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By means of the Yosida approximate of an accretive operator, we extended two recent
results by Chidume and Chidume and Zegeye (2003) to set-valued operators, and we
made the connection with two recent convergence results obtained by Benavides et al. for
a relaxed version of the so-called proximal point algorithm.
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1. Introduction and preliminaries

In this paper we deal with methods for finding zeroes of set-valued operators A in Banach
spaces. The first aim of this note is to show that the Yosida regularization may be com-
bined with the schemes in [1, 2] keeping the strong convergence properties of the iterates
and extending to set-valued operators two recent results by Chidume [1] and Chidume
and Zegeye [2]. The second goal of the note is to make the connection with the iterative
method studied in Benavides et al. [3]. This permits to obtain two convergence results
under weaker conditions on the underlying operator.

Let X be a real Banach space, a (possibly multivalued) operator A with domain D(A)
and rangeR(A) inX is called accretive if, for each xi ∈D(A) and yi ∈A(xi) (i= 1,2), there
is j ∈ J(x1− x2) such that 〈y1− y2, j〉 ≥ 0, where J stands for the normalized duality map
on X , namely,

J(x)=
{
x∗ ∈ X∗ :

〈
x,x∗

〉= |x|2 = ∣∣x∗∣∣2
}

, x ∈ X. (1.1)

An accretive operator A in X is said to be m-accretive if R(I + λA) = X for all λ > 0. A
is said to be φ-strongly accretive, if there is a strictly increasing function φ : R∗+ → R∗+
which satisfies φ(0)= 0 and such that for each xi ∈ D(A) and yi ∈ A(xi) (i= 1,2), there
is j ∈ J(x1− x2) such that 〈y1− y2, j〉 ≥ φ(|x1− x2|)|x1− x2|, and it is strongly accretive

Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis
Volume 2006, Article ID 56704, Pages 1–6
DOI 10.1155/JAMSA/2006/56704

http://dx.doi.org/10.1155/S1048953306567048


2 Zeroes of accretive operators

if for each xi ∈D(A) and yi ∈ A(xi) (i= 1,2), there is j ∈ J(x1− x2) and a constant α > 0
such that 〈y1− y2, j〉 ≥ α|x1− x2|2.

Throughout the paper we always assume that A is an m-accretive operator such that
0 ∈ R(A) or in other words S := A−1(0) �= ∅ and we work with the normalized duality
map for sake of simplicity and for a clearer presentation of our results.

It is well known that for each x ∈ D(A) and λ > 0 there is a unique z ∈ X such that
x ∈ (I + λA)z. The single-valued operator JAλ := (I + λA)−1 is called the resolvent of A of
parameter λ. It is a nonexpansive mapping from D(A) to D(A) and is related with its
Yosida approximate, Aλ(x) := (x− JAλ (x))/λ, by the relation

Aλ(x)∈ A
(
JAλ (x)

) ∀x ∈D(A). (1.2)

Furthermore, it is clear that x ∈ S := A−1(0)⇔ x = JAλ (x)⇔ 0= Aλ(x).
Let us finally recall that the inverse A−1 of A is the operator defined by x ∈ A−1(y)⇔

y ∈A(x).
In what follows, we will focus our attention on the classical problem of finding a zero

of a maximal monotone operator A on a real Banach space X , namely,

find x ∈ X such that A(x)� 0. (1.3)

In [1], to solve (1.3) in the case where A is Lipschitz, Chidume considered a method
which generates the next iterates xn+1 by

xn+1 = xn−μA
(
xn
)
, (1.4)

where xn is the current iterate and μ := α/(1 + L(3 + L− α)), where L and α are, respec-
tively, the Lipschitz and the strong accretivity constants of A. He obtained the following
result.

Proposition 1.1. Let X be a real Banach space, and let A : X → X be a Lipschitz and
strongly accretive map with Lipschitz constant L > 0 and strong accretivity constant α ∈
(0,1). For any arbitrary x0 ∈ X , the sequence (xn)n∈N generated by (1.4) strongly converges
to the solution x∗ of (1.3) with

∣∣xn+1− x∗
∣∣≤ δn

∣∣x1− x∗
∣∣, (1.5)

where

δ = 1− αμ

2
∈ (0,1). (1.6)

In [2], Chidume and Zegeye consider the case where the parameter μ is variable,
namely,

xn+1 = xn−μnA
(
xn
)
, (1.7)

and establish the following result.

