
SENSITIVITY ANALYSIS FOR RELAXED COCOERCIVE
NONLINEAR QUASIVARIATIONAL INCLUSIONS

RAM U. VERMA

Received 29 June 2005; Revised 2 August 2005; Accepted 5 August 2005

Some results on the sensitivity analysis for relaxed cocoercive quasivariational inclusions
are obtained, which generalize similar sensitivity analysis results on strongly monotone
quasivariational inclusions. Furthermore, some suitable examples of relaxed cocoercive
mappings are illustrated.
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1. Introduction and preliminaries

Variational inequality methods whether based on numerous available new algorithms or
otherwise have been applied vigorously, especially to model equilibria problems in eco-
nomics, optimization and control theory, operations research, transportation network
modeling, and mathematical programming, while a considerable progress to developing
general methods for the sensitivity analysis for variational inequalities is made. Tobin
[7] presented the sensitivity analysis for variational inequalities allowing the calculation
of derivatives of solution variables with respect to perturbation parameters, where per-
turbations are of both the variational inequality function and the feasible region. Ky-
parisis [5] under appropriate second-order and regularity conditions has shown that the
perturbed solution to a parametric variational inequality problem is continuous and di-
rectionally differentiable with respect to the perturbation parameter. Recently, Agarwal
et al. [1] studied the sensitivity analysis for qusivariational inclusions involving strongly
monotone mappings applying the resolvent operator technique, without differentiabil-
ity assumptions on solution variables with respect to perturbation parameters. The aim
of this paper is to present the sensitivity analysis for the relaxed cocoercive quasivaria-
tional inclusions based on the resolvent operator technique. The obtained results gener-
alize the results on the sensitivity analysis for strongly monotone quasivariational inclu-
sions [1, 2, 6] and others since the class of relaxed cocoercive mappings is more general
than the strong monotone mappings, and furthermore, it is less explored. Some suitable
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examples of relaxed cocoercive mappings are also included. For more details, we recom-
mend [1–13].

Let H be a real Hilbert space with the norm ‖ · ‖ and inner product 〈·,·〉. Let N : H ×
H × L→ H be a nonlinear mapping and M : H ×H × L→ 2H be a maximal monotone
mapping with respect to the first variable, where L is a nonempty open subset of H . Then
the problem of finding an element u∈H such that

0∈N(u,u,λ) +M(u,u,λ), (1.1)

where λ∈ L is the perturbation parameter, is called a class of generalized relaxed cocoer-
cive mixed quasivariational inclusion (abbreviated RCMQVI) problems.

Next, a special case of RCMQVI (1.1) problem is: determine an element u∈H such
that

0∈ S(u,λ) +T(u,λ) +M(u,u,λ), (1.2)

where N(u,v,λ)= S(u,λ) +T(v,λ), for all u,v ∈H , and S,T : H ×L→H are two nonlin-
ear mappings. If S= 0 in (1.2), then (1.2) is equivalent to finding an element u∈H such
that

0∈ T
(
u,λ
)

+M
(
u,u,λ

)
. (1.3)

The solvability of RCMQVI problem (1.1) depends on the equivalence between (1.1) and
the problem of finding the fixed point of the associated resolvent operator.

Note that if M is maximal monotone, then the corresponding resolvent operator JMρ
in the first argument is defined by

J
M(·,y)
ρ (u)= (I + ρM(·, y)

)−1
(u) ∀u∈H , (1.4)

where ρ > 0 and I is the identity mapping.

Lemma 1.1 [1]. An element u ∈H is a solution to (1.1) if and only if there is an element
u∈H such that

u=G(u,λ) := J (·,u,λ)
ρ

(
u− ρN(u,u,λ)

)
, (1.5)

where J (·,u,λ)
ρ = (I + ρM(·,u,λ))−1 and ρ > 0.

