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This paper is devoted to showing the null exact controllability for a class of parabolic
equations with equivalued surface boundary condition. Our method is based on the du-
ality argument and global Carleman-type estimate for a parabolic operator.
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1. Introduction

Let T >0, Q C R" (n € N) be a given bounded domain, 0Q =Ty UT; (I} # @) (where
Ty is the interior boundary and I'; the outer boundary), Ty N T} = &. For simplicity, we
assume that Ty, T} € C* and w # @ is a given subdomain of Q. Denote the characteristic
function of w by y., and the unit outward normal vector of Q by (n,...,n,). Put Q =
Qx(0,T), Q¥ =wx(0,T),and X = dQ x (0, T). Let a;;(x) € C%(Q) satisfy ajj = aj;, and
for some A > 0, it holds that

> kit = AlER, Y (6,8) € QxR (1.1)
bj

Here and henceforth, we denote 3./, _; simply by 3; ;.
We consider the following controlled parabolic equation with equivalued surface
boundary condition:

d 0
2 2. ix (aij(x)_y> = Yo(x)b inQ,
i,j

an

Y, =0, ylr, =m(t), (1.2)
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2 Null controllability of a nonlocal parabolic equation

where y = y(x,t) is the state, b = b(x,t) is the control, m(t) € L?(0,T) is an unknown
function which depends only on the time variable t, y; is the initial state, and

Y N
S~ %a,](x) >, ;. (1.3)

In system (1.2), the state space is chosen as L*(Q), and the control space is L*(w). Let

Y 2 {y e (0, TLA(©) (VL2 (0, T;H () | ylr, =0, ylr, = m(-) € L(0,T) .
(1.4)

It can be shown that for any y, € L*(Q) and b € L*(w X (0, T)), system (1.2) admits one
and only one weak solution y € Y (cf. [5, 6, 8]).

The null exact controllability problem of (1.2) is formulated as follows: for any given
yo € L*(Q), find a control b(x,t) € L?(w % (0, T)) (if possible) such that the weak solution
y(+) € Y satisfies y(T) = 0.

There are many concrete physical backgrounds for problem (1.2), for example, the
problem of resistivity well logging, the unstable temperature field around an underground
electric cable, and so on (cf. 5, 6]).

In recent years, great progress has been made in the exact controllability problem of the
linear and semilinear partial differential equations with Dirichlet or Neumann bound-
ary condition, or other sorts of pointwise boundary value conditions ([1-4, 7, 9], and
the references cited therein). However, to the author’s best knowledge, there is no refer-
ence devoted to the same problem for the parabolic equations but with a spatial nonlocal
boundary condition. In this paper, we will show the null exact controllability for system
(1.2). By duality, the problem is reduced to the obtention of an observability inequality
for the corresponding adjoint equation, which in turn is derived by means of a global
Carleman-type estimate. Our method is stimulated by that in [4].

The rest of this paper is organized as follows. In Section 2, we state some preliminary
results and our main results. The final section, Section 3, is devoted to the proof of our
main theorem.

2. Main result

Throughout this paper, C denotes a positive constant depending only on A, g, