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We give explicit formulae for most likely paths to extinction in simple branching models
when initial population is large. In discrete time, we study the Galton-Watson process,
and in continuous time, the branching diffusion. The most likely paths are found with the
help of the large deviation principle (LDP). We also find asymptotics for the extinction
probability, which gives a new expression in continuous time and recovers the known
formula in discrete time. Due to the nonnegativity of the processes, the proof of LDP at
the point of extinction uses a nonstandard argument of independent interest.
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1. Introduction and main results

In population genetics it is often important to look back at the development of popula-
tions. In this paper we consider the question of how extinctions occur, and in particular,
what path a population takes on the road to extinction. Using asymptotic analysis when
initial population values are large, we are able to find the most likely path to extinc-
tion as well as the extinction probability in two simple branching models in discrete and
continuous time. In both examples we use the large deviation principle (LDP) which is
nonstandard since random processes are nonnegative, and we use trajectories ending up
at zero.

One of the contributions of this paper is in rigorous proofs of the LDP for processes on
half space. It may appear to the reader that the LDP follows from known results in Markov
chains and diffusions. This is only partly correct. The standard proof of the lower bound
in the local LDP relies on the change of measure. This requires a certain point (the point
where maximum in the Fenchel-Legendre transform is achieved) to be finite. In our case
this point is at infinity, breaking down the standard approach. We therefore give complete
proofs of LDP’s in Section 4 (discrete time) and Section 5 (continuous time) following
the scheme of Puhalskii [19]. His approach states that the LDP is equivalent to exponen-
tial tightness plus local LDP, and is based on the stochastic exponential method(rather
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than the Laplace transform). Although we follow the scheme of Puhalskii [19] we do not
use idempotent probability and give direct proofs. Since these proofs are more technical,
we placed them at the end, after results on extinction. Once the LDP is established, the
problem of finding the most likely path to extinction is in effect the problem of mini-
mization of the rate function. This is typically a difficult problem due to nonlinearity. We
are able to solve it by setting up the Bellman equation in discrete case, Section 2, and a
dynamical control problem in continuous case, Section 3.

1.1. Galton-Watson process. A prototype of a branching model in discrete time is the
Galton-Watson process, described as follows.

Let Xn denote the population size at time n, and ξ
j
n+1 the number of offspring of the

jth individual. For each n= 1,2, . . . ,{(ξ jn) j≥1} is the sequence of independent identically
distributed integer-valued random variables with the probability distribution function

P(ξ
j
n = �)= p� , � = 0,1, . . . . The population size at time n+ 1 is given by

Xn+1 =
Xn∑

j=1

ξ
j
n+1, (1.1)

where X0 = K > 0. The state {0} is absorbing, and the branching process (Xn)n≥0 might
be absorbed in {0} at the extinction time

τ = inf
{
n : Xn = 0

}
. (1.2)

If p0 = 0, the population does not become extinct. However if p0 > 0, it is well known
(see, e.g., [2, 7]) that the extinction time τ is finite with probability one if and only if the
offspring mean m=∑

�≥1 �p� does not exceed one (m≤ 1). Moreover, for any m, the dis-
tribution function of τ is computed using the offspring probability generating function
f(s)=∑

�≥0 p�s
� , 0≤ s≤ 1: for any N ≥ 1,

P(τ ≤N)= (fN (0))K , (1.3)

where fn(s) is the nth iterate of f(s), that is, fn(s)= f(fn−1(s)) with f1(0)= f(0)= p0.
A natural question is how to find the “path to extinction” given that extinction oc-

curred at time N , τ = N . The conditional distribution of the chain conditioned on ex-
tinction: for n= 1, . . . ,N − 1,

πn|N (i) := P
(
Xn = i | τ =N

)
, i= 1,2, . . . , (1.4)

gives the complete description. It can be used to find the conditional median or the tradi-
tional optimal in the mean-square sense estimate X̂n =

∑∞
i=1 iπn|N (i). Unfortunately such

computations are involved, even using the Markov property of (Xn). However, for large
values of X0 = K , one path has an overwhelmingly large probability compared to the rest.
Consider the normed branching process

xKn =
Xn

K
. (1.5)
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The limit in probability P- limK→∞ xKn = x̂n exists (see [9, 13]) and satisfies x̂n+1 = mx̂n,
x̂0 = 1. The process x̂n is always positive, irrespective of the value of m, so that the ap-
proximation x̂n is inadequate for the study of extinction, the fact is already mentioned
in [3]. In the approach we take that (xKn )n≤N is approximated on the set {τ ≤ N} by a
deterministic sequence u∗· := (u∗n )n≤N with u∗0 = 1, positive u∗n ’s, and u∗N = 0, such that
for small δ > 0 and large K ,

P

( N∑

n=1

∣∣xKn −u∗n
∣∣≤ δ

)
≈ P

(
τ ≤N

)
. (1.6)

This choice of u∗· might be warranted by the following argument. Since fn(0) increases
in n, for large K , (fN (0))K is considerably larger than any of (fn(0))K for n < N . Then,
by (1.3), P(τ ≤ N) = P(τ = N) + P(τ ≤ N − 1) ≈ P(τ = N). Consequently, for any u· =
(un)n≤N with u0 = 1 and un ≥ 0,

P

( N∑

n=1

∣∣xKn −un
∣∣≤ δ

)
� P

(
τ ≤N

)
. (1.7)

For large K , extinction for the process xKn is a rare event, since the limit process x̂n is
positive. Therefore, as in [12], we approach the problem of extinction using the large
deviations theory, obtaining a new result as well as recovering an asymptotic version of
the well-known result (1.3) by using this theory. According to LDP and Theorem 4.1, and
by analogy with the maximal likelihood estimator, the path (u∗n )n≤N is said to be the most
likely path to extinction of the normed population xKn .

Clearly, τ is the extinction time for both processes Xn and xKn , so that Ku∗n (with large
K) sets the pattern for the extinction path in the original branching process.

Figure 1.1 demonstrates likely paths to extinction for a binary splitting model with
different parameters, p = p0, illustrating the general result.