2. Cocoercivity and relaxed cocoercivity

This section deals with notions of cocoercive and relaxed cocoercive mappings and their
connections to other mappings. The class of relaxed cocoercive mappings is more general
than the strong monotone mappings, and furthermore, it is less explored in the context
of applications yet.
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Definition 2.1. A mapping T : H ×H ×L→H is said to be
(i) (m)-relaxed monotone in the first argument if there exists a positive constant m

such that

〈
T(x,u,λ)−T(y,u,λ),x− y

〉≥ (−m)‖x− y‖2 ∀(x, y,u,λ)∈H ×H ×H ×L; (2.1)

(ii) (s)-cocoercive in the first argument if there exists a positive constant s such that

〈
T(x,u,λ)−T(y,u,λ),x− y

〉≥ (s)
∥
∥T(x)−T(y)

∥
∥2 ∀(x, y,u,λ)∈H ×H ×H ×L;

(2.2)

(iii) (m)-relaxed cocoercive in the first argument if there exists a positive constant m
such that

〈
T(x,u,λ)−T(y,u,λ),x−y

〉≥ (−m)
∥
∥T(x)−T(y)

∥
∥2 ∀(x, y,u,λ)∈H ×H ×H ×AL;

(2.3)

(iv) (γ,m)-relaxed cocoercive in the first argument if there exist positive constants γ
and m such that

〈
T(x,u,λ)−T(y,u,λ),x− y

〉

≥ (−m)
∥
∥T(x)−T(y)

∥
∥2

+ γ‖x− y‖2 ∀(x, y,u,λ)∈H ×H ×H ×L.
(2.4)

Example 2.2. Consider a nonexpansive mapping T : H → H on H. If we set A = I −T ,
then A is (1/2)-cocoercive.

Example 2.3. Consider a projection P : H → C, where C is a nonempty closed convex
subset of H. Then P is (1)-cocoercive since P is nonexpansive.

Example 2.4. Consider an (r)-strongly monotone (and hence (r)-expanding) mapping
T : H →H on H. Then T is (1,r + r2)-relaxed cocoercive. For all u,v ∈H , we have

〈
T(x)−T(y), x− y

〉= (−1)
∥
∥T(x)−T(y)

∥
∥2

+ r‖x− y‖2 +
∥
∥T(x)−T(y)

∥
∥2

≥ (−1)
∥
∥T(x)−T(y)

∥
∥2

+
(
r + r2)‖x− y‖2.

(2.5)

Clearly, every (m)-cocoercive mapping is (m)-relaxed cocoercive, while each (r)-strong-
ly monotone mapping is (1,r + r2)-relaxed cocoercive.

Definition 2.5. A mapping T : H ×H × L→ H is said to be (μ)-Lipschitz continuous in
the first argument if there exists a positive constant μ such that

∥
∥T(x,u,λ)−T(y,u,λ)

∥
∥≤ μ‖x− y‖ ∀(x, y,u,λ)∈H ×H ×H ×L. (2.6)
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3. Nonlinear variational inclusions

Theorem 3.1. Let H be a real Hilbert space, let N : H ×H ×L→H be (γ,r)-relaxed cocoer-
cive and (β)-Lipschitz continuous in the first variable, and let N be (μ)-Lipschitz continuous
in the second variable. If

∥
∥JM(·,u,λ)

ρ (w)− JM(·,v,λ)
ρ (w)

∥
∥≤ η‖u− v‖ ∀(u,v,λ)∈H ×H ×L, (3.1)

then

∥
∥G(u,λ)−G(v,λ)

∥
∥≤ θ‖u− v‖ ∀(u,v,λ)∈H ×H ×L, (3.2)

where

θ =
√

1− 2ρr + ρ2β2 + 2ργβ2 + ρμ+η < 1,

∣
∣
∣
∣ρ−

r− (1−η)μ− γβ2

β2−μ2

∣
∣
∣
∣ <

√(
r− (1−η)μ− γβ2

)2− (β2−μ2
)
(2−η)η

β2−μ2
,

r > (1−η)μ+ γβ2 +
√(

β2−μ2
)
(2−η)η, β > μ,

ρμ < 1−η, η < 1.

