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Consider the nonlinear Itô stochastic differential equations with Markovian switching,
some sufficient conditions for the invariance, stochastic stability, stochastic asymptotic
stability, and instability of invariant sets of the equations are derived.
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1. Introduction

Invariant sets of dynamic systems play an important role in many situations when the
dynamic behavior is constrained in some way. Knowing that a set in the state space of
a system is invariant means that we have bounds on the behavior. We can verify that
pre-specified bounds which originate from, for example, safety restrictions, physical con-
straints, or state-feedback magnitude bounds are not invalidated.

There is significant literature devoted to the invariant sets of ordinary differential
equations, functional differential equations, and stochastic differential equations, and we
here mention [2, 4, 15–18].

Recently, much work has been done on stochastic differential equations with Markov-
ian switching [1, 3, 5–14, 19, 20]. In particular, we here highlight Mao’s significant con-
tribution [6, 11, 12]. However, to the best of the author’s knowledge to date, the problem
of the invariant sets of equations of this kind, has not been investigated yet.

The aim of the present paper is to study the invariant sets of nonlinear Itô stochas-
tic differential equations with Markovian switching. Similar to the result of [18], which
investigates the usual stochastic differential equations, some sufficient conditions for the
invariance and stochastic stability of invariant sets of equations of this kind are derived.
At the same time, we establish some conditions for stochastic asymptotic stability and in-
stability of the invariant sets, which are not discussed in [18] even in the case of equations
without Markovian switching.
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2 Invariant sets of stochastic equations with Markovian switching

2. Stochastic differential equations with Markovian switching

Let {Ω,�,{�t}t≥0,P} be a complete probability space with a filtration satisfying the usual
conditions, that is, the filtration is continuous on the right and �0 contains all P-zero sets.
Let w(t) = (w1(t),w2(t), . . . ,wm(t))T be an m-dimensional Brownian motion defined on
the probability space. Let | · | is the Euclidean norm in Rn, that is, |x| = √xTx (x ∈ Rn).

Let {r(t), t ∈ R+ = [0,+∞]} be a right-continuous Markov chain on the probability
space {Ω,�,{�t}t≥0,P} taking values in a finite state space S= {1,2, . . . ,N} with genera-
tor Γ= (γi j)N×N given by

P
{
r(t+ δ)= j | r(t)= i

}=
⎧
⎨

⎩
γi jδ + o(δ), if i �= j,

1 + γiiδ + o(δ), if i= j,
(2.1)

where δ > 0. Here γi j ≥ 0 is the transition rate from i to j if i �= j, while γii = −
∑

j �=i γi j .
We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It is
known that almost every sample path of r(t) is a right-continuous step function with a
finite number of simple jumps in any finite subinterval of R+, and r(t) is ergodic.

Consider the Itô stochastic differential equations with Markovian switching:

dx(t)= f
(
t,x(t),r(t)

)
dt+ g

(
t,x(t),r(t)

)
dw(t), (2.2)

where t ≥ 0, f : R+ × Rn × S→ Rn, g : R+ × Rn × S→ Rn×m, and the initial condition is
x(t0)= x0 ∈ Rn, r(t0)= r0 ∈ S, t0 ≥ 0.

In this paper we always assume that both f and g satisfy the local Lipschitz condition
and the linear growth condition. Hence it is known from [6] that (2.2) has a unique
continuous bounded solution x(t)= x(t, t0,x0) on t ≥ t0.

Denote by C2,1(R+ × Rn × S;R+) the family of all nonnegative functions V(t,x, i) on
R+×Rn× S which are continuously twice differentiable with respect to x and once differ-
entiable with respect to t. For any (t,x, i)∈ R+×Rn× S, we define an operator � by

�V(t,x, i)=
N∑

j=1

γi jV(t,x, j) +Vt(t,x, i) +Vx(t,x, i) f (t,x, i)

+
1
2

trace
[
gT(t,x, i)Vxx(t,x, i)g(t,x, i)

]
,

(2.3)

where

Vt(t,x, i)= ∂V(t,x, i)
∂t

, Vx(t,x, i)=
(
∂V(t,x, i)

∂x1
, . . . ,

∂V(t,x, i)
∂xn

)
,

Vxx(t,x, i)=
(
∂2V(t,x, i)
∂xi∂xj

)

n×n
.

(2.4)

The generalized Itô formula reads as follows: if V ∈ C2,1([−τ,+∞)×Rn× S;R+), then

EV
(
t+h,x(t+h),r(t+h)

)= EV
(
t,x(t),r(t)

)
+E

∫ t+h

t
�V

(
s,x(s),r(s)

)
ds. (2.5)
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3. Main results

Denote by Q a certain Borel set in {t ≥ 0}×Rn× S. Let Qr(t)
t be a set in Rn, here Qr(t)

t =
{x(t) : (t,x(t),r(t))∈Q} and Qr(t)

t is nonempty for t ≥ 0.

Definition 3.1. A set Q is called invariant for (2.2) if for (t0,x0,r0)∈Q,

P
{(
t,x(t),r(t)

)∈Q, ∀t ≥ t0
}= 1. (3.1)

Remark 3.2. Definition 3.1 is equivalent to the condition

P
{(
t,x(t),r(t)

)∈Q
}= 1, ∀t ≥ t0. (3.2)

Definition 3.3. A set Q is called stochastically stable if for any ε > 0 the following holds:

lim
ρ(x0,Q

r0
t0 )→0

P
{

sup
t≥t0

ρ
(
x(t),Qr(t)

t

)
> ε
}
= 0, (3.3)

where ρ(x,A) denotes the distance between a point x and a set A.