For formulating the main result, we use the log moment generating function, assum-
ing its existence up to some t0 > 0:

g(t)= log
∑

�≥0

et� p� , t ∈ (−∞, t0). (1.8)

It is related to the moment generating function by

log fn(0)≡ gn(−∞) (Lemma 2.1). (1.9)

Theorem 1.1. Assume p0 > 0 and (1.8). Then, for any N ≥ 1,
(i)

(
u∗n

)
n≤N = argmax

u0=1,uN=0
un>0,n≤N−1

lim
δ→0

lim
K→∞

1
K

logP

( N∑

n=1

∣∣xKn −un
∣∣≤ δ

)
(1.10)
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is given by

u∗n =
∏

1≤i≤n
g′

(
gN−i(−∞)

)
, n≤N , (1.11)

where gi(t) is the ith iterate of g(t), g0(t)= t,
(ii)

lim
δ→0

lim
K→∞

1
K

logP

( N∑

n=1

∣∣xKn −u∗n
∣∣≤ δ

)
= lim

K→∞
1
K

logP(τ ≤ n). (1.12)

1.2. Branching diffusion. In continuous time, we consider the model of a branching
diffusion Xt defined by the Itô equation

dXt = αXtdt+ σ
√
XtdBt (1.13)

with a positive initial condition X0 = K , where Bt is a Brownian motion, σ2 > 0, and α∈
R. Stochastic equation(1.13) possesses a strong nonnegative solution. Since the diffusion
parameter degenerates, one way to see this is to construct the solution from the following
approximating sequence (Xi

t)i≥1:

Xt := X1
t I{t≤τ1} +

∑

i≥1

Xi
τi I{τi<t≤τi+1}, (1.14)

where dXi
t = αXi

tdt + σ
√
|Xi

t |∨ i−1dBt, Xi
0 = K , and τi = inf{Xi

t ≤ i−1} the increasing se-
quence of stopping times (τi)i≥1 relative to the filtration generated by the Brownian mo-
tion (Bt) (see also [10, Theorem 13.1]). The strong uniqueness of (1.13) follows from
Yamada-Watanabe’s theorem (see, e.g., Rogers and Williams [21, page 265]) since its drift
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and diffusion parameters are Lipschitz- and Hölder- (with coefficient 1/2) continuous,
respectively.

Obviously,

τ = inf
{
t : Xt = 0

}= lim
i→∞

τi. (1.15)

We analyze the normed process xKt = Xt/K . Due to (1.13), xKt solves the Itô equation

dxKt = αxKt dt+
σ√
K

√
xKt dBt, (1.16)

with xK0 = 1. It can be readily shown that P- limK→∞ xKt = x̂t exists and solves dx̂t/dt =
αx̂t, x̂0 = 1. However, x̂t is always positive and is far from being an estimated path to
extinction. As in the discrete time, in order to evaluate the path to extinction for (xKt )t≤T
for fixed T > 0, we approximate (xKt )t≤T on the set {τ ≤ T} by a deterministic function
(u∗t )t≤T with u∗0 = 1, u∗T = 0, and u∗t > 0, such that for a small δ > 0 and large K ,

P

(
sup
t≤T

∣∣xKt −u∗t | ≤ δ

)
≥ P

(
sup
t≤T

∣∣xKt −ut
∣∣≤ δ

)
(1.17)

for any (ut)t≤T from the set {u0 = 1,(ut > 0)t<T , uT = 0}.
Unfortunately, the useful formula of (1.3) type is not known to us in this case. Here

we obtain its asymptotic version as K →∞, see (ii) below.

Theorem 1.2. For any T > 0,
(i)

(
u∗t

)
t≤T = argmax

u0=1,uT=0
ut>0, t<T

lim
δ→0

lim
K→∞

1
K

logP

(
sup
t≤T

∣∣xKt −ut
∣∣≤ δ

)
(1.18)

is given by

u∗t =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−αt
(

1− 1− e−αt

1− e−αT

)2

, α = 0,

(
1− t

T

)2

, α= 0.

(1.19)

(ii)

lim
K→∞

1
K

logP(τ ≤ T)= lim
δ→0

lim
K→∞

1
K

logP

(
sup
t≤T

∣∣xKt −u∗t
∣∣≤ δ

)

=−

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2

α

1− e−αT
, α = 0,

1
σ2T

, α= 0.

(1.20)
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Corollary 1.3. (1) u∗· has the remarkable property: it is the same for subcritical and su-
percritical case, u∗t (α)≡ u∗t (−α).

(2) For large K , the probability of extinction in [0,T] is given by

P(τ ≤ T)≈ exp
(
− K

σ2

α

1− e−αT

)
. (1.21)

In particular, for α= 0, P(τ ≤ T)≈ e−K/2σ2T .

2. Proof of Theorem 1.1

We begin with the following lemma.

Lemma 2.1. For any n≥ 1, gn(−∞)= log fn(0).

Proof. The result follows by induction from the identity gn(log t)≡ log fn(t) for t ∈ (0, t0).
Write

g
(

log(t)
)= log

∑

�≥0

e� log(t)p� = log
∑

�≥0

elog(t�)p� = log
∑

�≥0

t� p� = log f(t). (2.1)

If gn−1(log t)≡ log fn−1(t), then

gn(log t)= g(gn−1(log t))= g(log(fn−1(t)))= log f
(
fn−1(t)

)= log
(
fn(t)

)
. (2.2)

�

The proof of Theorem 1.1 is done in a number of steps.
(1) Recall that g(t) is convex function with g(0) = 0, g(−∞) = log(p0), and g′(t) >

0, t >−∞, while g′(−∞)= limt→∞ g′(t)= 0.
(2)By the local LDP (see, Theorem 4.1), for u0 = 1, uN = 0, and other positive un’s, it

holds that

lim
δ→0

lim
K→∞

1
K

logP

(
∑

n≤N

∣∣xKn −un
∣∣≤ δ

)
=−

∑

n≤N
I
(
un,un−1

)
. (2.3)

(3) In order to find (u∗n )n≤N such that for u0 = 1, un > 0, uN = 0,

∑

i≤n
I
(
ui,ui−1

)≥
∑

i≤n
I
(
u∗i ,u∗i−1

)
, (2.4)

we apply the dynamic programming.
Since uN = 0,

I
(
uN ,uN−1

)= sup
t∈(−∞,t0)

(−uN−1g(t)
)=−uN−1g(−∞)=: Bn

(
uN−1

)
(2.5)

is the boundary condition for the Bellman equation

Bn
(
un−1

)= inf
u>0

[
Bn+1(u) + I

(
u,un−1

)]
, 1≤ n≤N − 1. (2.6)
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For n=N − 1, we have

BN−1
(
uN−2

)= inf
u>0

[
−ug(−∞) + sup

t∈(−∞,t0)

{
tu−uN−2g(t)

}]
. (2.7)

Equation (2.7) provides the inequality

BN−1
(
uN−2

)≥ inf
u>0

[−ug(−∞) + tu−uN−2g(t)
] ∀t ∈ (−∞, t0

)
(2.8)

which, with t = g(−∞), is transformed into

BN−1
(
uN−2

)≥−uN−2g2(−∞). (2.9)

We show that the above inequality is equality. For u, uN−2 > 0, “supt” in (2.7) is attained
at the point t∗ = t∗(u,uN−2), so that, for any u > 0,