(3.3)

Consequently, for each λ∈ L, the mapping G(u,λ) in light of (3.2) has a unique fixed point
z(λ), and hence, z(λ) is a unique solution to (1.1). Thus,

G
(
z(λ),λ

)= z(λ). (3.4)

Proof. For any element (u,v,λ)∈H ×H ×L, we have

G(u,λ)= JM(·,u,λ)
ρ

(
u− ρN(u,u,λ)

)
,

G(v,λ)= JM(·,v,λ)
ρ

(
v− ρN(v,v,λ)

)
.

(3.5)

It follows that
∥
∥G(u,λ)−G(v,λ)

∥
∥

= ∥∥JM(·,u,λ)
ρ

(
u− ρN(u,u,λ)

)− JM(·,v,λ)
ρ

(
v− ρN(v,v,λ)

)∥∥

≤ ∥∥JM(·,u,λ)
ρ

(
u− ρN(u,u,λ)

)− JM(·,u,λ)
ρ

(
v− ρN(v,v,λ)

)∥∥

+
∥
∥JM(·,u,λ)

ρ

(
v− ρN(v,v,λ)

)− JM(·,v,λ)
ρ

(
v− ρN(v,v,λ)

)∥∥

≤ ∥∥u− v− ρ
(
N(u,u,λ)−N(v,v,λ)

)∥∥+η‖u− v‖
≤ ∥∥u− v− ρ

(
N(u,u,λ)−N(v,u,λ)

)∥∥

+
∥
∥ρ
(
N(v,u,λ)−N(v,v,λ)

)∥∥+η‖u− v‖.

(3.6)
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The (γ,r)-relaxed cocoercivity and (β)-Lipschitz continuity of N in the first argument
imply that

∥
∥u− v− ρ

(
N(u,u,λ)−N(v,u,λ)

)∥∥2

= ‖u− v‖2− 2ρ
〈
N(u,u,λ)−N(v,u,λ),u− v

〉
+ ρ2

∥
∥N(u,u,λ)−N(v,u,λ)

∥
∥2

≤ (1− 2ρr + ρ2β2 + 2ργβ2)‖u− v‖2.

(3.7)

On the other hand, the (μ)-Lipschitz continuity of N in the second argument results in

∥
∥N(v,u,λ)−N(v,v,λ)

∥
∥≤ μ‖u− v‖. (3.8)

In light of the above arguments, we infer

∥
∥G(u,λ)−G(v,λ)

∥
∥≤ θ‖u− v‖, (3.9)

where

θ =
√

1− 2ρr + ρ2β2 + 2ργβ2 + ρμ+η. (3.10)

Since θ < 1, it concludes the proof. �

Theorem 3.2. Let H be a real Hilbert space, let N : H ×H ×L→H be (γ,r)-relaxed cocoer-
cive and (β)-Lipschitz continuous in the first variable, and let N be (μ)-Lipschitz continuous
in the second variable. Let

∥
∥JM(·,u,λ)

ρ (w)− JM(·,v,λ)
ρ (w)

∥
∥≤ η‖u− v‖ ∀(u,v,λ)∈H ×H ×L,

∥
∥G(u,λ)−G(v,λ)

∥
∥≤ θ‖u− v‖ ∀(u,v,λ)∈H ×H ×L,

(3.11)

where

θ =
√

1− 2ρr + ρ2β2 + 2ργβ2 + ρμ+η < 1,

∣
∣
∣
∣
∣ρ−

r− (1−η)μ− γβ2

β2−μ2

∣
∣
∣
∣
∣ <

√(
r− (1−η)μ− γβ2

)2− (β2−μ2
)
(2−η)η

β2−μ2
,

r > (1−η)μ+ γβ2 +
√(

β2−μ2
)
(2−η)η, β > μ,

ρμ < 1−η, η < 1.