Proposition 1.2. Let X be a real normed linear space, and let A : X → X be a uniformly
continuous φ-strongly accretive mapping. Then there exists γ0 > 0 such that if the parameters
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μn ∈ [0,γ0] for all n∈N satisfy the following conditions:

lim
n→+∞μn = 0,

∑
n

μn =∞, (1.8)

then, for any arbitrary x0 ∈ X , the sequence (xn)n∈N generated by (1.7) strongly converges to
x∗ solution of (1.3).

However, the Lipschitz and the strong accretivity conditions were rather stringent and
they exclude important applications. In a recent paper [3], Benavides et al. [3] consider
the following iterative scheme:

xn+1 = βnxn +
(
1−βn

)
JAλn
(
xn
)
, (1.9)

and prove the following results under m-accretivity of the underlying operator.

Proposition 1.3. Let X be a uniformly convex Banach space with a Fréchet diffrentiable
norm. Assume that

lim
n→+∞βn = 0, lim

n→+∞λn =∞. (1.10)

Then the sequence (xn)n∈N generated by (1.9) weakly converges to a solution of (1.3).

Proposition 1.4. Let X be a uniformly convex Banach space with either a Fréchet diffren-
tiable norm or satisfies Opial’s property. Assume for some ε > 0 that

ε ≤ βn ≤ 1− ε, λn ≥ ε ∀n∈N. (1.11)

Then the sequence (xn)n∈N generated by (1.9) weakly converges to a solution of (1.3).

Our analysis is based on the observation that the solution set of (1.3) coincides with
that of the problem

find x ∈ X such that Aλ(x)= 0, (1.12)

where Aλ is the Yosida approximate of A with parameter λ > 0.
We will apply the previous methods to Aλ, and show that with a judicious choice of

the regularization parameter λ. We will first improve the results by Chidume [1] and
Chidume and Zegeye [2]. Second, we will be in position to apply the results by Benavides
et al. [3] and derive two new results under weaker conditions on the involving operator.
The main interest is that the mapping Aλ is always Lipschitz continuous even when A is
not and is strongly accretive if A is strongly accretive. For the simplicity of the exposition
and a unified presentation of our results, we work in a uniformly convex Banach space,
but Theorems 2.3 and 2.5 still hold true in a real Banach space and in a real normed linear
space, respectively, by using the subdifferential inequality

|x+ y|2 ≤ |x|2 + 2
〈
y, j(x+ y)

〉 ∀ j(x+ y)∈ J(x+ y) (1.13)

instead of Lemma 2.1.
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2. Convergence results

To begin with, let us state the following inequality which will be needed in the proof of
the next lemma.

Lemma 2.1 [5]. Assume X is a uniformly convex Banach space. Then, there is a constant
c > 0 such that

|x+ y|2 ≥ |x|2 + 2
〈
y, j(x)

〉
+ c|y|2 ∀x, y ∈ X , (2.1)

where j(x)∈ J(x).

Throughout, X is a uniformly convex Banach space.

Lemma 2.2. If A is strongly accretive with constant α, then Aλ is strongly accretive with
constant αλ = α/(1 + 2αλ). Moreover, Aλ is 1/(λ

√
c)-Lipschitz continuous.

Proof. Since for all x, y ∈ X , we have

x− y = JAλ (x)− JAλ (y) + λ
(
Aλ(x)−Aλ(y)

)
. (2.2)

By applying Lemma 2.1 and taking into account the fact that A is α-strongly accretive, we
get

|x− y|2 ≥ ∣∣JAλ (x)− JAλ (y)
∣∣2

+ cλ2
∣∣Aλ(x)−Aλ(y)

∣∣2

+ 2λ
〈
Aλ(x)−Aλ(y), j

(
JAλ (x)− JAλ (y)

)〉

≥ ∣∣JAλ (x)− JAλ (y)
∣∣2

+ cλ2
∣∣Aλ(x)−Aλ(y)

∣∣2
+ 2λα

∣∣JAλ (x)− JAλ (y)
∣∣2
.