BN−1
(
uN−2

)≤ u
[
t∗

(
u,uN−2

)− g(−∞)
]−uN−2g

(
t∗

(
u,uN−2

))
. (2.10)

We choose u= u∗N−1 such that t∗(u∗N−1,uN−2)= g(−∞). This is possible since

g(−∞)= log p0, t∗
(
0,uN−2

)=−∞,

g′(−∞)= 0, t∗
(
m,un−2

)= 0, g′(0)=m,
(2.11)

so that the existence of u∗N−1 follows from continuity, in u, of t∗(u,uN−2).
The choice of u∗N−1 gives the inequality

BN−1
(
uN−2

)≤−uN−2g
(
t∗

(
u∗N−1,uN−2

))= g
(
g(−∞)

)= g2(−∞). (2.12)

Consequently, the opposite inequality for (2.9) holds true and, therefore,

BN−1
(
uN−2

)=−uN−2g2(−∞). (2.13)

It is obvious too that for any uN−2 > 0,

u∗N−1 = uN−2g
′(t∗

(
u∗N−1,uN−2

))= uN−2g
′(g(−∞)

)
. (2.14)

Further, by induction, we find the following pairs:

u∗N−1 = g′
(
g(−∞)

)
u∗N−2,

BN−1
(
u∗N−2

)=−g2(−∞)u∗N−2,

. . .

u∗N−2 = g′
(
g2(−∞)

)
u∗N−3,

BN−2
(
u∗N−3

)=−g3(−∞)u∗N−3,

...

u∗1 = g′
(
gn−1(−∞)

)
u0,

B1
(
u0

)=−gn(−∞)u0
(
u0 = 1

)
.

(2.15)
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With the chosen (u∗n )1≤n≤N−1, the Bellman equation (2.6) is transformed into the back-
ward recurrent equation

Bn
(
u∗n−1

)= Bn+1
(
u∗n

)
+ I

(
u∗n ,u∗n−1

)
, 1≤ n≤N − 1, (2.16)

with boundary condition −u∗N−1g(−∞) (see (2.5)).
Thus, B1(1)=∑

1≤n≤N I(u∗n ,u∗n−1).
On the other hand, the Bellman equation also yields

B1(1)≥
∑

1≤n≤N−1

I
(
un,un−1

)
+BN

(
uN−1

)=
∑

1≤n≤N
I
(
un,un−1

)
(2.17)

which proves (2.4).
(4) We recall that

∑
n≤N I(u∗n ,u∗n−1)=−gn(−∞), that is, by Lemma 2.1 and (1.3),

∑

1≤n≤N
I
(
u∗n ,u∗n−1

)=− log fN (0)=− 1
K

logP(τ ≤N) ∀K > 0. (2.18)

(5) Thus, (1)–(3) imply the statement (i); formula (1.11) follows from the recurrence
u∗n = g′(g2(−∞))u∗n−1, u∗0 = 1.

Finally (ii) follows from (4).

3. Proof of Theorem 1.2

(i) We apply the LDP Theorem 5.1. By the local LDP, with u0 = 1, ut > 0, and uT = 0, we
have

lim
δ→0

lim
K→∞

1
K

logP

(
sup
t≤T

∣∣xKt −ut
∣∣≤ δ

)
=−JT(u), (3.1)

where

JT(u)=

⎧
⎪⎪⎨
⎪⎪⎩

1
2σ2

∫ T

0

(
u̇t −ut

)2

ut
I{ut>0}dt, u0 = 1, dut = u̇tdt,

∞, otherwise.
(3.2)

Therefore (i) is reduced to minimization of JT(u) in a class of absolutely continuous
test functions ut with u0 = 1, ut > 0, and uT = 0.

Set wt = (u̇t −ut)/
√
ut, t ∈ [0,T) and notice that the minimization of JT(u·) is equiva-

lent to the following control problem with the controlled process ut, solving a differential
equation

u̇t = αut +
√
utwt, t ∈ [0,T), (3.3)

subject to u0 = 1. The control action wt belongs to a class of measurable functions with∫ T
0 w2

t dt <∞ bringing ut to zero at the time T . The control action w∗t from this class is
optimal if for any wt,

∫ T

0

(
w∗t

)2
dt ≤

∫ T

0
w2
t dt. (3.4)
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If w∗t exists, then the controlled process u∗t related to w∗t minimizes JT(u·) in the required
class of continuous functions u· = (ut)t≤T .

In order to find w∗t , it is convenient to deal with (recall ut ≥ 0) vt =√ut since vt solves
the linear differential equation v̇t = (α/2)vt + (1/2)wt, v0 = 1. If w∗t exists, then w∗t brings
vt to zero at the time T , that is, 0= vT = e(α/2)T +

∫ T
0 e(α/2)(T−t)w∗t dt or, equivalently,

−1= 1
2

∫ T

0
e−(α/2)tw∗t dt. (3.5)

Hence, by the Cauchy-Schwarz inequality 1 ≤ (1/2)
∫ T

0 e−tαdt
∫ T

0 (w∗t )2dt, that is, the

following lower bound holds:
∫ T

0 (w∗t )2dt ≥ 2α/(1− e−αT). This lower bound is valid for
any wt providing (3.5), so that the condition

∫ T

0

(
w∗t )2dt = 2α

1− e−αT
(3.6)

is valid for w∗t = ce−tα/2, for any constant c, take w∗t = c∗e−tα/2 with c∗ solving

−1=
∫ T

0
e−tα/2w∗t dt = c∗

∫ T

0
e−tαdt. (3.7)

Hence,

c∗ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− 2α
1− e−Tα

, α = 0,

− 2
T

, α= 0,

, w∗t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−2αe−t(α)/(2)

1− e−Tα
, α = 0,

− 2
T

, α= 0,

,

∫ T

0

(
w∗t )2dt =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2α
1− e−αT

, α = 0,

2
T

, α= 0.

(3.8)

Finally, we find that

v∗t = etα/2− α

1− e−Tα

∫ t

0
e(t−s)α/2e−sα/2ds

= etα/2
[

1− 1− e−tα

1− e−Tα

]
= etα/2

(
e−tα− e−Tα

1− e−Tα

) (3.9)

and, since u∗t = (v∗t )2, we obtain (1.19) and the proof of (i) is complete.
(ii) By (i),

JT
(
u∗

)= 1
σ2

α

1− e−αT
. (3.10)

We show that

lim
K→∞

1
K

logP(τ ≤ T)= JT
(
u∗

)
. (3.11)
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To this end, use the fact that {τ ≤ T} = {(ω, t) : ∃t ≤ T , xKt (ω)= 0}. For notational con-
venience denote A := {τ ≤ T}. Set Acl and Aint the closure and interior of A. Then, by the
LDP, we have

lim
K→∞

1
K

logP
(
Acl)≤− inf

u:

{
us>0,s<t;
ut=0
t≤T

Jt(u)=− inf
t≤T

Jt
(
u∗

)
,

lim
K→∞

1
K

logP
(
Aint)≥− inf

u:

{
us>0,s<t;
ut=0
t≤T

Jt(u)=− inf
t≤T

Jt
(
u∗

)
.

