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We study the linear filtering problem for systems driven by continuous Gaussian pro-
cesses V (1) and V (2) with memory described by two parameters. The processes V ( j) have
the virtue that they possess stationary increments and simple semimartingale represen-
tations simultaneously. They allow for straightforward parameter estimations. After giv-
ing the semimartingale representations of V ( j) by innovation theory, we derive Kalman-
Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio
problem for an investor with partial observations. We illustrate the tractability of the fil-
tering algorithm by numerical implementations.

Copyright © 2006 A. Inoue et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let T be a positive constant. In this paper, we use the following Gaussian process V =
(Vt, t ∈ [0,T]) with stationary increments as the driving noise process:

Vt =Wt −
∫ t

0

(∫ s
−∞

pe−(q+p)(s−u)dWu

)
ds, 0≤ t ≤ T , (1.1)

where p and q are real constants such that

0 < q <∞, −q < p <∞, (1.2)

and (Wt, t ∈ R) is a one-dimensional Brownian motion satisfying W0 = 0. The param-
eters p and q describe the memory of V . In the simplest case p = 0, V is reduced to the
Brownian motion, that is, Vt =Wt, 0≤ t ≤ T .

It should be noticed that (1.1) is not a semimartingale representation of V with re-
spect to the natural filtration �V = (�V

t , t ∈ [0,T]) of V since (Wt, t ∈ [0,T]) is not
�V -adapted. Using the innovation theory as described by Liptser and Shiryaev [21] and
a result by Anh et al. [2], we show (Theorem 2.1) that there exists a one-dimensional
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2 Linear filtering of systems with memory

Brownian motion B = (Bt, t ∈ [0,T]), called the innovation process, satisfying

σ
(
Bs, s∈ [0, t]

)= σ(Vs, s∈ [0, t]
)
, 0≤ t ≤ T , (1.3)

Vt = Bt −
∫ t

0

(∫ s
0
l(s,u)dBu

)
ds, 0≤ t ≤ T , (1.4)

where l(t,s) is a Volterra kernel given by

l(t,s)= pe−(p+q)(t−s)
{

1− 2pq
(2q+ p)2e2qs− p2

}
, 0≤ s≤ t ≤ T. (1.5)

With respect to the natural filtration �B = (�B
t , t ∈ [0,T]) of B, which is equal to �V ,

(1.4) gives the semimartingale representation ofV . Thus the processV has the virtue that
it possesses the property of a stationary increment process with memory and a simple
semimartingale representation simultaneously. We know no other process with this kind
of properties. The two properties of V become a great advantage, for example, in its
parameter estimation.

In [1, 2, 10], the process V is used as the driving process for a financial market model
with memory. The empirical study for S&P 500 data by Anh et al. [3] shows that the
model captures reasonably well the memory effect when the market is stable. The work
in these references suggests that the process V can serve as an alternative to Brownian
motion when the random disturbance exhibits dependence between different observa-
tions.

In this paper, we are concerned with the filtering problem of the two-dimensional
partially observable process ((Xt,Yt), t ∈ [0,T]) governed by the following linear system
of equations:

dXt = θXtdt+ σdV (1)
t , 0≤ t ≤ T , X0 = ρ,

dYt = μXtdt+dV (2)
t , 0≤ t ≤ T , Y0 = 0.

(1.6)

Here X = (Xt, t ∈ [0,T]) and Y = (Yt, t ∈ [0,T]) represent the state and the observa-

tion, respectively. For j = 1,2, the noise process V ( j) = (V
( j)
t , t ∈ [0,T]) is described by

(1.1) with (p,q)= (pj ,qj) and Wt =W ( j)
t , t ∈R. We assume that the Brownian motions

(W (1)
t , t ∈R) and (W (2)

t , t ∈R), whence V (1) and V (2), are independent. The coefficients
θ,σ ,μ∈R with μ �= 0 are known constants, and ρ is a centered Gaussian random variable
independent of (V (1),V (2)).

The basic filtering problem for the linear model (1.6) with memory is to calculate
the conditional expectation E[Xt |�Y

t ], called the (optimal) filter, where �Y = (�Y
t , t ∈

[0,T]) is the natural filtration of the observation process Y . In the classical Kalman-Bucy
theory (see Kalman [12], Kalman and Bucy [13], Bucy and Joseph [4], Davis [5], and
Liptser and Shiryaev [21]), Brownian motion is used as the driving noise. Attempts have
been made to resolve the filtering problem of dynamical systems with memory by re-
placing Brownian motion by other processes. In [16–18] and others, fractional Brow-
nian motion is used. Notice that fractional Brownian motion is not a semimartingale.
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In the discrete-time setting, autoregressive processes are used as driving noise (see, e.g.,
Kalman [12], Bucy and Joseph [4], and Jazwinski [11]). Our model may be regarded as
a continuous-time analog of the latter since it is shown by Anh and Inoue [1] that V is
governed by a continuous-time AR(∞)-type equation (see Section 7).

The Kalman-Bucy filter is a computationally tractable scheme for the optimal filter
of a Markovian system. We aim to derive a similar effective filtering algorithm for the
system (1.6) which has memory. However, rather than considering (1.6) itself, we start
with a general continuous Gaussian process X = (Xt, t ∈ [0,T]) as the state process and
Y = (Yt, t ∈ [0,T]) defined by

Yt =
∫ t

0
μ(s)Xsds+Vt, 0≤ t ≤ T , (1.7)

as the observation process, where μ(·) is a deterministic function andV = (Vt, t ∈ [0,T])
is a process which is independent of X and given by (1.1). Using (1.4) and (1.5), we derive
explicit Volterra integral equations for the optimal filter (Theorem 3.1). In the special case
(1.6), the integral equations are reduced to differential equations, which give an extension
to Kalman-Bucy filtering equations (Theorem 3.5). Due to the non-Markovianness of the
formulation (1.6), it is expected that the resulting filtering equations would appear in
the integral equation form (cf. Kleptsyna et al. [16]). The fact that good Kalman-Bucy-
type differential equations can be obtained here is due to the special properties of (1.6).
This interesting result does not seem to hold for any other formulation where memory is
inherent.

We apply the results to an optimal portfolio problem in a partially observable finan-
cial market model. More precisely, we consider a stock price model that is driven by the
process V = (Vt, t ∈ [0,T]) given by (1.1). Assuming that the investor can observe the
stock price but not the drift process, we discuss the portfolio optimization problem of
maximizing the expected logarithmic utility from terminal wealth. To solve this prob-
lem, we make use of our results on filtering to reduce the problem to the case where the
drift process is adapted to the observation process. We then use the martingale methods
(cf. Karatzas and Shreve [14]) to work out the explicit formula for the optimal portfolio
(Theorem 4.1).

This paper is organized as follows. In Section 2, we prove the semimartingale rep-
resentation (1.4) with (1.5) for V . Section 3 is the main body of this paper. We derive
closed-form equations for the optimal filter. In Section 4, we apply the results to finance.
In Section 5, we illustrate the advantage of V in parameter estimation. Some numerical
results on Monte Carlo simulation are presented. In Section 6, we numerically compare
the performance of our filter with the Kalman-Bucy filter in the presence of memory
effect. Finally, a possible extension of this work is discussed in Section 7.