(3.12)

If the mappings λ→ N(u,v,λ) and λ→ JM(·,u,λ)
ρ (w) are both continuous (or Lipschitz con-

tinuous) from L to H , then the solution z(λ) of (1.1) is continuous (or Lipschitz continuous)
from L to H .
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Proof. From the hypotheses of the theorem, for any λ,λ∗ ∈ L, we have

∥
∥z(λ)− z

(
λ∗
)∥∥= ∥∥G(z(λ),λ

)−G
(
z
(
λ∗
)
,λ∗
)∥∥

≤ ∥∥G(z(λ),λ
)−G

(
z
(
λ∗
)
,λ
)∥∥+

∥
∥G
(
z
(
λ∗
)
,λ
)−G

(
z
(
λ∗
)
,λ∗
)∥∥

≤ θ
∥
∥z(λ)− z

(
λ∗
)∥∥+

∥
∥G
(
z
(
λ∗
)
,λ
)−G

(
z
(
λ∗
)
,λ∗
)∥∥.

(3.13)

It follows that
∥
∥G
(
z
(
λ∗
)
,λ
)−G

(
z
(
λ∗
)
,λ∗
)∥∥= ∥∥JM(·,z(λ∗),λ)

ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ
))

− JM(·,z(λ∗),λ∗)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))∥∥

≤ ∥∥JM(·,z(λ∗),λ)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ
))

− JM(·,z(λ∗),λ)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))∥∥

+
∥
∥JM(·,z(λ∗),λ)

ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))

− JM(·,z(λ∗),λ∗)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))∥∥

≤ ρ
∥
∥N
(
z
(
λ∗
)
,z
(
λ∗
)
,λ
)−N

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
)∥∥

+
∥
∥JM(·,z(λ∗),λ)

ρ

(
z(λ∗

)− ρN
(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))

− JM(·,z(λ∗),λ∗)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))∥∥.

(3.14)

Hence, we have

∥
∥z(λ)− z(λ∗)

∥
∥≤ ρ

1− θ

∥
∥N
(
z
(
λ∗
)
,z
(
λ∗
)
,λ
)−N

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
)∥∥

+
1

1− θ

∥
∥JM(·,z(λ∗),λ)

ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗),z

(
λ∗
)
,λ∗
))

− JM(·,z(λ∗),λ∗)
ρ

(
z
(
λ∗
)− ρN

(
z
(
λ∗
)
,z
(
λ∗
)
,λ∗
))∥∥.

(3.15)

This completes the proof. �

Corollary 3.3 [1]. Let H be a real Hilbert space, let N : H ×H × L→H be (r)-strongly
monotone and (β)-Lipschitz continuous in the first variable, and let N be (μ)-Lipschitz con-
tinuous in the second variable. If

∥
∥JM(·,u,λ)

ρ (w)− JM(·,v,λ)
ρ (w)

∥
∥≤ η‖u− v‖ ∀(u,v,λ)∈H ×H ×L, (3.16)

then

∥
∥G(u,λ)−G(v,λ)

∥
∥≤ θ‖u− v‖ ∀(u,v,λ)∈H ×H ×L, (3.17)
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where

θ =
√

1− 2ρr + ρ2β2 + ρμ+η < 1,

∣
∣
∣
∣
∣ρ−

r− (1−η)μ
β2−μ2

∣
∣
∣
∣
∣ <

√(
r− (1−η)μ

)2− (β2−μ2
)
(2−η)η

β2−μ2
,

r > (1−η)μ+
√(

β2−μ2
)
(2−η)η, β > μ,

ρμ < 1−η, η < 1.

(3.18)

Corollary 3.4 [1]. Let H be a real Hilbert space, let N : H ×H × L→H be (r)-strongly
monotone and (β)-Lipschitz continuous in the first variable, and let N be (μ)-Lipschitz con-
tinuous in the second variable. Let

∥
∥JM(·,u,λ)

ρ (w)− JM(·,v,λ)
ρ (w)

∥
∥≤ η‖u− v‖ ∀(u,v,λ)∈H ×H ×L,

∥
∥G(u,λ)−G(v,λ)

∥
∥≤ θ‖u− v‖ ∀(u,v,λ)∈H ×H ×L,

(3.19)

where

θ =
√

1− 2ρr + ρ2β2 + ρμ+η < 1,

∣
∣
∣
∣
∣ρ−

r− (1−η)μ
β2−μ2

∣
∣
∣
∣
∣ <

√(
r− (1−η)μ

)2− (β2−μ2
)
(2−η)η

β2−μ2
,

r > (1−η)μ+
√(

β2−μ2
)
(2−η)η, β > μ,

ρμ < 1−η, η < 1, r < 1.