(3.12)

Since limK→∞ = limK→∞ implies the existence of limK→∞, it remains to show that
inf t≤T Jt(u∗)= JT(u∗).

Notice that (3.10) is valid with T replaced by any t < T with u∗· replaced by the corre-
sponding u∗,t· = {u∗,t

0 = 1; u∗,t
s > 0, s < t; us,tt = 0}. In other words, for any t,

Jt
(
u∗,t)= 1

σ2

α

1− e−αt
, (3.13)

and Jt(u∗,t) increases to JT(u∗· ) with t ↗ T .

4. LDP in discrete time

Let m= inf{n≤N : un = 0} and m=∞ if all (un)n≤N are positive,

I(y,x)= sup
t∈(−∞,t0)

[
ty− xg(t)

]
. (4.1)

Theorem 4.1. Assume (1.8). For any N ≥ 1, the family {(xKn )n≤N}K→∞ obeys the LDP in
RN

+ , supplied with the Euclidian metric ρN , with the speed 1/K and the rate function

JN (u·)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑

n=1

I
(
un,un−1

)−um−1 log
(
p0

)
, u0 = 1, un = 0, n >m,

N∑

n=1

I
(
un,un−1

)
, u0 = 1, un > 0, n≤N ,

∞, ∃n : un = 0, un+1 > 0, or u0 = 1.

(4.2)

Remark 4.2. LDP for branching processes has been considered in the literature, see, for
example, [1, 4, 18]. However, it was concerned with the sequence Xn/Xn−1, as n→∞,
whereas here we consider the LDP for Xn/X0 processes indexed by the large initial value.

Remark 4.3. The nonnegativity of xKn provides some difficulty for verification of LDP at
the “point of extinction” where the test function becomes zero. For set S of test functions
that keep away from zero, the statement of the theorem is implied by a result in Klebaner
and Zeitouni [14] and other known results that can be adapted to our setting (see, e.g.,
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Kifer, [8], Puhalskii, [19], Klebaner and Liptser, [11], etc.). But {τ ≤N} ∈ S , and for the
sake of completeness and accuracy we give the complete proof below, with a new proof of
the lower bound in the local LDP.

4.1. Proof of Theorem 4.1. We follow the standard (necessary and sufficient) conditions
for proving the LDP by showing the exponential tightness

lim
C→∞

lim
K→∞

1
K

logP
(
Ω \�C

)=−∞, (4.3)

with compacts �C = {max1≤n≤N xN ≤ C}, C ↗∞, and the local LDP

lim
δ→0

lim
K→∞

1
K

logP
(
ρN

(
xK· ,u·

)≤ δ
)=−JN (u·). (4.4)

Notice that (1.8) implies the existence of a stochastic exponential, with tn ≤ Kt0,

E K
(t1,...,tN )

(
xK1 , . . . ,xKN−1

)=
N∏

n=1

E
(
etnx

K
n |Fn−1

)
, (4.5)

where (Fn)n≥0 is the filtration, with F0 = {∅,Ω}, generated by (xKn )n≥1.
Set

zn = e
∑

i≤n t�xKi −logE K
(t1,...,tn)(xK1 ,...,xKn−1). (4.6)

The random process (zn,Fn)n≤N is the (positive) martingale,

EzN = 1. (4.7)

4.1.1. Exponential tightness. Since max1≤n≤N xKi ≤
∑

1≤n≤N xKn , it is enough to show

lim
C→∞

lim
K→∞

1
K

logP

(
∑

1≤i≤N
xKi ≥ C

)
=−∞. (4.8)

Set t∗ = argmaxt∈(−∞,t0)[t− g(t)]. Since g(0) = 0, we have t∗ ∈ (0, t0) and g(t∗) < t∗.

We choose tn ≡ t∗K(< Kt0) and introduce A= {∑1≤i≤n xKi ≥ C}. With chosen tn, we have
EzN = 1 and, therefore, EIAzN ≤ 1. Taking into account this inequality and (4.6), write

1≥ EIAe
∑
{1≤n≤N} t∗xKn −logE K

(t∗ ,...,t∗)(xK1 ,...,xKN−1)

= EIAe
Kt∗

∑
{1≤n≤N} xKn −Kg(t∗)

∑
{1≤n≤N} xKn−1

≥ EIAe
K

∑
{1≤n≤N}[t∗−g(t∗)]xKn −K|g(t∗)|

≥ EIAe
KC[t∗−g(t∗)] = eKC[t∗−g(t∗)]−K|g(t∗)|P(A).

(4.9)

Therefore, 1/K logP(A)≤−[t∗ − g(t∗)]︸ ︷︷ ︸
>0

C+ |g(t∗)| −−−→
C→∞

−∞.
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4.1.2. Local LDP: upper bound. We may restrict ourselves by the test function u· =
{u1, . . . ,uN−1︸ ︷︷ ︸

>0

, uN︸︷︷︸
=0

} and show that

lim
δ→0

lim
K→∞

1
K

logP
(
ρN

(
xK· ,u·

)≤ δ
)≤−JN (u·). (4.10)

For the test function with all positive un’s and u0 = 1, the proof of (4.10) is similar. For
test function with un = 0, un+1 > 0, or u0 = 1, (4.10) is obvious. For other test functions,
the verification of (4.10) is reduced to the above-mentioned ones.

Let now A= {ρN (xK· ,u·)≤ δ}. By (4.7), we have

1≥ EIAzN = EIAe
∑
{1≤n≤N}[tnxKi −KxKn−1g(tn/K)]. (4.11)

Set t∗n = argmaxt∈(−∞,t0)[tun − un−1g(t)], n ≤ N − 1, and t∗N = −l(l > 0), and take tn =
Kt∗n , then we derive from (4.11)

1≥ EIAe
K

∑
{1≤n≤N}[t∗n un−un−1g(t∗n )]−K∑

1≤n≤N−1(t∗n +|g(t∗n )|)δ

= EIAe
K[

∑
{1≤n≤N−1} I(un,un−1)−uN−1g(−l)]−K∑

1≤n≤N−1(|t∗n |+|g(t∗n )|)δ

= EIAe
K[JN−1(u·)−uN−1g(−l)]−K∑

1≤n≤N−1(|t∗n |+|g(t∗n )|)δ.

