by

�Λ
n (t) :=√cn

(
Λ̂n(t)−Λn(t)

)= 1√
cn

Nn(t)∑

i=1

(
Ani−μA

)
, 0≤ t ≤ T. (3.12)

We first prove that

�Λ
n =⇒W(v), as n−→∞. (3.13)

The proof of (3.13) will follow the same lines as the proof of [2, Theorem 14.4].
First suppose T/μU < 1. Let us define, for any t ∈ [0,T],

Φn(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

Nn(t)
cn

if
Nn(t)
cn

≤ 1,

φ(t) otherwise.
(3.14)

Note that, because of (2.9),

sup
0≤t≤T

∣
∣Φn(t)−φ(t)

∣
∣≤ sup

0≤t≤T

∣
∣
∣
∣
Nn(t)
cn

− t

μU

∣
∣
∣
∣=⇒ 0, as n−→∞, (3.15)
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so that

Φn =⇒ φ, as n−→∞. (3.16)

By Donsker theorem (see [2, Theorem 14.1]), the process Xcn = {Xcn(t) : 0 ≤ t ≤ T}
defined by

Xcn(t) := 1√
cn


cnt�∑

i=1

(
Ani−μA

)
, 0≤ t ≤ T , (3.17)

converges to σA ·W :

Xcn =⇒ σA ·W , as n−→∞. (3.18)

By (3.16) and (3.18) it follows (see [2, Theorem 3.9]) that

(
Xcn ,Φn

)=⇒ (
σA ·W ,φ

)
, as n−→∞, (3.19)

and, since W is a.s. continuous (see [2, Lemma, page 151]), then

(
Xcn ◦Φn

)=⇒ σA · (W ◦φ), as n−→∞. (3.20)

Fix now ε > 0 and put δ := 1−T/μU . We have

P
[

sup
0≤t≤T

∣
∣�Λ

n (t)− (Xcn ◦Φn
)
(t)
∣
∣ > ε

]
≤ P

[
sup

0≤t≤T

Nn(t)
cn

> 1
]

≤ P
[

sup
0≤t≤T

∣
∣
∣
∣
Nn(t)
cn

− t

μU

∣
∣
∣
∣ > δ

]
,

(3.21)

and, because of (2.9), the last probability goes to 0, as n→∞. So

�Λ
n =⇒ σA · (W ◦φ), as n−→∞, (3.22)

and hence (3.13) follows because σA · (W ◦φ) and W(v) have the same distribution.
If T/μU ≥ 1 and a > 0 is such that T/aμU < 1, the proof of (3.13) can be arranged as

before, by substituting cn with acn.
Now, after having established (3.13), we note that, by Duhamel equation (see [1, equa-

tion (2.6.5)]),

��
n (t) :=−

∫ t

0

�̂n
(
s−
)

�n(s)
d
(√

cn
(
Λ̂n(s)−Λn(s)

))=−
∫ t

0

�̂n
(
s−
)

�n(s)
d�Λ

n (s), (3.23)
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so that

sup
0≤t≤T

∣
∣��

n (t)− (−�Λ
n (t)

)∣∣= sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
�̂n
(
s−
)

�n(s)
− 1

)
d�Λ

n (s)
∣
∣
∣
∣

≤ sup
0≤t≤T

∣
∣
∣
∣

�̂n
(
t−
)

�n(t)
− 1

∣
∣
∣
∣ · sup

0≤t≤T
�Λ

n (t).

(3.24)

Moreover,

sup
0≤t≤T

∣
∣
∣
∣

�̂n
(
t−
)

�n(t)
− 1

∣
∣
∣
∣≤

1
�n(T)

· sup
0≤t≤T

∣
∣�̂n

(
t−
)−�n(t)

∣
∣, (3.25)

and because of (3.3), we have

sup
0≤t≤T

∣
∣
∣
∣

�̂n
(
t−
)

�n(t)
− 1

∣
∣
∣
∣=⇒ 0, as n−→∞. (3.26)

Furthermore, (3.13) implies that

sup
0≤t≤T

�Λ
n (t)=⇒ sup

0≤t≤T
W
(
v(t)

)
, as n−→∞. (3.27)

Hence,

sup
0≤t≤T

∣
∣��

n (t)− (−�Λ
n (t)