2. Driving noise process with memory

Let T ∈ (0,∞), and let (Ω,�,P) be a complete probability space. For a process (At, t ∈
[0,T]), we denote by �A = (�A

t , t ∈ [0,T]) the P-augmentation of the filtration (σ(As,
s∈ [0, t]), t ∈ [0,T]).



4 Linear filtering of systems with memory

Let V = (Vt, t ∈ [0,T]) be the process given by (1.1). The process V is a continuous
Gaussian process with stationary increments. The aim of this section is to prove (1.4)
with (1.5).

We define a process α= (αt, t ∈ [0,T]) by

αt = E
[∫ t

−∞
pe−(q+p)(t−u)dWu |�V

t

]
, 0≤ t ≤ T. (2.1)

Then there exists a one-dimensional Brownian motion B = (Bt, t ∈ [0,T]), called the
innovation process, satisfying �B

t =�V
t , 0≤ t ≤ T , and

Vt = Bt −
∫ t

0
αsds, 0≤ t ≤ T (2.2)

(see, e.g., Liptser and Shiryaev [21, Theorem 7.16]). Thus, V is an �V -semimartingale
with representation (2.2).

To find a good representation of the process α, we recall the following result from Anh
et al. [2, Example 5.3]:

αt =
∫ t

0
k(t,s)dVs, 0≤ t ≤ T , (2.3)

with

k(t,s)= p(2q+ p)
(2q+ p)eqs− pe−qs

(2q+ p)2eqt − p2e−qt
, 0≤ s≤ t ≤ T. (2.4)

From the theory of Volterra integral equations, there exists a function l(t,s)∈ L2([0,T]2),
called the resolvent of k(t,s), such that, for almost every 0≤ s≤ t ≤ T ,

l(t,s)− k(t,s) +
∫ t
s
l(t,u)k(u,s)du= 0,

l(t,s)− k(t,s) +
∫ t
s
k(t,u)l(u,s)du= 0

(2.5)

(see Davis [5, Chapter 4, Section 3] and Gripenberg et al. [9, Chapter 9]). Using l(t,s), we
have the following representation of α in terms of the innovation process B:

αt =
∫ t

0
l(t,s)dBs, 0≤ t ≤ T. (2.6)

We will solve (2.5) explicitly to obtain l(t,s).

Theorem 2.1. The expression (1.5) holds.

Proof. We have k(t,s)= a(t)b(s) for 0≤ s≤ t ≤ T , where, for t ∈ [0,T],

a(t)= p(2q+ p)
(2q+ p)2eqt − p2e−qt

, b(t)= (2q+ p)eqt − pe−qt. (2.7)
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Fix s∈ [0,T] and define x(t)= xs(t) and λ= λs by

x(t)=
∫ t
s
b(u)l(u,s)du, s≤ t ≤ T , λ= b(s). (2.8)

Then, from (2.5) we obtain

dx

dt
(t) + a(t)b(t)x(t)= λa(t)b(t), x(s)= 0. (2.9)

The solution x is given by

x(t)= λ− λexp
[
−
∫ t
s
a(u)b(u)du

]
, (2.10)

whence, for 0≤ s≤ t ≤ T ,

l(t,s)= a(t)b(s)exp
[
−
∫ t
s
a(u)b(u)du

]
= k(t,s)exp

[
−
∫ t
s
k(u,u)du

]
. (2.11)

We have

k(u,u)= p− 2p2q

(2q+ p)2e2qu− p2
. (2.12)

By the change of variable x(u)= (2q+ p)2e2qu− p2, we obtain

2p2q
∫ t
s

du

(2q+ p)2e2qu− p2
= 2p2q

∫ x(t)

x(s)

1
2qx(x+ p2)

dx

=
∫ x(t)

x(s)

(
1
x
− 1
x+ p2

)
dx = log

[
x(t)

(
x(s) + p2

)
x(s)

(
x(t) + p2

)
]

= log

[
e−2q(t−s) (2q+ p)2e2qt − p2

(2q+ p)2e2qs− p2

]
,

(2.13)

so that

exp
[
−
∫ t
s
k(u,u)du

]
= e−p(t−s)e−2q(t−s) (2q+ p)2e2qt − p2

(2q+ p)2e2qs− p2
. (2.14)

Thus

l(t,s)= (2q+ p)pe−(p+q)(t−s) (2q+ p)e2qs− p

(2q+ p)2e2qs− p2
(2.15)

or (1.5) holds, as desired. �
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3. Filtering equations

3.1. General result. We consider a general two-dimensional centered continuous Gauss-
ian process ((Xt,Ut), t ∈ [0,T]). The process X = (Xt, t ∈ [0,T]) represents the state
process, while U = (Ut, t ∈ [0,T]) is another process which is related to the dynamics
of X .

In this subsection, (Bt, t ∈ [0,T]) is not an innovation process but just a one-dimen-
sional Brownian motion that is independent of (X ,U). Let l(t,s) be an arbitrary Volterra-
type bounded measurable function on [0,T]2 (i.e., l(t,s)= 0 for s > t). Though the func-
tion given by (1.5) satisfies this assumption, (1.5) itself is not assumed in this subsection.
We define the processes α = (αt, t ∈ [0,T]) and V = (Vt, t ∈ [0,T]) by (2.6) and (2.2),
respectively. Thus, in particular, α is not assumed to be given by a conditional expectation
of the type (2.1), and V is not necessarily a stationary increment process. We consider the
observation process Y = (Yt, t ∈ [0,T]) satisfying

Yt =
∫ t

0
μ(s)Xsds+Vt, 0≤ t ≤ T , (3.1)

where μ(·) is a bounded measurable deterministic function on [0,T] such that μ(t) �= 0
for 0≤ t ≤ T .

Let �Y = (�Y
t , t ∈ [0,T]) be the augmented filtration generated by Y . For d-dimen-

sional column-vector processes A= (At, t ∈ [0,T]) and C = (Ct, t ∈ [0,T]), we write

Ât = E
[
At |�Y

t

]
, 0≤ t ≤ T ,

ΓAC(t,s)= E[AtC∗s ], 0≤ s≤ t ≤ T ,
(3.2)

where ∗ denotes the transposition. Notice that ΓAC is Rd×d-valued.
Specifically, we consider

Zt =
(
Xt,Ut,αt

)∗
, 0≤ t ≤ T , (3.3)

and define the error matrix P(t,s)∈R3×3 by

P(t,s)= E[Zt(Zs− Ẑs)∗], 0≤ s≤ t ≤ T. (3.4)

The next theorem gives an answer to the filtering problem for the partially observable
process ((Xt,Yt), t ∈ [0,T]). It turns out that this will be useful in the filtering problem
for (1.6) for example.