(4.12)

Hence, taking into account that liml→∞ g(−l)= log(p0), we obtain

1
K

logP(A)≤−[
JN−1(u·) +uN−1g(−l)] +

∑

1≤i≤N−1

(∣∣t∗i
∣∣ +

∣∣g
(
t∗i

)∣∣)
δ

−−→
δ→0

−[
JN−1

(
u·

)
+uN−1g(−l)]−−→

l→∞
−JN

(
u·

)
.

(4.13)

4.2. Local LDP: lower bound. Obviously for u· with JN (u·)=∞, it is nothing to verify.
Further as in the upper bound verification, we may restrict ourselves by the test function
u· = {u1, . . . ,uN−1︸ ︷︷ ︸

>0

, uN︸︷︷︸
=0

} with P(ξ1
1 = 0)= p0 > 0 and show that

lim
δ→0

lim
K→∞

1
K

logP
(
ρN

(
xK· ,u·

)≤ δ
)≥−JN

(
u·

)
. (4.14)

Write
{
ρN

(
xK· ,u·

)≤ δ
}

= {
ρN−1

(
xK· ,u·

)
+ xKN ≤ δ

}⊇ {
ρN−1

(
xK· ,u·)≤ 0.5δ, xKN ≤ 0.5δ

}

⊇ {
ρN−1

(
xK· ,u·

)≤ 0.5δ, xKN = 0
}⊇

{
ρN−1

(
xK· ,u·

)≤ 0.5δ,
1
K

KxKN−1∑

j=1

ξ
j
N = 0

}

⊇
{

ρN−1
(
xK· ,u·

)≤0.5δ,
1
K

K(uN−1+δ)∑

j=1

ξ
j
N=0

}
=

{
ρN−1

(
xK· ,u·

)≤0.5δ,
K(uN−1+δ)∑

j=1

ξ
j
N=0

}
.

(4.15)
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The sets A1 = {ρN−1(xK· ,u·) ≤ 0.5δ} and A2 = {
∑K(uN−1+δ)

j=1 ξ
j
N = 0} are independent, so

that

P
(
ρN

(
xK· ,u·

)≤ δ
)≥ P

(
ρN−1

(
xk· ,u·

)≤ 0.5δ
)
PK(uN−1+δ)(ξ1

1 = 0
)
. (4.16)

Consequently,

lim
δ→0

lim
K→∞

1
K

logP
(
ρN

(
xK· ,u·

)≤ δ
)

≥ lim
δ→0

lim
K→∞

1
K

logP
(
ρN−1

(
xK· ,u·

)≤ 0.5δ
)

+uN−1 logP
(
ξ1

1 = 0
)
.

(4.17)

If

lim
δ→0

lim
K→∞

1
K

logP
(
ρN−1

(
xK· ,u·

)≤ δ
)≥−JN−1

(
u·

)
, (4.18)

provided that un > 0, n≤N − 1, the required lower bound holds true.
Thus, it is left to verify the validity of (4.18).
Set ΛN−1(xK· )= zN−1, that is,

ΛN−1
(
xK·

)= e
∑N−1

n=1 K[t∗n xKn −xKn−1g(t∗n )], EΛN−1
(
xK·

)= 1. (4.19)

We introduce the probability measure QK
N−1 with dQK

N−1 = ΛN−1(xK· )dP. Since
Λn−1(xK· ) > 0, P-a.s., we also have dP =Λ−1

n−1(xK· )dQK
n−1.

In particular, for A= {ρN−1(xK· ,u·)≤ δ},

P(A)=
∫

A
Λ−1
N−1

(
xK·

)
dQK

N−1. (4.20)

So, the following lower bound, on the set A, is valid:

Λ−1
N−1

(
xK·

)≥ e−KJN−1(u·)−Kδmaxn≤N−1(|t∗n |+|g(t∗n )|)

≥ e−KJN−1(u·)−Kδmaxn≤N−1(|tastn|+|g(t∗n )|)
(4.21)

or, equivalently,

1
K

logP(A)≥−JN−1
(
u·

)− δ max
n≤N−1

(∣∣t∗n
∣∣ +

∣∣g
(
t∗n

)∣∣)
+

1
K

logQK
N−1(A). (4.22)

The latter inequality implies (4.18) if

lim
K→∞

1
K

logQK
N−1(A)= 0. (4.23)

A simple condition, providing (4.23), is limK→∞QK
N−1(A)= 1 or, equivalently,

lim
K→∞

QK
N−1

(
ρN−1

(
xK· ,u·

)
> δ

)= 0. (4.24)
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We verify (4.24) by showing (EK
N−1 denotes the expectation with respect to QK

N−1)

EK
N−1ρ2

N−1

(
xK·,u·

)= uN−1

K

N−1∑

n=1

un−1

u2
n

g′′
(
t∗n

)
. (4.25)

Notice that the positiveness of (un)n≤N−1 provides a boundedness for the right-hand
side of (4.25) and, in turn by Chebyshev’s inequality, the validity of (4.24).

In order to establish (4.25), we apply the identity relative to t∗n :

1= E
(

Λn
(
xK·

)

Λn−1
(
xK·

)
∣∣∣Fn−1

)
= EeK[t∗n xKn −xKn−1g(t∗n )]. (4.26)

Differentiating twice (4.26) in t∗n , we find that

0= E
([
xKn − xKn−1g

′(t∗n
)] Λi

(
xK·

)

Λn−1
(
xK·

)
∣∣∣Fn−1

)
,

0= E
({

K
[
xKn − xKn−1g

′(t∗n
)]2− xKn−1g

′′(t∗n
)} Λn

(
xK·

)

Λn−1
(
xK·

)
∣∣∣Fn−1

)
.

(4.27)

By the Bayes formula, for example, [10, 16], for any integrable random variable α,

EK
N−1

(
α
∣∣Fn−1

)= E
(
α

Λn
(
xK·

)

Λn−1
(
xK·

)
∣∣∣Fn−1

)
. (4.28)

By taking α= xKn and α= [xKn − xKn−1g
′(t∗i )]2, we derive with the help of (4.27) that

EK
N−1

(
xKn

∣∣Fn−1
)= xKn−1g

′(t∗n
)
, (4.29)

EK
N−1

([
xKn − xKn−1g

′(t∗n
)]2∣∣∣Fn−1

)
= xKn−1

g′′
(
t∗n

)

K
. (4.30)

Since un, un−1 are positive, we have g′(t∗n )= un/un−1. Hence, and by (4.29), we obtain
that EK

N−1x
K
n = (un/ui−1)EK

N−1x
K
n−1. Consequently, iterating the above recursion and taking

into account u0 = 1, we find that

EK
N−1x

K
n = un. (4.31)

Further, with the help of (4.30) we find a recursion

EK
N−1

(
xKn

)2 =
(

un
un−1

)2

EK
N−1

(
xKn−1

)2
+un−1

g′′
(
t∗n

)

K
. (4.32)

By using EK
N−1(xKn − un)2 = EK

N−1(xKn )2 − u2
n and u2

n = (un/un−1)2u2
n−1, we establish a re-

cursion for�n = EK
N−1(xKn −un)2:

�n =
(

un
un−1

)2

�n−1 +un−1
g′′

(
t∗n

)

K
(4.33)
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supplied by�0 = 0. Then,�0/u
2
0 = 0 and

�n

u2
n
= �n−1

u2
n−1

+
un−1

u2
n

g′′
(
t∗n

)

K
, �N−1 = uN−1

K

N−1∑

n=1

un−1

u2
n

g′′
(
t∗n

)
. (4.34)

It is left to recall that�N−1 = EK
N−1ρ2

N−1(xK·,u·).