(2.3)

From which we derive

∣∣Aλ(x)−Aλ(y)
∣∣≤ 1

λ
√
c

∣∣x− y
∣∣, (2.4)

∣∣JAλ (x)− JAλ (y)
∣∣2 ≤ 1

1 + 2αλ

∣∣x− y
∣∣2
. (2.5)

Now, applying again Lemma 2.1 with JAλ (x)− JAλ (y) = x− y− λ(Aλ(x)−Aλ(y)), we ob-
tain

2λ
〈
Aλ(x)−Aλ(y),x− y

〉≥ |x− y|2−∣∣JAλ (x)− JAλ (y)
∣∣2

+ cλ2
∣∣Aλ(x)−Aλ(y)

∣∣2
, (2.6)

which, in the light of (2.5), yields

〈
Aλ(x)−Aλ(y),x− y

〉≥ α

1 + 2αλ
|x− y|2. (2.7)

�

We are now able to give our convergence results without Lipschitz condition. First,
we stress that the operator A and its Yosida regularization, Aλ, have the same zeroes. So,
according to the fact that Aλ is Lipschitz even when A is not, we will use Aλ instead of A.
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This leads to the following rule:

xn+1 = xn−μAλ
(
xn
)
. (2.8)

Theorem 2.3. Let A : X → 2X be a strongly accretive map with strong accretivity constant
α. Assume that for some λ ∈ (0,1/2) one has α ∈ (0,1/(1− 2λ)). Then, for any arbitrary
x0 ∈ X , the sequence (xn)n∈N generated by (2.4) strongly converges to x∗. Moreover,

∣∣xn+1− x∗
∣∣≤ δn

∣∣x1− x∗
∣∣ with δ = 1− αλμ

2
, (2.9)

where L, αλ stand for the Lipschitz and the strong accretivity constant of Aλ, and μ= αλ/(1 +
L(3 +L−αλ)).

Proof. Follows directly from Proposition 1.1 and Lemma 2.2. �

Remark 2.4. This result improves Proposition 1.1. Indeed, the assumption on the oper-
ator A is weaker and the bound on the strong accretivity constant α is better even if we
work directly with A.

It is worth mentioning that the operator Aλ is in particular uniformly continuous, and
it is easy to check that Aλ is φ-strongly accretive if A is so with a function φ satisfying
φ(t)= (2 + r)t, for all t ∈ (0,+∞) and for some r > 0. So, by replacing μ by μn in (2.8) and
applying Proposition 1.2, we derive the following theorem.

Theorem 2.5. Let A : X → 2X be a φ-strongly accretive mapping. Then there exists γ0 > 0
such that if the parameters μn ∈ [0,γ0] for all n∈N satisfy the following conditions:

lim
n→+∞μn = 0,

∑
n

μn =∞, (2.10)

then, for any arbitrary x0 ∈ X , the sequence (xn)n∈N generated by (2.8) (with μ := μn)
strongly converges to x∗.

It is worth noticing that relation (2.8), with μ := μn, λ := λn, and βn := 1−μn/λn, com-
bined with the definition of the Yosida approximate, amounts to

xn+1 = βnxn +
(
1−βn

)
JAλn
(
xn
)
. (2.11)

This clearly paves the way to direct applications of both Propositions 1.3 and 1.4 and
leads, without the strong accretivity assumption, to the next two convergence results.

Theorem 2.6. Suppose that the norm of X is Fréchet diffrentiable and assume that

lim
n→+∞λn = +∞, lim

n→+∞
μn
λn
= 1. (2.12)

Then the sequence (xn)n∈N generated by (2.11) weakly converges to a solution of problem
(1.3).
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Theorem 2.7. Suppose that X either has a Fréchet differentiable norm or satisfies Opial’s
property and assume for some ε > 0 that

ε≤ μn
λn
≤ 1− ε, λn ≥ ε ∀n∈N. (2.13)

Then the sequence (xn)n∈N generated by (2.11) weakly converges to a solution of problem
(1.3).

3. Conclusion

The fact that the Yosida approximate, Aλ, is Lipschitz even when A is not makes it more
attractive and is used here to improve two recent results by Chidume, and Chidume and
Zegeye and in order to obtain two new ones. We would also like to emphasize that, in
the particular case where A= ∂ f , the subdifferential of a proper convex and lower semi-
continuous function, the proposed method is reduced to that of Fukushima and Qi [4]
whose implemented version converges globally and superlinearly for nonsmooth convex
minimization problems.
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