Theorem 3.1. The filter Ẑ = (Ẑt, t ∈ [0,T]) satisfies the stochastic integral equation

Ẑt =
∫ t

0

{
P(t,s) +D(t,s)

}
a(s)

{
dYs− a∗(s)Ẑsds

}
, 0≤ t ≤ T , (3.5)
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and the error matrix P(t,s) is the unique solution to the following matrix Riccati-type inte-
gral equation such that P(t, t) is symmetric and nonnegative definite for 0≤ t ≤ T :

P(t,s)=−
∫ s

0

{
P(t,r) +D(t,r)

}
a(r)a∗(r)

{
P(s,r) +D(s,r)

}∗
dr +ΓZZ(t,s), 0≤ s≤ t ≤ T ,

(3.6)

where

D(t,s)=

⎛
⎜⎜⎜⎝

0 0 0
0 0 0

l(t,s)
μ(s)

0 0

⎞
⎟⎟⎟⎠ , a(s)=

⎛
⎜⎝
μ(s)

0
−1

⎞
⎟⎠ . (3.7)

Proof. Since (X ,U) is independent of B, (X ,U ,α,Y) forms a Gaussian system. We have

Yt =
∫ t

0

(
μ(s)Xs−αs

)
ds+Bt. (3.8)

Thus we can define the innovation process I = (It, t ∈ [0,T]) by

It = Yt −
∫ t

0

(
μ(s)X̂s− α̂s

)
ds, 0≤ t ≤ T , (3.9)

which is a Brownian motion satisfying �Y =�I (cf. Liptser and Shiryaev [21, Theorem
7.16]). Notice that I can be written as

It =
∫ t

0

(
Zs− Ẑs

)∗
a(s)ds+Bt, 0≤ t ≤ T. (3.10)

By corollary to [21, Theorem 7.16], there exists an R3-valued Volterra-type function
F(t,s)= (F1(t,s),F2(t,s),F3(t,s))∗ on [0,T]2 such that

∫ t
0

∣∣F(t,s)
∣∣2
ds < +∞, 0≤ t ≤ T , (3.11)

Ẑt =
∫ t

0
F(t,s)dIs, 0≤ t ≤ T , (3.12)

where | · | denotes the Euclidean norm.
Now let g(t) = (g1(t),g2(t),g3(t)) be an arbitrary bounded measurable row-vector

function on [0,T]. Then, for t ∈ [0,T],

E
[∫ t

0
g(s)dIs ·

(
Zt − Ẑt

)]= 0. (3.13)
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From this, (3.10), (3.12), and the fact that (X ,U) and B are independent, we have

∫ t
0
g(s)F(t,s)ds= E

[∫ t
0
g(s)dIs ·Zt

]

= E
[∫ t

0
g(s)

{(
Zs− Ẑs

)∗
a(s)ds+dBs

} ·Zt
]

=
∫ t

0
g(s)E

[
Zt
(
Zs− Ẑs

)∗]
a(s)ds+

∫ t
0
g3(s)l(t,s)ds

=
∫ t

0
g(s)P(t,s)a(s)ds+

∫ t
0
g(s)D(t,s)a(s)ds.

(3.14)

Since g(·) is arbitrary, we deduce that F(t,s)= {P(t,s) +D(t,s)}a(s) or

Ẑt =
∫ t

0

{
P(t,s) +D(t,s)

}
a(s)dIs, 0≤ t ≤ T. (3.15)

The SDE (3.5) follows from (3.15) and the representation

It = Yt −
∫ t

0
a∗(s)Ẑsds, 0≤ t ≤ T. (3.16)

Equation (3.6) follows from (3.15) and the equality

P(t,s)= E[ZtZ∗s ]−E[ẐtẐ∗s ]. (3.17)

The matrix P(t, t) is clearly symmetric and nonnegative definite. Finally, the uniqueness
of the solution to (3.6) follows from Proposition 3.2. �

Proposition 3.2. The solution P(t,s) to the matrix integral equation (3.6) such that P(t, t)
is symmetric and nonnegative definite for 0≤ t ≤ T is unique.

Proof. By continuity, there exists a positive constant C = C(T) such that

∥∥ΓZZ(t,s)
∥∥≤ C, 0≤ s≤ t ≤ T , (3.18)

where ‖A‖ := { trace(A∗A)}1/2 for A∈R3×3. Let P be a solution to (3.6) such that P(t, t)
is symmetric and nonnegative definite for t ∈ [0,T]. We put Q(t,s) = P(t,s) +D(t,s).
Then (3.6) with s= t is

ΓZZ(t, t)−P(t, t)=
∫ t

0
Q(t,r)a(r)a∗(r)Q∗(t,r)dr. (3.19)

From this, we have

∫ t
0

∣∣Q(t,r)a(r)
∣∣2
dr =

∫ t
0

trace
{
Q(t,r)a(r)a∗(r)Q∗(t,r)

}
dr

= trace
{
ΓZZ(t, t)−P(t, t)

}≤ trace
{
ΓZZ(t, t)

}
≤√3

∥∥ΓZZ(t, t)
∥∥≤√3C.

(3.20)
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Therefore, ‖P(t,s)‖ is at most

∥∥ΓZZ(t,s)
∥∥+

∫ s
0

∥∥Q(t,r)a(r)a∗(r)Q∗(s,r)
∥∥dr

≤ ∥∥ΓZZ(t,s)
∥∥+

{∫ t
0

∣∣Q(t,r)a(r)
∣∣2
dr
}1/2

·
{∫ s

0

∣∣Q(s,r)a(r)
∣∣2
dr
}1/2

≤ (1 +
√

3
)
C.

(3.21)

Let P1 and P2 be two solutions of (3.6). We define Qi(t,s)= Pi(t,s) +D(t,s) for i= 1,2.
We put Pi(t,s) = 0 for s > t and i = 1,2. Since μ and l are bounded, it follows from the
above estimate that there exists a positive constant K = K(T) satisfying

∥∥a(s)a∗(s)Qi(t,s)
∥∥≤ K , 0≤ s≤ t ≤ T , i= 1,2. (3.22)

It follows that∥∥Q1(t,r)a(r)a∗(r)Q1(s,r)∗ −Q2(t,r)a(r)a∗(r)Q2(s,r)∗
∥∥

≤ ∥∥Q1(t,r)a(r)a∗(r)
{
Q1(s,r)∗ −Q2(s,r)∗

}∥∥
+
∥∥{Q1(t,r)−Q2(t,r)

}
a(r)a∗(r)Q2(s,r)∗

∥∥
≤ 2K sup

0≤t≤T

∥∥Q1(t,r)−Q2(t,r)
∥∥= 2K sup

0≤t≤T

∥∥P1(t,r)−P2(t,r)
∥∥.