5. LDP in continuous time

We introduce the filtration (F B
t )t≥0 generated by Brownian motion Bt with the general

conditions. All random processes considered in this section are adapted to this filtration.
Henceforth, by agreement,

0
0
= 0. (5.1)

Theorem 5.1. For any T > 0, the family {(xKt )t≤T}K→∞ obeys the LDP in C[0,T](R+), sup-
plied with the uniform metric ρT , with the speed 1/K and the rate function

JT(u·)=

⎧
⎪⎪⎨
⎪⎪⎩

1
2σ2

∫ T

0

(
u̇t −αut

)2

ut
dt, u0 = 1, dut = u̇tdt,

∞, otherwise.
(5.2)

Remark 5.2. Since ut ≥ 0, Freidlin-Wentzell’s rate function [6] (1/2σ2)
∫ T

0 ((u̇t −αut)2/
ut)dt is not compatible with ut = 0. Our branching diffusion model is a very particular
case of a model studied by Puhalskii in [20]. To apply the LDP analysis from [20] to
the family {(xKt )t≤T}K→∞, one has to “disentangle” many details of the proof to make it
compatible with our case. Finally, in Donati-Martin et al., [5], the LDP analysis deals with
a rate function of the following type

∫ T
0 ((u̇t − ρ)2/ut)dt for ut ≥ 0 related to a family of

diffusion type processes without extinction. A reader interested in the details of the direct
proof can find them below.

Proof. It suffices to verify
(i) C-exponential tightness (see [15]),

lim
C→∞

lim
K→∞

1
K

logP
(

sup
t≤T

xKt ≥ C
)
=−∞, (5.3)

lim
Δ→0

lim
K→∞

sup
γ≤T

1
K

logP
(

sup
t≤Δ

∣∣∣xKγ+t − xKγ
∣∣∣≥ η

)
=−∞ ∀η > 0, (5.4)

where γ is a stopping time relative to (F B
t )t≥0,

(ii) the Local LDP,

lim
δ→0

lim
K→∞

1
K

logP

(
sup
t≤T

∣∣∣xKt −ut
∣∣∣≤ δ

)
=−JT(u·). (5.5)
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(i)Verification. The Itô equation (1.16) is equivalent to the integral equation xKt =
eαt(1 + (1/

√
K)

∫ t
0 e
−αs

√
xKs dBs). Hence,

sup
t≤T

xKt ≤ 2e|α|T
(

1∨ σ√
K

sup
t≤T

∫ t

0
e−αs

√
xKs dBs

)
, (5.6)

so that (5.3) holds true provided that

lim
C→∞

lim
K→∞

1
K

logP

(
sup
t≤T

∫ t

0
e−αs

√
xKs dBs ≥

√
KC

)
=−∞. (5.7)

In order to verify (5.7), let us introduce a continuous martingale and its variation process

Mt = σ√
K

∫ t

0
e−αs

√
xKs dBs, 〈M〉t = σ2

K

∫ t

0
e−2αsxKs ds, (5.8)

respectively, and the stopping time τC = inf{t ≤ T : Mt ≥ C}, where inf{∅} = ∞ which
enables us to claim that (5.7) is valid if

lim
C→∞

lim
K→∞

1
K

logP
(
τC ≤ T

)=−∞. (5.9)

We proceed with the verification of (5.9). With λ > 0, set

zt = eλMt−(1/2)〈M〉t . (5.10)

It is well known that the process (zt,F B
t )t≥0 is the positive local martingale and so the

supermartingale too with Ezθ ≤ 1 for any stopping time θ relative to (F B
t ). By choosing

θ = τC, we find that 1≥ EI{θ≤T}zθ . Then, due to a lower bound on the set {θ ≤ T}: logzθ ≥
λC− (σ2λ2/2K)

∫ θ
0 e

−2αsxKs ds and (5.6), there exists positive l such that

logzθ ≥ λC− σ2λ2

2K

∫ θ

0
e−2αs ≥ λC− lλ2

2K
(1 +C). (5.11)

Further, a choice of λ= KC/(1 +C)l implies zθ ≥ eKC
2/(1+C)l. Consequently,

1
K

logP
(
τC ≤ T

)≤− C2

(1 +C)l
−−−→
C→∞

−∞. (5.12)

By (5.3), the proof of (5.4) is reduced to the verification of two conditions: for any η,
C > 0,

lim
Δ→0

lim
K→∞

sup
γ≤T

1
K

logP

(
sup
t≤Δ

∫ γ+t

γ
xKs ds≥ η, sup

s≤T
xKs ≤ C

)
=−∞,

lim
Δ→0

lim
K→∞

sup
γ≤T

1
K

logP

(
σ√
K

sup
t≤Δ

∣∣∣∣
∫ γ+t

γ

√
xKs dBs

∣∣∣∣≥ η, sup
s≤T

xKs ≤ C

)
=−∞.

(5.13)
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The first is obvious while the second is equivalent to

lim
Δ→0

lim
K→∞

sup
γ≤T

1
K

logP

(
sup
t≤Δ

IT ,C
∣∣MK

γ+t −MK
γ

∣∣≥ η

)
=−∞, (5.14)

where It,C = I{sups≤t xKs ≤C}, t ≤ T .
Set NK

t =MK
γ+t −MK

γ and notice that (NK
t ,F B

γ+t)t≥0 is a local martingale with the vari-

ation process 〈NK〉t = (σ2/K)
∫ γ+t
γ xKs ds.