Definition 3.4. A set Q is called stochastically asymptotically stable if it is stochastically
stable and moreover

lim
ρ(x0,Q

r0
t0 )→0

P
{

lim
t→∞ρ

(
x(t),Qr(t)

t

)
= 0
}
= 1. (3.4)

Definition 3.5. A set Q is called unstable if there exist ε1 > 0 and ε2 > 0 such that, for any
δ > 0, there exist x0 and t∗ such that for ρ(x0,Qr0

t0 ) < δ the following holds:

P
{

sup
t∗≥t≥t0

ρ
(
x,Qr(t)

t

)
> ε1

}
≥ ε2. (3.5)

Denote by Γ the set of its zeros of the function V in {t ≥ 0} × Rn × S, that is, Γ =
{(t,x, i) : V(t,x, i) = 0}. Let Γit denote the set of x ∈ Rn such that V(t,x, i) = 0 for fixed
t ≥ 0 and i∈ S.

Theorem 3.6. If

�V(t,x, i)≤ 0, (3.6)

then the set Γ is a positive invariant set for (2.2). In addition, if

inf
ρ(x,Γit)>δ

V(t,x, i)=Vδ > 0 (3.7)

for any δ > 0, then the set Γ is stochastically stable.
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Proof. Without loss of generality, we assume that t0 = 0, that is, x(0,x0)= x0 ∈ Γi0. Apply-
ing (2.5) we have

EV
(
t,x(t), i

)= EV
(
0,x0, i

)
+E

∫ t

0
�V

(
s,x(s), i

)
ds. (3.8)

From (3.6), we get

EV(t,x, i)≤ 0, (3.9)

that is,

V(t,x, i)= 0 a.e. (3.10)

Thus Γ is invariant.
Assume that ε1 and ε2 are arbitrary positive constants. Denote infρ(x,Γit)>ε1

V(t,x, i) =
Vε1 . Then, from (3.7) we know that Vε1 > 0. It is easily seen that

P
{

sup
t≥t0

ρ
(
x,Γit

)
> ε1

}
Vε1 ≤ EV(t,x, i)≤V

(
t0,x0, i

)
. (3.11)

By the right-continuity of the function V , there exists δ > 0 for ε2 > 0 such that for
ρ(x0,Γr0

t0 ) < δ, we get

V
(
t0,x0, i

)≤Vε1ε2. (3.12)

By use of (3.11) and (3.12), we complete the proof. �

Remark 3.7. It is obvious that the condition (3.7) is automatically satisfied if the function
V is independent on t.

Remark 3.8. If both of the coefficients of (2.2), f and g, are independent of the Markov
chain r(t), then Theorem 3.6 in this paper reduces to [18, Theorem 1].

Theorem 3.9. Suppose that (3.7) and the following hold:

�V(t,x, i)≤−ϕ(V(t,x, i)
)
, (3.13)

where ϕ(s), s≥ 0 is a continuous function, ϕ(0)= 0, ϕ(s) > 0 for s > 0, and Eϕ(τ)≥ ϕ(Eτ)
for every nonnegative random variable τ. Then the set Γ is a stochastically asymptotically
stable invariant set for (2.2).

Proof. Since the conditions of Theorem 3.6 are satisfied, Γ is a stable invariant set. Hence,
for any sufficiently small ε1 > 0 and ε2 > 0, there exists δ > 0 such that for ρ(x0,Γit0 ) < δ,
we have P{supt≥t0 ρ(x(t),Γit) > ε1} < ε2.

It is obviously seen from (2.5) and (3.16) that the function EV(t,x(t), i) is nonnegative
and nonincreasing. Let α= limt→+∞EV(t,x(t), i). Hence, α≥ 0. Assume that α > 0. Then
the inequality α≤ EV(t,x(t), i)≤Vε1 is true. Denote c =minα≤s≤Vε1

ϕ(s). From (2.5) and
(3.16), we get

EV
(
t,x(t), i

)≤ EV
(
0,x0, i

)− ct, (3.14)
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which, for sufficiently large t, contradicts the fact α > 0. Hence, we have α= 0. Thus, for
ρ(x0,Γit0 ) < δ, we get

lim
t→∞ρ

(
x(t),Γit

)= 0 a.e. (3.15)

The proof is complete. �

Theorem 3.10. Suppose that (3.7) and the following hold:

�V(t,x, i)≥ ϕ
(
V(t,x, i)

)
, (3.16)

where ϕ(s), s≥ 0 is a continuous function, ϕ(0)= 0, ϕ(s) > 0 for s > 0, and Eϕ(τ)≤ ϕ(Eτ)
for every nonnegative random variable τ. Then the set Γ is an unstable set for (2.2).

Proof. Let δ > 0 be a sufficiently small number. We choose x0 such that ρ(x0,Γit0 ) < δ
and assume that V(0,x0, i) = α > 0. To the contrary, we assume that ρ(x(t),Γit) < ε for
t > 0. From (2.5) and (3.16), it is seen that EV(t,x, i) > 0. Thus there exists an L such
that 0 < α ≤ EV(t,x, i) ≤ L. Denote c =minα≤s≤L ϕ(s). Equations (3.16) and (2.5) yield
EV(t,x, i) ≥ V(0,x0, i) + ct, which contradicts the fact that EV(t,x, i) is bounded. Thus,
the assumption ρ(x(t),Γit) < ε for t > 0 is not true and the set Γ is unstable. �
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