(3.23)

From this and (3.6), we obtain

sup
0≤t≤T

∥∥P1(t,s)−P2(t,s)
∥∥≤ 2K

∫ s
0

sup
0≤t≤T

∥∥P1(t,r)−P2(t,r)
∥∥dr. (3.24)

Therefore, Gronwall’s lemma gives

sup
0≤t≤T

∥∥P1(t,s)−P2(t,s)
∥∥= 0, 0≤ s≤ T. (3.25)

Thus the uniqueness follows. �

Remark 3.3. We consider the case in which α= 0 and the state process X is the Ornstein-
Uhlenbeck process satisfying

dXt = θXtdt+ σdWt, 0≤ t ≤ T , X0 = 0, (3.26)

where θ,σ �= 0 and (Wt, t ∈ [0,T]) is a one-dimensional Brownian motion that is inde-
pendent of B. We also assume that μ(·)= μ, a constant. Then Xt = σ

∫ t
0 e

θ(t−u)dWu and

ΓXX(t,s)= σ2

2θ

{
eθ(t+s)− eθ(t−s)}, 0≤ s≤ t ≤ T. (3.27)

By Theorem 3.1, we have

X̂t =
∫ t

0
μPXX(t,s)

{
dYs−μX̂sds

}
, (3.28)

PXX(t,s)= ΓXX(t,s)−
∫ s

0
μ2PXX(t,r)PXX(s,r)dr, (3.29)
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where PXX(t,s)= E[Xt(Xs− X̂s)] for 0≤ s≤ t ≤ T . Let (�t, t ∈ [0,T]) be the P-augmen-
tation of the filtration generated by ((Wt,Bt), t ∈ [0,T]). Then PXX(t,s) is

E
[
Xt
(
Xs− X̂s

)]= E[E[Xt |�(s)
](
Xs− X̂s

)]

= E[eθ(t−s)Xs
(
Xs− X̂s

)]= eθ(t−s)γ(s)
(3.30)

with γ(s)= E[Xs(Xs− X̂s)]. Thus (3.28) is reduced to

dX̂t =
{
θ−μ2γ(t)

}
X̂tdt+μγ(t)dYt. (3.31)

Differentiating (3.29) in s= t, we get

dγ(t)
dt

= σ2 + 2θγ(t)−μ2γ(t)2. (3.32)

Equations (3.31) and (3.32) are the well-known Kalman-Bucy filtering equations (see
Kalman and Bucy [13], Bucy and Joseph [4], Davis [5], Jazwinski [11], and Liptser and
Shiryaev [21]).

3.2. Linear systems with memory. We turn to the partially observable system governed
by (1.6).

Let (W
( j)
t , t ∈ R), j = 1,2, be two independent Brownian motions. For j = 1,2, let

V ( j) = (V
( j)
t , t ∈ [0,T]) be the noise process described by (1.1) with Wt =W

( j)
t , t ∈ R,

and (p,q)= (pj ,qj) satisfying (1.2). ThenV (1) andV (2) are independent. Let ((Xt,Yt), t ∈
[0,T]) be the two-dimensional process satisfying (1.6), where the coefficients θ,σ ,μ∈R
with μ �= 0 are known constants and the initial value ρ is a centered Gaussian random
variable that is independent of (V (1),V (2)). The processes X and Y represent the state and
the observation, respectively.

By Theorem 2.1, we have, for j = 1,2 and t ∈ [0,T],

α
( j)
t =

∫ t
0
l j(t,s)dB

( j)
s , V

( j)
t = B( j)

t −
∫ t

0
α

( j)
s ds, (3.33)

where B( j) = (B
( j)
t , t ∈ [0,T]), j = 1,2, are two independent Brownian motions and

l j(t,s)= pje
−(pj+qj )(t−s)

{
1− 2pjqj(

2qj + pj
)2
e2qj s− p2

j

}
, 0≤ s≤ t ≤ T. (3.34)

We put l j(t)= l j(t, t) for j = 1,2, that is,

l j(t)= pj

{
1− 2pjqj(

2qj + pj
)2
e2qj s− p2

j

}
, 0≤ t ≤ T. (3.35)

It holds that l j(t,s)= e−r j (t−s)l j(s) with

r j = pj + qj , j = 1,2. (3.36)
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We denote by � = (�t, t ∈ [0,T]) the P-augmentation of the filtration (σ(ρ, (V (1)
s ,

V (2)
s )s∈[0,t]), t ∈ [0,T]) generated by the initial value X0 = ρ and the noise process (V (1),

V (2)).

Lemma 3.4. It holds that

E
[
Xt |�s

]= eθ(t−s)Xs− σb(t− s)α(1)
s , 0≤ s≤ t ≤ T , (3.37)

where

b(t)=

⎧⎪⎪⎨
⎪⎪⎩

eθt − e−r1t

θ + r1
, θ + r1 �= 0,

teθt, θ + r1 = 0.

(3.38)

Proof. For t ∈ [0,T],
∫ t

0 e
θ(t−s)α(1)

s ds is

∫ t
0
l1(u)

{∫ t
u
eθ(t−s)e−r1(s−u)ds

}
dB(1)

u =
∫ t

0
b(t−u)l1(u)dB(1)

u . (3.39)

Since Xt = eθtX0 + σ
∫ t

0 e
θ(t−u)dV (1)

u or

Xt = eθtX0 + σ
∫ t

0
eθ(t−u)dB(1)

u − σ
∫ t

0
eθ(t−u)α(1)

u du, (3.40)

E[Xt|�s] with s≤ t is equal to

eθtX0 + σeθ(t−s)
∫ s

0
eθ(s−u)dB(1)

u − σ
∫ s

0
b(t−u)l1(u)dB(1)

u

= eθ(t−s)Xs− σ
∫ s

0

{
b(t−u)− eθ(t−s)b(s−u)

}
l1(u)dB(1)

u .
(3.41)

However, by elementary calculation, we have

b(t−u)− eθ(t−s)b(s−u)= b(t− s)e−r1(s−u), 0≤ u≤ s≤ t. (3.42)

Thus the lemma follows. �

We put, for 0≤ t ≤ T ,

F =
⎛
⎜⎝
−θ σ 0
0 r1 0
0 0 r2

⎞
⎟⎠ , D(t)=

⎛
⎜⎝

0 0 0
0 0 0

μ−1l2(t) 0 0

⎞
⎟⎠ , a=

⎛
⎜⎝
μ
0
−1

⎞
⎟⎠ ,

G(t)=
⎛
⎜⎝

σ2 σl1(t) 0
σl1(t) l21(t) 0

0 0 0

⎞
⎟⎠ , H(t)=

⎛
⎜⎝
−θ σ 0
0 r1 0

μl2(t) 0 r2− l2(t)

⎞
⎟⎠ .

(3.43)

We also put

Zt =
(
Xt,α

(1)
t ,α(2)

t

)∗
, 0≤ t ≤ T. (3.44)
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Recall that ΓZZ(0)= E[Z0Z
∗
0 ] and that

Ẑt = E
[
Zt |�Y

t

]
, 0≤ t ≤ T. (3.45)

We define the error matrix P(t)∈R3×3 by

P(t)= E[Zt(Zt − Ẑt)∗], 0≤ t ≤ T. (3.46)

Here is the solution to the optimal filtering problem for (1.6).

Theorem 3.5. The filter Ẑ = (Ẑt, t ∈ [0,T]) satisfies the stochastic differential equation

dẐt =−
{
F +

(
P(t) +D(t)

)
aa∗

}
Ẑtdt+

(
P(t) +D(t)

)
adYt, 0≤ t ≤ T , (3.47)

with Ẑ0 = (0,0,0)∗, and P(·) follows the matrix Riccati equation

dP(t)
dt

=G(t)−H(t)P(t)−P(t)H(t)∗ −P(t)aa∗P(t), 0≤ t ≤ T , (3.48)

with Pi j(0)= δi1δj1E[ρ2] for i, j = 1,2,3.