Further, the use of IT ,CN
K
t = IT ,C

∫ t
0 Is,CdN

K
s simplifies (5.14) to

lim
Δ→0

lim
K→∞

sup
γ≤T

1
K

logP

(
sup
t≤Δ

∣∣∣∣
∫ t

0
Is,CdN

K
s

∣∣∣∣≥ η

)
=−∞. (5.15)

The local martingale NK ,C
t := ∫ t

0 Is,CdN
K
s possesses the variation process

〈
NK ,C〉

t =
∫ t

0
Is,Cd

〈
NK

〉
s =

σ2

K

∫ t

0
Is,Cx

K
s ds, (5.16)

that is, d 〈NK ,C〉t ≤ (σ2C/K)dt.
Now, we are able to verify (5.15) with the help of stochastic exponential technique. Let

zt(λ)= eλN
K ,C
t −(λ2/2)〈NK ,C〉t , λ∈R. (5.17)

Since zt(λ) is a continuous local martingale and supermartingale too, for any stopping
time θ, Ezθ(λ) ≤ 1. Let θ = inf{t ≤ Δ : NK ,C

t ≥ η}. Taking into account that {θ ≤ Δ} =
{NK ,C

θ ≥ η}, write 1≥ EI{θ≤Δ}zθ(λ). The value zθ(λ) is evaluated below on the set {θ ≤ Δ}
as follows: with λ > 0 and 〈NK ,C〉θ ≤ (σ2C/K)θ ≤ (σ2C/K)Δ,

zθ(λ)≥ eλη−(λ2σ2C/2K)Δ. (5.18)

Therefore, logP(θ ≤ Δ) ≤ −[λη− (λ2σ2C/2K)Δ] and the choice of λ = Kη/σ2CΔ pro-
vides

1
K

logP(θ ≤ Δ)≤− η2

2σ2CΔ
−−→
Δ→0

−∞. (5.19)

It is clear that the same result remains valid for θ = inf{t :−NK ,C
t ≥ η}. Combining both,

we obtain (5.15).
(ii)Verification. The upper bound. For u0 = 1 or dut � dt, the proof is obvious. For u0 =

1 and dut = u̇tdt, the stochastic exponential technique is applicable. With an absolutely
continuous deterministic function λ(t), let us introduce a continuous martingale Mt and
its predictable variation process 〈M〉t:

Mt = σ√
K

∫ t

0
λ(s)

√
xKs dBs, 〈M〉t = σ2

K

∫ t

0
λ2(s)xKs ds. (5.20)
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It is well known that the stochastic exponential zt = eMt−0.5〈M〉t is a local martingale and a
supermartingale too with EzT ≤ 1. The use of this property implies

1≥ EI{supt≤T |xKt −ut|≤δ}zT . (5.21)

The next helpful step of the proof gives a deterministic lower bound for zT on the set
{supt≤T |xKt −ut| ≤ δ} =: A. By (1.13), Mt =

∫ t
0 λ(s)(dxKs −αxKs ds), so that

logzT =
∫ T

0
λ(s)

(
dxKs −αxKs ds

)− σ2

2K

∫ t

0
λ2(s)xKs ds

=
∫ T

0

[
λ(s)

(
u̇s−αusds

)− σ2

2K
λ2(s)us

]
ds

+
∫ T

0
λ(s)d

(
xKs −us

)=
[
λT

(
xKT −uT

)−
∫ T

0

(
xKs −us

)
λ̇tds

]

−
∫ T

0

[
λ(s)α

{
xKs −us

}
+

σ2

2K
λ2(s)

{
xKs −us

}]
ds.

(5.22)

Now, by taking λ(s)= Kθ(s), we find a lower bound of zT on the set Aδ := {supt≤T |xKt −
ut| ≤ δ},

logzT ≥ K
∫ T

0

[
θ(s)

(
u̇s−αus

)− σ2

2
θ2(s)us

]
ds

− δK
[∣∣θT

∣∣ +
∫ T

0

(∣∣θ̇s
∣∣ +

∣∣αθ(s)
∣∣ +

σ2θ2(s)
2

)
ds

]
.

(5.23)

This lower bound jointly with (5.21) implies the following upper bound: for any abso-
lutely continuous deterministic function θ(s),

lim
δ→0

lim
K→∞

1
K

logP
(
Aδ

)≤−
∫ T

0

[
θ(s)

(
u̇s−αus

)− σ2

2
θ2(s)us

]
ds. (5.24)

Since us is only nonnegative, it makes sense, for computational convenience, to use a
corrected upper bound, with ε > 0,

lim
δ→0

lim
K→∞

1
K

logP
(
Aδ

)≤−
∫ T

0

[
θ(s)

(
u̇s−αus

)− σ2

2
θ2(s)

(
us + ε

)]
ds. (5.25)

If u̇t is absolutely continuous function, a choice of θ(s)= (u̇s−αus)/σ2(us + ε) provides

lim
δ→0

lim
K→∞

1
K

logP
(
Aδ

)≤− 1
2σ2

∫ T

0

(
u̇s−αus

)2

us + ε
ds

−→ − 1
2σ2

∫ T

0

(
u̇s−αus

)2

us
ds, ε−→ 0.

(5.26)
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In general case, one can choose a sequence θn(s), n≥ 1, of absolutely continuous func-
tions such that

lim
n→∞

[
θn(s)

(
u̇s−αus

)− σ2

2
θ2
n(s)

(
us + ε

)]

= sup
φ∈R

[
φ
(
u̇s−αus

)− σ2

2
φ2(us + ε

)]= 1
2σ2

(
u̇s−αus

)2

us + ε
.

(5.27)

Hence, for sufficiently large n, [θn(s)(u̇s−αusds)− (σ2/2)θ2
n(s)(us + ε)]≥ 0. Then, due to

(5.25) being valid with θ(s) replaced by θn(s), and Fatou’s theorem, we find that

lim
δ→0

lim
K→∞

1
K

logP
(
Aδ

)≤− lim
n→∞

∫ T

0

[
θn(s)

(
u̇s−αus

)− σ2

2
θ2
n(s)

(
us + ε

)]
ds

≤−
∫ T

0
lim
n→∞

[
θn(s)

(
u̇s−αus

)− σ2

2
θ2
n(s)

(
us + ε

)]
ds

=− 1
2σ2

∫ T

0

(
u̇s−αus

)2

us + ε
−→ − 1

2σ2

∫ T

0

(
u̇s−αus

)2

us
, ε−→ 0.

(5.28)

(iii)Verification. The proof of

lim
δ→0

lim
K→∞

1
K

logP
(

sup
t≤T

∣∣xKs −us
∣∣≤ δ

)
≥− 1

2σ2

∫ T

0

(
u̇t −αut

)2

ut
dt (5.29)

is done in three steps.
(1) It suffices to analyze the case

∫ T
0 ((u̇s−αus)2/us)ds <∞, which enables us to con-

sider only those test functions that remain zero after arriving at zero. In other words,
we will give the proof of (5.29) for absolutely continuous u· with u0 = 1 and (ut > 0)t<T ,
uT ≥ 0.