)∣∣=⇒ 0, as n−→∞, (3.28)

and, again because of (3.13), we arrive at the desired convergence (3.11). �

The next step is to use Theorems 3.1 and 3.2 and derive confidence bands (strips). First
we have to find a good estimator for the variance function v. Let us define the process
v̂n = {v̂n(t) : 0≤ t ≤ T} by

v̂n(t) := 1
cn

Nn(t)∑

i=1

(

Ani− 1
Nn(t)

Nn(t)∑

i=1

Ani

)2

, 0≤ t ≤ T. (3.29)

Theorem 3.3. The process v̂n is a uniformly consistent estimator of the variance function v,
that is,

sup
0≤t≤T

∣
∣v̂n(t)− v(t)

∣
∣=⇒ 0, as n−→∞. (3.30)

Proof. Note that, for any t ∈ [0,T], we have

v̂n(t) := 1
cn

Nn(t)∑

i=1

(
Ani−μA

)2− 1
Nn(t)

(
�Λ

n (t)
)2
. (3.31)

So

∣
∣v̂n(t)− v(t)

∣
∣≤�n(t) + σ2

A

∣
∣
∣
∣
Nn(t)
cn

− t

μU

∣
∣
∣
∣+

1
Nn(t)

(
�Λ

n (t)
)2

, (3.32)
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where, for notational convenience, we have put

�n(t) := 1
cn

∣
∣
∣
∣
∣

Nn(t)∑

i=1

((
Ani−μA

)2− σ2
A

)
∣
∣
∣
∣
∣. (3.33)

The last term in (3.32) goes uniformly to 0 in probability because of (2.9) and (3.13). The
second term goes uniformly to 0 in probability because of (2.9). It follows that we have
only to show that

sup
0≤t≤T

�n(t)=⇒ 0, as n−→∞. (3.34)

Let ε > 0. For any m≥ 1, by (A3),

E

⎡

⎢
⎣I
(

sup
0≤t≤T

�n(t)≥ ε
)
−
Nn(T)Var

((
Ani−μA

)2
)

ε2c2
n

|Nn(T)=m

⎤

⎥
⎦

= E
⎡

⎢
⎣I

(

sup
k≤m

∣
∣
∣
∣
∣

∑

1≤i≤k

((
Ani−μA

)2− σ2
A

)
∣
∣
∣
∣
∣≥ εcn

)

−
mVar

((
Ani−μA

)2
)

ε2c2
n

⎤

⎥
⎦

= P
[

sup
k≤m

∣
∣
∣
∣
∣

∑

1≤i≤k

((
Ani−μA

)2− σ2
A

)
∣
∣
∣
∣
∣≥ εcn

]

−
Var

(∑
1≤i≤m

(
Ani−μA

)2
)

ε2c2
n

,

(3.35)

and the last term is ≤ 0 by Kolmogorov inequality. It follows that

E

[

I
(

sup
0≤t≤T

�n(t)≥ ε
)
−
Nn(T)Var

((
Ani−μA

)2
)

ε2c2
n

|Nn(T)

]

≤ 0, (3.36)

so that

E

⎡

⎢
⎣I
(

sup
0≤t≤T

�n(t)≥ ε
)
−
Nn(T)Var

((
Ani−μA

)2
)

ε2c2
n

⎤

⎥
⎦

= E
[

E

[

I
(

sup
0≤t≤T

�n(t)≥ ε
)
−
Nn(T)Var

((
Ani−μA

)2
)

ε2c2
n

|Nn(T)

]]

≤ 0.

(3.37)

Hence,

P
[

sup
0≤t≤T

�n(t)≥ ε
]
≤ E

[
Nn(T)

]

ε2c2
n

Var
[(
Ani−μA

)2
]

(3.38)

and the conclusion follows from (2.10). �
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4. Confidence bands and simulations

In order to find confidence bands, let us show that the following theorem holds.

Theorem 4.1. Under the same notations and assumptions as in the previous sections, the
following convergence result holds:

sup
0≤t≤T

∣
∣
∣
∣

√
cn

1 + v̂n(t)
�̂n(t)−�n(t)

�̂n(t)

∣
∣
∣
∣=⇒ sup

0≤x≤c

∣
∣W0(x)

∣
∣, as n−→∞, (4.1)

where W0 is a standard Brownian bridge and c := v(T)/(1 + v(T)).