Proof. For 0≤ s≤ t ≤ T , we put

P(t,s)= E[Zt(Zs− Ẑs)∗]. (3.49)

Then we have P(t)= P(t, t). We also put, for 0≤ s≤ t ≤ T ,

D(t,s)= e−r2(t−s)D(s),

Q(t,s)= P(t,s) +D(t,s), Q(s)=Q(s,s)= P(s) +D(s).
(3.50)

By

P(t,s)= E[E[Zt |�(s)
] · (Zs− Ẑs)∗] (3.51)

and Lemma 3.4, we have P(t,s)=M(t− s)P(s), where

M(t)=
⎛
⎜⎝
eθt −σb(t) 0
0 e−r1t 0
0 0 e−r2t

⎞
⎟⎠ (3.52)

with b(·) as in Lemma 3.4. We also see that D(t,s)=M(t− s)D(s). Combining, Q(t,s)=
M(t− s)Q(s). However, M(t)= e−tF since dM(t)/dt =−FM(t) and M(0) is the unit ma-
trix. Thus we obtain

Q(t,s)= e−(t−s)FQ(s). (3.53)



A. Inoue et al. 13

From (3.53) and Theorem 3.1 with U = α(1) and α= α(2), it follows that

Ẑt =
∫ t

0
e−(t−s)FQ(s)a

{
dYs− a∗Ẑsds

}
, (3.54)

P(t)= ΓZZ(t)−
∫ t

0
e−(t−u)FQ(u)aa∗Q∗(u)e−(t−u)F∗du. (3.55)

The SDE (3.47) follows easily from (3.54).
Differentiating both sides of (3.55), we get

Ṗ = Γ̇ZZ +F
(
ΓZZ −P

)
+
(
ΓZZ −P

)
F∗ −Qaa∗Q∗

= Γ̇ZZ +FΓZZ +ΓZZF
∗ −Daa∗D−HP−PH∗ −Paa∗P. (3.56)

Since dZt =−FZtdt+dRt with

Rt =
(
σB(1)

t ,
∫ t

0
l1(s)dB(1)

s ,
∫ t

0
l2(s)dB(2)

s

)∗
, (3.57)

we see by integration by parts that ZtZ∗t −Z0Z
∗
0 is equal to

∫ t
0
ZsdZ

∗
s +

∫ t
0
dZsZ

∗
s +E

[
RtR

∗
t

]
. (3.58)

It follows that ΓZZ(t)−ΓZZ(0) is equal to

E
[∫ t

0
ZsdZ

∗
s

]
+E

[∫ t
0
dZsZ

∗
s

]
+E

[
RtR

∗
t

]=−
∫ t

0
ΓZZ(s)F∗ds−

∫ t
0
FΓZZ(s)ds+E

[
RtR

∗
t

]
.

(3.59)

Thus

ΓZZ(t) +
∫ t

0
FΓZZ(s)ds+

∫ t
0
ΓZZ(s)F∗ds−ΓZZ(0)

= E[RtR∗t ]=
∫ t

0

{
G(s) +D(s)aa∗D∗(s)

}
ds.

(3.60)

This and (3.56) yield (3.48). �

Remark 3.6. Suppose that, as in Section 3.1, the processes α( j) and V ( j), j = 1,2, are de-
fined by (3.33) with arbitrary Volterra-type bounded measurable functions l j(t,s) and
Brownian motions B( j). If we further assume that l j(t,s), j = 1,2, are of the form l j(t,s)=
ecj (t−s)gj(s), then we can easily extend Theorem 3.5 to this setting. Notice that, in this case,
the noise processes V (1) and V (2) are not necessarily stationary increment processes.

Corollary 3.7. Assume that p2 = 0, that is, V (2)
t =W (2)

t , 0 ≤ t ≤ T . For t ∈ [0,T], let

Zt = (Xt,α
(1)
t )∗ and P(t) = E[Zt(Zt − Ẑt)∗] ∈ R2×2. Then the filter Ẑ = (Ẑt, t ∈ [0,T])
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and the error matrix P(·) satisfy, respectively,

dẐt =−
{
F +P(t)aa∗

}
Ẑtdt+P(t)adYt, 0≤ t ≤ T ,

dP(t)
dt

=G(t)−FP(t)−P(t)F∗ −P(t)aa∗P(t), 0≤ t ≤ T ,
(3.61)

with Ẑ0 = (0,0)∗ and Pi j(0)= δi1δj1E[ρ2], where

F =
(
−θ σ
0 r1

)
, a=

(
μ
0

)
, G(t)=

(
σ2 σl1(t)

σl1(t) l1(t)2

)
. (3.62)

Corollary 3.8. Assume that p1 = 0, that is, V (1)
t =W (1)

t , 0 ≤ t ≤ T . For t ∈ [0,T], let

Zt = (Xt,α
(2)
t )∗ and P(t) = E[Zt(Zt − Ẑt)∗] ∈ R2×2. Then the filter Ẑ = (Ẑt, t ∈ [0,T])

and the error matrix P(·) satisfy, respectively,

dẐt =−
{
F +

(
P(t) +D(t)

)
aa∗

}
Ẑtdt+

(
P(t) +D(t)

)
adYt, 0≤ t ≤ T ,

dP(t)
dt

=G−H(t)P(t)−P(t)H(t)∗ −P(t)aa∗P(t), 0≤ t ≤ T ,
(3.63)

with Ẑ0 = (0,0)∗ and Pi j(0)= δi1δj1E[ρ2], where

F =
(
−θ 0
0 r2

)
, D(t)=

(
0 0

μ−1l2(t) 0

)
, a=

(
μ
−1

)
,

G=
(
σ2 0
0 0

)
, H(t)=

( −θ 0
μl2(t) r2− l2(t)

)
.

(3.64)

Example 3.9. We consider the estimation problem of the value of a signal ρ from the
observation process Y = (Yt, t ∈ [0,T]) given by

dYt = ρdt+dVt, 0≤ t ≤ T , Y0 = 0, (3.65)

where V = (Vt, t ∈ [0,T]) and α= (αt, t ∈ [0,T]) are as in Section 2. We assume that ρ
is a Gaussian random variable with mean zero and variance v. This is the special case θ =
σ = 0, μ= 1 of the setting of Corollary 3.8. Let r = p+ q and l(·) be as above. LetH(t) and
a be as in Corollary 3.8 with μ= 1 and θ = 0. We define P(t)= (Pi j(t))1≤i, j≤2 ∈ R2×2 by

P(t) = E[Z∗t (Zt − Ẑt)] with Zt = (ρ,αt)∗. Then, by Corollary 3.8, the filter Ẑt = (ρ̂t, α̂t)∗

satisfies, for t ∈ [0,T],

dρ̂(t)=−(P11(t)−P12(t)
)(
ρ̂t − α̂t

)
dt+

(
P11(t)−P12(t)

)
dYt,

dα̂t =
{(
P21(t)−P22(t) + l(t)− r)α̂t − (P21(t)−P22(t) + l(t)

)
ρ̂t
}
dt

+
(
P21(t)−P22(t) + l(t)

)
dYt

(3.66)

with (ρ̂0, α̂0)= (0,0), and the error matrix P(·) follows

dP(t)
dt

=−H(t)P(t)−P(t)H(t)∗ −P(t)aa∗P(t), 0≤ t ≤ T , (3.67)
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with Pi j(0) = δi1δj1v. By the linearization method as described in Bucy and Joseph [4,
Chapter 5], we can solve the equation for P(·) to obtain

P(t)= v

1 + vη(t) + vξ(t)φ(t)

⎛
⎜⎜⎜⎜⎝

1 −φ(t)
ψ(t)

−φ(t)
ψ(t)

vφ(t)2

ψ(t)2

⎞
⎟⎟⎟⎟⎠ , (3.68)

where

ψ(t)= exp
{∫ t

0

(
r− l(s))ds

}
, φ(t)=

∫ t
0
l(s)ψ(s)ds,

ξ(t)=
∫ t

0

ψ(s) +φ(s)
ψ(s)2

ds, η(t)=
∫ t

0

{
1− l(s)ψ(s)ξ(s) +

φ(s)
ψ(s)

}
ds.