(2) Set τC = inf{t ≤ T : xKt ≥ C}, where inf{∅} =∞ and notice that if for any C > 0

lim
δ→0

lim
K→∞

1
K

logP

(
sup

t≤T∧τC

∣∣xKs −us
∣∣≤ δ

)
≥− 1

2σ2

∫ T

0

(
u̇t −αut

)2

ut
dt, (5.30)

then (5.29) holds. This can be seen as follows. Since

Aδ ⊇
{

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ

}
∩ {

τC =∞
}

=
{

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ

}
\
{

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ

}
∩ {

τC ≤ T
}

,

(5.31)

we have {τC ≤ T}∪Aδ ⊇ {supt≤T∧τC |xKt −ut| ≤ δ}, so that

2
[
P
(
Aδ

)∨P
(
τC ≤ T

)]≥ P
(

sup
t≤T∧τC

∣∣xKs −us
∣∣≤ δ

)
. (5.32)
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Hence, due to (5.30),

lim
δ→0

lim
K→∞

1
K

logP
(
Aδ

)∨
lim
C→∞

lim
K→∞

1
K

logP
(
τC ≤ T

)

≥− 1
2σ2

∫ T

0

(
u̇t −αut

)2

ut
dt,

(5.33)

and it is left to recall that {τC ≤ T} = {supt≤T x
K
t ≥ C} and to refer to (5.3).

(3) By (1),
∫ T

0 u̇2
t dt <∞. We proceed with the verification of (5.30). Define a continu-

ous martingale Mt and its variation process 〈M〉t: with ε > 0,

Mt =
∫ t∧τC

0

√
K
u̇s−αxKs

σ
√
xKs + ε

dBs, 〈M〉t =
∫ t∧τC

0
K

(
u̇s−αxKs

)2

σ2
(
xKs + ε

) ds. (5.34)

By definition of τC, we have 〈M〉T ≤ (2K/σ2ε)
∫ T

0 (u̇2
t + α2C2)ds <∞, so that the stochas-

tic exponential (zt,F B
t ,P)t≤T with zt = eMt−0.5〈M〉t is a uniformly integrable martingale,

EzT = 1. We use the latter property to define a new probability measure P̄ on (Ω,F B
T ) by

letting dP̄ = zTdP and applying

P
(

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ

)
=

∫

{supt≤T∧τC |x
K
t −ut|≤δ}

z−1
T dP̄ (5.35)

for verification of (5.30). This approach heavily uses a semimartingale description of the
processes (xKt ,F B

t , P̄)t≤T and (z−1
t ,F B

t , P̄)t≤T . We begin with the process (Bt,F B
t , P̄)t≤T .

The random processes (Bt,F B
t ,P)t≤T and (zt,F B

t ,P)t≤T are continuous martingales and,
in particular,

dzt = I{τC≥t}zt
√
K
u̇t −αxKt

σ
√
xKt + ε

dBt. (5.36)

Hence, the covariation process for zt, Bt is defined as

〈z,B〉t =
∫ t∧τC

0
zs
√
K
u̇s−αxKs

σ
√
xKs + ε

ds. (5.37)

It is well known (see, e.g., [17, Chapter 4, Section 5]) that the random process (B̄t,F B
t ,

P̄)t≤T with

B̄t = Bt −
∫ t

0
z−1
s d〈z,B〉s = Bt −

∫ t∧τC

0

√
K
u̇s−αxKs
σ(xKs + ε)

ds (5.38)
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is a Brownian motion. Consequently, we find that, P̄-a.s.,

xKt = 1 +
∫ t

0
I{τC≥s}u̇sds+

∫ t

0
αxKs

[
1− I{τC≥s}

(
xKs

xKs + ε

)0.5
]
ds+

∫ t

0

σ√
K

√
xKs dB̄s,

logz−1
t =−

∫ t∧τC

0

√
K
u̇s−αxKs

σ
√
xKs + ε

dB̄s− 1
2

∫ t∧τC

0
K

(
u̇s−αxKs

)2

σ2
(
xKs + ε

) ds.

(5.39)

Now, we evaluate from below the value 1/K logz−1
T on the set {supt≤T∧τc |xKt −ut|}. Write

1
K

logz−1
T ≥− 1

2σ2

∫ T

0

(
u̇s−αus

)2

us
ds+h(C,ε,δ)

− 1√
K

sup
t≤T

∣∣∣∣
∫ t∧τC

0

u̇s−αxKs

σ
√
xKs + ε

dB̄s

∣∣∣∣,

(5.40)

where h(C,ε,δ) →
δ→0

0. Therefore, (5.39) can be transformed into (here η is a positive con-

stant)

1
K

logP
(

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ

)

≥− 1
2σ2

∫ T

0

(
u̇s−αus

)2

us
ds+h(C,ε,δ)

+
1
K

log P̄
(

sup
t≤T∧τC

∣∣xKt −ut
∣∣≤ δ,

1√
K

sup
t≤T

∣∣∣∣
∫ t∧τC

0

u̇s−αxKs

σ
√
xKs + ε

dB̄s ≤ η
∣∣∣∣
)
.

(5.41)

This lower bound makes it possible to claim that (5.30) holds true, provided that

lim
K→∞

P̄
(

sup
t≤T

∣∣∣∣
∫ t∧τC

0

u̇s−αxKs

σ
√
xKs + ε

dB̄s

∣∣∣∣ >
√
Kη

)
= 0, (5.42)

lim
ε→0

lim
K→∞

P̄

(
sup

t≤T∧τC

∣∣xKt −ut
∣∣ > δ

)
= 0. (5.43)

Since I{τs≥t}(u̇s−αxKs )2/σ2(xKs + ε) ≤ (|u̇s|+C)2/σ2ε, the Doob inequality (here Ē is the
expectation relative to Ē)

Ē

(
sup
t≤T

∣∣∣∣∣

∫ t∧τC

0

u̇s−αxKs

σ
√
xKs + ε

dB̄s >
√
Kη

∣∣∣∣∣

)
≤ 4

Kη2

∫ T

0

(∣∣u̇s
∣∣ +C

)2

σ2ε
ds, (5.44)

jointly with (3), establishes (5.42).
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Due to the first part of (5.39), the proof of (5.43) is reduced to the verification of

lim
ε→0

sup
0≤x≤C

x

[
1−

(
x

x+ ε

)0.5
]
= 0, (5.45)

which is obvious, and

lim
K→∞

P̄

(
sup
t≤T

∣∣∣∣∣

∫ t∧τC

0

√
xKs dB̄s >

√
Kη

∣∣∣∣∣

)
= 0, (5.46)

which is similar to the proof of (5.42). �
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