Proof. From (3.3), Theorems 3.2 and 3.3, it follows that

√
cn

1 + v̂n

�̂n−�n

�̂n

= ��
n(

1 + v̂n
) · �n

�̂n

=⇒ W(v)
1 + v

, as n−→∞, (4.2)

where W denotes standard Brownian motion on [0,T]. So it is enough to see that W(v)/
(1 + v) and W0(v/(1 + v)) have the same distribution. �

From the previous result, it follows that, for any y > 0,

P
[

sup
0≤t≤T

∣
∣
∣
∣

√
cn

1 + v̂n(t)
�̂n(t)−�n(t)

�̂n(t)

∣
∣
∣
∣≤ y

]
−→ P

[
sup

0≤x≤c

∣
∣W0(x)

∣
∣≤ y

]
, as n−→∞.

(4.3)
Then, the asymptotic 100(1−α)% confidence band for �n in [0,T] is

[
�̂n(t)

(
1− 1 + v̂n(t)√

cn
eα/2(c)

)
,�̂n(t)

(
1 +

1 + v̂n(t)√
cn

eα/2(c)
)]

, 0≤ t ≤ T , (4.4)

where eα/2(c) denotes the upper (α/2)-quantile of the distribution of sup0≤x≤c |W0(x)|.
Note that because of Theorem 2.1 and (2.15), the confidence band in (4.4) is also an

asymptotic 100(1−α)% confidence band for ωn.

We have simulated the estimator process �̂n and the process �n in the time interval
[0,5]. In the simulations we have assumed that the variablesUi’s are uniformly distributed
on the interval (1,5) and that the Ani’s are uniformly distributed on the interval (0.5,3.5).
In order to construct the confidence band, we have estimated c with

ĉ := v̂n(T)
1 + v̂n(T)

, (4.5)
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Figure 4.1. Comparison between �n (dotted line), � (dashed line), and the 95% confidence band
(continuous lines) for cn = 100.

and taken the value e0.025(ĉ ) from [10, Table 9]. The obtained results are illustrated in
Figures 4.1 and 5.1 for cn = 100 and cn = 1000, respectively.

5. The Poisson case

In this section, we briefly discuss the case in which the dropping process Nn is a homoge-
neous Poisson process with intensity measure mn given by

mn
(
(s, t]

)= cn · t− s

μU
, 0≤ s < t. (5.1)

In this case, the EFFAF does not depend on n and is equal to �:

ωn(t)=�(t)= e−(μA/μU )t, t ≥ 0. (5.2)

So the problem reduces to an estimation problem for �. The chosen estimator �̂n(t)
is still defined as in (2.19). The following asymptotic results hold.

Theorem 5.1 (uniform consistency).

sup
0≤t≤T

∣
∣�̂n(t)−�(t)

∣
∣=⇒ 0, as n−→∞. (5.3)
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Figure 5.1. Comparison between �n (dotted line), � (dashed line), and the 95% confidence band
(continuous lines) for cn = 1000.

Theorem 5.2 (asymptotic Gaussianity). The process ��
n = {��

n (t) : 0 ≤ t ≤ T}, defined
by

��
n (t) :=√cn

(
�̂n(t)−�(t)

�(t)

)

, 0≤ t ≤ T , (5.4)

converges to W(v)

��
n =⇒W(v), as n−→∞, (5.5)

where W is a standard Brownian motion on [0,T], and v = {v(t) := μ(2)
A · t/μU , 0≤ t ≤ T}.

The variance function v may be estimated by the uniform consistent estimator v̂n de-
fined by

v̂n(t) := 1
cn

Nn(t)∑

i=1

A2
ni, 0≤ t ≤ T. (5.6)

The band defined as in (4.4) is the asymptotic 100(1− α)% confidence band for � in
[0,T].

In the paper [6], the nonhomogeneous Poisson case is considered, that is,

mn
(
(s, t]

)= cn ·
∫ t

s
λ(u)du, 0≤ s < t. (5.7)
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All results are obtained by extensive use of martingale theory. Furthermore, in the same
paper, the estimation problem for the α(t) = μ(t) · λ(t) is solved by kernel smoothing
method.
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