(3.69)

The analytical forms of ψ(·), φ(·), ξ(·), and η(·) can be derived. We omit the details.

4. Application to finance

In this section, we apply the results in the previous section to the problem of expected
utility maximization for an investor with partial observations.

Let the processes V ( j) = (V ( j)(t), t ∈ [0,T]), α( j) = (α
( j)
t , t ∈ [0,T]), j = 1,2, be as in

Section 3. In particular, V (1) and V (2) are independent. We consider the financial market
consisting of a share of the money market with price S0

t at time t ∈ [0,T] and a stock with
price St at time t ∈ [0,T]. The stock price process S= (St, t ∈ [0,T]) is governed by the
stochastic differential equation

dSt = St
(
Utdt+ηdV (2)

t

)
, 0≤ t ≤ T , S0 = s0, (4.1)

where s0 and η are positive constants and U = (Ut, t ∈ [0,T]) is a Gaussian process fol-
lowing

dUt =
(
δ + θUt

)
dt+ σ dV (1)

t , 0≤ t ≤ T , U0 = ρ. (4.2)

The parameters θ, δ, and σ are real constants, and ρ is a Gaussian random variable that is
independent of (V (1),V (2)). For simplicity, we assume that

S0
t = 1, 0≤ t ≤ T , η = 1, δ = 0, E[ρ]= 0. (4.3)

Let �= (�t, t ∈ [0,T]) be the P-augmentation of the filtration generated by the pro-

cess ((V (1)
t ,V (2)

t ), t ∈ [0,T]) and the random variable ρ. Then U is �-adapted but not
�S-adapted; recall from Section 2 that �S is the augmented filtration generated by the
process S. Suppose that we can observe neither the disturbance process V (2) nor the drift
process U but only the price process S. Thus only �S-adapted processes are observable.

In many references such as Detemple [6], Dothan and Feldman [7], and Gennotte
[8], the partially observable model described by (4.1) and (4.2) with V ( j)’s replaced by
Brownian motions, that is, V ( j) = B( j), is studied.
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We consider the following expected logarithmic utility maximization from terminal
wealth: for given initial capital x ∈ (0,∞),

maximize E
[

log
(
Xx,π
T

)]
over all π ∈�(x), (4.4)

where

�(x)=

⎧⎪⎪⎨
⎪⎪⎩π :

π = (πt, t ∈ [0,T]
)

is R-valued, �S-progressively

measurable,
∫ T

0
π2
t dt <∞, Xx,π

t ≥ 0, t ∈ [0,T], a.s.

⎫⎪⎪⎬
⎪⎪⎭ , (4.5)

Xx,π
t = x+

∫ t
0

πu
Su
dSu, 0≤ t ≤ T. (4.6)

The value πt is the dollar amount invested in the stock at time t, whence πt/St is the
number of units of stock held at time t. The process Xx,π = (Xx,π

t , t ∈ [0,T]) is the wealth
process associated with the self-financing portfolio determined uniquely by π.

An analog of the problem (4.4) for full observations is solved by Anh et al. [2]. For
related work, see Karatzas and Zhao [15], Lakner [19, 20], and the references therein. We
solve the problem (4.4) by combining the results above on filtering and the martingale
method as described by Karatzas and Shreve [14].

Solving (4.1), we obtain

St = s0 exp
(
Yt − 1

2
t
)

, 0≤ t ≤ T , (4.7)

where the process Y = (Yt, t ∈ [0,T]) is given by

Yt =
∫ t

0
Usds+V (2)

t = B(2)
t +

∫ t
0

(
Us−α(2)

s

)
ds, 0≤ t ≤ T. (4.8)

From (4.7), we see that �S =�Y . We regard Y as the observation process. As in the pre-
vious sections, for a d-dimensional column-vector process A= (At, t ∈ [0,T]), we write
Ât = E[At|�Y

t ]. In particular, α̂(2)
t = E[α(2)

t |�Y
t ]. Let I = (It, t ∈ [0,T]) be the innovation

process associated with Y that is given by

It = Yt −
∫ t

0

(
Ûs− α̂(2)

s

)
ds, 0≤ t ≤ T. (4.9)

The innovation process I is an �Y -Brownian motion satisfying �S =�Y =�I (see, e.g.,
Liptser and Shiryaev [21, Theorem 7.16]).

Let L= (Lt, t ∈ [0,T]) be the exponential �-martingale given by

Lt = exp
{
−
∫ t

0

(
Us−α(2)

s

)
dB(2)

s − 1
2

∫ t
0

(
Us−α(2)

s

)2
ds
}

= exp
{
−
∫ t

0

(
Us−α(2)

s

)
dYs +

1
2

∫ t
0

(
Us−α(2)

s

)2
ds
}
.

(4.10)
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We find that, for t ∈ [0,T],

L̂t = exp
{
−
∫ t

0

(
Ûs− α̂(2)

s

)
dYs +

1
2

∫ t
0

(
Ûs− α̂(2)

s

)2
ds
}

= exp
{
−
∫ t

0

(
Ûs− α̂(2)

s

)
dIs− 1

2

∫ t
0

(
Ûs− α̂(2)

s

)2
ds
} (4.11)

(see, e.g., Liptser and Shiryaev [21, Chapter 7]). The process L̂ = (L̂t, t ∈ [0,T]) is an
�Y -martingale.

For x ∈ (0,∞) and π ∈�(x), we see from the Itô formula that the process (L̂tX
x,π
t , t ∈

[0,T]) is a local �Y -martingale, whence an �Y -supermartingale since Xx,π is nonnega-
tive. It follows that, for x ∈ (0,∞), π ∈�(x), and y ∈ (0,∞),

E
[

log
(
Xx,π
T

)]≤ E[ log
(
Xx,π
T

)− yL̂TX
x,π
T

]
+ yx

≤ E
[

log

{
1(
yL̂T

)
}
− 1

]
+ yx,

(4.12)

where, in the second inequality, we have used

log(z)− yz ≤ log
1
y
− 1, y,z ∈ (0,∞). (4.13)

The equalities in (4.12) hold if and only if

Xx,π
T = x

L̂T
a.s. (4.14)

Thus the portfolio process π satisfying (4.14) is optimal.
Put

π0
t = x

(
Ût − α̂(2)

t

)
L̂t

, 0≤ t ≤ T. (4.15)

Since x/L̂0 = x and

d
x

L̂t
= x

(
Ût − α̂(2)

t

)
L̂t

dYt = π0
t

St
dSt, (4.16)

we see from (4.6) that the process π0 satisfies (4.14), whence it is the desired optimal
portfolio process. It also satisfies

π0
t

Xx,π0

t

= Ût − α̂(2)
t , 0≤ t ≤ T. (4.17)

We put

a= (1,0,−1)∗, Zt =
(
Ut,α

(1)
t ,α(2)

t

)∗
, 0≤ t ≤ T. (4.18)
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We define the error matrix P(t)∈R3×3 by E[Zt(Zt − Ẑt)∗]. Combining the results above
with Theorem 3.5 which describes the dynamics of Û and α̂(2), we obtain the next theo-
rem.