(3.20)

If the mappings λ→ N(u,v,λ) and λ→ JM(·,u,λ)
ρ (w) are both continuous (or Lipschitz con-

tinuous) from L to H , then the solution z(λ) of (1.1) is continuous (or Lipschitz continuous)
from L to H .

4. Concluding remark

The present results on the sensitivity analysis based on the maximal monotonicity of M
can further be generalized to the case of A-monotonicity [9] and H-monotonicity [3].
Recently, the author [9] introduced a new class of mappings—A-monotone mappings—
which have a wide range of applications. The class of A-monotone mappings generalizes
the well-known class of maximal monotone mappings, and on the other hand, it gener-
alizes the recently introduced and studied notion of the H-monotone mappings by Fang
and Huang [3] to a higher level.

Let X denote a real Hilbert space with the norm ‖ · ‖ and inner product 〈·,·〉 on X .

Definition 4.1 [9]. Let A : X → X be a nonlinear single-valued mapping on X and let
M : X → 2X be a multivalued mapping on X . The map M is said to be A-monotone if

(i) M is (m)-relaxed monotone;
(ii) A+ ρM is maximal monotone for ρ > 0.
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This is equivalent to stating that M is A-monotone if M is (m)-relaxed monotone and
R(A+ ρM)= X for ρ > 0.

Definition 4.2 [3]. Let H : X → X be a nonlinear single-valued mapping on X and let
M : X → 2X be a multivalued mapping on X. The map M is said to be H-monotone if

(i) M is monotone;
(ii) (H + ρM)(X)= X for ρ > 0.

Proposition 4.3. Let A : X → X be an r-strongly monotone single-valued mapping and let
M : X → 2X be an A-monotone mapping. Then M is maximal monotone.

Proof. Since M is (m)-relaxed monotone, it suffices to show that

〈u− v,x− y〉 ≥ (−m)‖x− y‖2 ∀(y,v)∈ graph (M) implies u∈M(x). (4.1)

Assume (x0,u0) �∈ graph (M) such that

〈
u0− v,x0− y

〉≥ (−m)
∥
∥x0− y

∥
∥2 ∀(y,v)∈ graph (M). (4.2)

Since M is A-monotone, (A+ ρM)(X) = X for all ρ > 0. This implies that there exists an
element (x1,u1)∈ graph (M) such that

A
(
x1
)

+ ρu1 =A
(
x0
)

+ ρu0. (4.3)

It follows from (4.2) and (4.3) that

ρ
〈
u0−u1,x0− x1

〉=−〈A(x0
)−A

(
x1
)
,x0− x1

〉≥ (−ρm)
∥
∥x0− x1

∥
∥2
. (4.4)

Since A is (r)-strongly monotone, it implies x0 = x1 for m< r. As a result, we have u0 = u1,
that is, (x0,u0)∈ graph (M), a contradiction. Hence, M is maximal monotone. �

Theorem 4.4. Let A : X → X be an r-strongly monotone mapping and let M : X → 2X be
an A-monotone mapping. Then the operator (A+ ρM)−1 is single-valued.

Proof. Assume, for a given x ∈ X , u,v ∈ (A + ρM)−1(x). Then we have −A(u) + x ∈
ρM(u) and −A(v) + x ∈ ρM(v). Since M is (m)-relaxed monotone, it implies that

〈−A(u) + x− (−A(v) + x),u− v
〉= 〈A(v)−A(u),u− v

〉

≥ (−m)‖u− v‖2.
(4.5)

Since A is (r)-strongly monotone, it implies u = v for m < r. Therefore, (A + ρM)−1 is
single-valued. �

This leads to the generalized definition of the resolvent operator.

Definition 4.5 [9]. Let A : X → X be an (r)-strongly monotone mapping and let M : X →
2X be an A-monotone mapping. Then the generalized resolvent operator JMρ,A : X → X is
defined by

JMρ,A(u)= (A+ ρM)−1(u). (4.6)
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