Theorem 4.1. The optimal portfolio process π0 = (π0
t , t ∈ [0,T]) for the problem (4.4) is

given by

π0
t =

xa∗Ẑt
L̂t

, 0≤ t ≤ T , (4.19)

and satisfies

Xx,π0

T = x

L̂T
,

π0
t

Xx,π0

t

= a∗Ẑt, 0≤ t ≤ T. (4.20)

The filter Ẑ = (Ẑt, t ∈ [0,T]) follows

dẐt =−
{
F +

(
P(t) +D(t)

)
aa∗

}
Ẑtdt+

(
P(t) +D(t)

)
adYt, 0≤ t ≤ T , (4.21)

with Ẑ0 = (0,0,0)∗, and the error matrix P(·) satisfies the matrix Riccati equation

dP(t)
dt

=G(t)−H(t)P(t)−P(t)H(t)∗ −P(t)aa∗P(t), 0≤ t ≤ T , (4.22)

with Pi j(0)= δi1δj1E[ρ2] (i, j = 1,2,3), where F,D(t),G(t), andH(t) are as in Theorem 3.5
with μ= 1.

5. Parameter estimation

Let V = (Vt, t ∈ [0,T]) be the process given by (1.1). We can estimate the values of the
parameters p and q there from given data of V by a least-squares approach (cf. Anh et
al. [3]). In fact, since V is a stationary increment process, the variance of Vt −Vs is a
function in t− s. To be precise,

1
t− sVar

(
Vt −Vs

)=U(t− s), 0≤ s < t, (5.1)

where the function U(t)=U(t; p,q) is given by

U(t)= q2

(p+ q)2
+
p(2q+ p)
(p+ q)3

·
(
1− e−(p+q)t

)
t

, t > 0. (5.2)

Suppose that for t j = jΔt, j = 1, . . . ,N , the value of Vtj is vj . For simplicity, we assume
that Δt = 1. An unbiased estimate of U(t j) is given by

uj = 1
j(N − j− 1)

N− j∑
i=1

(
vi+ j − vi−mj

)2
, (5.3)
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Figure 5.1. Plotting of the function v(t), the sample data, and the fitted function v0(t).

where mj is the mean of vi+ j − vi’s:

mj = 1
N − j

N− j∑
i=1

(
vi+ j − vi

)
. (5.4)

Fitting {U(t j ; p,q)} to {uj} by least squares, we obtain the desired estimated values of p
and q.

For example, we generate a sample {v1,v2, . . . ,v1000} for V with (p,q)= (0.5,0.3) by a
Monte Carlo simulation. We use this data to numerically calculate the values p0 and q0 of
p and q, respectively, that minimize

30∑
j=1

(
U
(
t j ; p,q

)−uj)2
. (5.5)

It turns out that p0 = 0.5049 and q0 = 0.2915. In Figure 5.1, we plot {U(t j ; p,q)} (theo-
retical), {uj} (sample), and {U(t j ; p0,q0)} (fitted). It is seen that the fitted curve follows
the theoretical curve very well.

We extend the approach above to that for the estimation of the parameters p, q, θ, and
σ in

dXt =−θXtdt+ σdVt, 0≤ t ≤ T , X0 = ρ, (5.6)

where θ,σ ∈ (0,∞), the process V = (Vt, t ∈ [0,T]) is given by (1.1) as above, and the
initial value ρ is independent of V and satisfies E[ρ2] <∞. The solution X = (Xt, t ∈
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[0,T]) is the following Ornstein-Uhlenbeck-type process with memory:

Xt = e−θtρ+
∫ t

0
e−θ(t−u)dVu, 0≤ t ≤ T. (5.7)

Put

ϕ(t) :=
∫ t

0
e(θ−p−q)udu, 0≤ t ≤ T. (5.8)

Proposition 5.1. It holds that

1
t− sE

[(
Xt − e−θ(t−s)Xs

)2
]
=H(t− s), 0≤ s < t ≤ T , (5.9)

where, for 0 < t ≤ T , the function H(t)=H(t; p,q,θ,σ) is given by

H(t)= σ2
{

1− p(2q+ p)
(p+ q)(θ + p+ q)

}
1− e−2θt

2θt
+
σ2p(2q+ p)e−2θtϕ(t)

(p+ q)(θ + p+ q)t
. (5.10)

Proof. By (5.7), the left-hand side of (5.9) is equal to

σ2e−2θt

t− s E
[(∫ t

s
eθudVu

)2]
. (5.11)

We put c(u)= pe−(p+q)uI(0,∞)(u) for u∈R. By Anh et al. [2, Proposition 3.2],
∫ t
s e

θudVu is
given by

∫ t
s
eθudWu−

∫∞
−∞

(∫ t
s
eθrc(r−u)dr

)
dWu

=
∫ t
s

(
eθu−

∫ t
u
eθrc(r−u)dr

)
dWu−

∫ s
−∞

(∫ t
s
eθrc(r−u)dr

)
dWu.

(5.12)

Thus E[(
∫ t
s e

θudVu)2] is equal to

∫ t
s

(
e2θu−

∫ t
u
eθrc(r−u)dr

)2

du+
∫ s
−∞

(∫ t
s
eθrc(r−u)dr

)2

du. (5.13)

By integration by parts and the equalities

∫ t
u
eθrc(r−u)dr = pe(p+q)u{ϕ(t)−ϕ(u)

}
,

e−(θ−p−q)s{ϕ(t)−ϕ(s)
}= ϕ(t− s),

(5.14)

we obtain the desired result. �

Suppose that for t j = jΔt, j = 1, . . . ,N , the value of Xtj is xj . We assume that Δt = 1 for
simplicity. The estimation hj(θ) that corresponds to H(t j ; p,q,θ,σ) is given by

hj(θ)= 1
j(N − j− 1)

N− j∑
i=1

(
xi+ j − e−θ jxi−mj(θ)

)2
, (5.15)
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Figure 5.2. Plotting of the function h(t), the sample data h̄(t) with estimated θ, and the fitted function
h0(t).

where mj(θ) is the mean of xi+ j − e−θ jxi, i= 1, . . . ,N − j:

mj(θ)= 1
N − j

N− j∑
i=1

(
xi+ j − e−θ jxi

)
. (5.16)

Fitting {H(t j ; p,q,θ,σ)− hj(θ)} to {0} by least squares, we obtain the desired estimated
values of p, q, θ, and σ .

For example, we produce sample values x1,x2, . . . ,x1000 for X with

(p,q,θ,σ)= (0.2,1.5,0.8,1.0) (5.17)

by a Monte Carlo simulation. We use this data to numerically calculate the values p0, q0,
θ0, and σ0 of p, q, θ, and σ , respectively, that minimize

30∑
j=1

(
H
(
t j ; p,q,θ,σ

)−hj(θ)
)2
. (5.18)

It turns out that

(
p0,q0,θ0,σ0

)= (0.1910,1.5382,0.8354,1.0184). (5.19)

In Figure 5.2, we plot {H(t j ; p,q,θ,σ)} (theoretical), {hj(θ0)} (sample with estimated
θ), and {H(t j ; p0,q0,θ0,σ0)} (fitted). It is seen that the fitted curve follows closely the
theoretical curve.
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6. Simulation

As we have seen, the process V = (Vt, t ∈ [0,T]) described by (1.1) has both stationary
increments and a simple semimartingale representation as Brownian motion does, and
it reduces to Brownian motion when p = 0. In this sense, we may see V as a generalized
Brownian motion. Since V is non-Markovian unless p = 0, we have now a wide choice
for designing models driven by either white or colored noise.

In this section, we compare the performance of the optimal filter with the Kalman-
Bucy filter in the presence of colored noise. We consider the partially observable process
((Xt,Yt), t ∈ [0,T]) governed by (1.6) with ρ = 0. Suppose that an engineer uses the
conventional Markovian model

dZt = θZtdt+ σdB(1)
t , 0≤ t ≤ T , Z0 = 0, (6.1)

to describe the non-Markovian system process X = (Xt, t ∈ [0,T]). Then, he will be led
to use the Kalman-Bucy filter X̃ = (X̃t, t ∈ [0,T]) governed by

dX̃t =
(
θ−μ2γ(t)

)
X̃tdt+μγ(t)dYt, 0≤ t ≤ T , X̃0 = 0, (6.2)

where γ(·) is the solution to

dγ(t)
dt

= σ2 + 2θγ(t)−μ2γ(t)2, 0≤ t ≤ T , γ(0)= 0 (6.3)

(see (3.31) and (3.32)), instead of the right optimal filter X̂ = (X̂t, t ∈ [0,T]) as described
by Theorem 3.5.

We adopt the following parameters:

T = 10, Δt = 0.01, N = T

Δt
= 1000,

ti = iΔt (i= 1, . . . ,N),

σ = 1, θ =−2, μ= 5.

(6.4)

Let n∈ {1,2, . . . ,100}. For the nth run of Monte Carlo simulation, we sample x(n)(t1), . . . ,
x(n)(tN ) for Xt1 , . . . ,XtN , respectively. Let x̃(n)(·) and x̂(n)(·), n= 1, . . . ,100, be the Kalman-
Bucy filter and the optimal filter, respectively. For u(n) = x̂(n) or x̃(n), we consider the av-
erage error norm

AEN :=

√√√√√ 1
100N

N∑
i=1

100∑
n=1

(
x(n)

(
ti
)−u(n)

(
ti
))2

, (6.5)

and the average error

AE
(
ti
)

:=
√√√√ 1

100

100∑
n=1

(
x(n)

(
ti
)−u(n)

(
ti
))2

, i= 1, . . . ,N. (6.6)
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Table 6.1. Comparison of AEN’s.

Θ Optimal filter Kalman-Bucy filter

Θ1 0.5663 0.5667
Θ2 0.4620 0.5756
Θ3 0.5136 0.5167
Θ4 0.4487 0.5196
Θ5 0.4294 0.4524
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0 1 2 3 4 5 6 7 8 9 10

Optimal filter
Kalman-Bucy filter

Figure 6.1. Plotting of AE(·) for the optimal and Kalman-Bucy filters with noise parameter Θ=Θ2.

In Table 6.1, we show the resulting AEN’s of {x̂(n)} and {x̃(n)} for the following five
sets of Θ= (p1,q1, p2,q2):

Θ1 = (0.2,0.3,0.5,0.2),

Θ2 = (5.2,0.3,−0.5,0.6),

Θ3 = (0.0,1.0,5.8,0.7),

Θ4 = (5.4,0.8,0.0,1.0),

Θ5 = (5.1,2.3,4.9,1.3).

(6.7)

We see that there are clear differences between the two filters in the cases Θ2 and Θ4. We
notice that, in these two cases, p1 is large than the parameters p2 and q2. In Figure 6.1,
we compare the graphs of AE(·) for the two filters in the case Θ=Θ2. It is seen that the
error of the optimal filter is consistently smaller than that of the Kalman-Bucy filter.
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7. Possible extension

The two-parameter family of processes V described by (1.1) are those with short mem-
ory. A natural problem is to extend the results in the present paper to a more gen-
eral setting where, as in [1], the driving noise process V = (Vt, t ∈ R) is a continuous
Gaussian process with stationary increments satisfying V0 = 0 and one of the following
continuous-time AR(∞)-type equations:

dVt

dt
+
∫ t
−∞

a(t− s)dVs

ds
ds= dWt

dt
, t ∈R, (7.1)

or

dVt

dt
−
∫ t
−∞

a(t− s)dVs

ds
ds= dWt

dt
, t ∈R, (7.2)

where W = (Wt, t ∈ R) is a Brownian motion and dVt/dt and dWt/dt are the deriva-
tives of V and W , respectively, in the random distribution sense. The kernel a(·) is a
nonnegative decreasing function that satisfies some suitable conditions. More precisely,
using the notation of Anh and Inoue [1], we assume that a(·) satisfies (S2) for (7.1), or
either (S1) or (L) for (7.2). The assumptions (S1) and (S2) correspond to the classes of V
with short memory, while (L) to the class of V with long memory. The process V has an
MA(∞)-type representation of the form

Vt =Wt −
∫ t

0

(∫ s
−∞

c(s−u)dWu

)
ds, t ∈R, (7.3)

for (7.1) or

Vt =Wt +
∫ t

0

(∫ s
−∞

c(s−u)dWu

)
ds, t ∈R, (7.4)

for (7.2). For example, if a(t)= pe−qt for t > 0 with p,q > 0 in (7.1), then the kernel c(·)
in (7.3) is given by c(t)= pe−(p+q)t for t > 0, and (7.3) reduces to (1.1) for these p and q.

For the stationary increment process V in the short memory case (7.1) with (S2) or
(7.2) with (S1), we can still derive a representation of the form (2.2) with (2.6), in which
the kernel l(t,s) is given by an infinite series made up of c(·) and a(·). In the long memory
case (7.2) with (L), it is also possible to derive the same type of representation for V if we
assume the additional condition

a(t)∼ t−(p+1)�(t)p, t −→∞, (7.5)

or

c(t)∼ t−(1−p)

�(t)
· sin(pπ)

π
, t −→∞, (7.6)

where 0 < p < 1/2 and �(·) is a slowly varying function at infinity. Notice that (7.5) and
(7.6) are equivalent (see Anh and Inoue [1, Lemma 2.8]). It is expected that results anal-
ogous to those of the present paper hold, especially, for V with long memory, using the
representation (2.2) with (2.6) thus obtained. This work will be reported elsewhere.
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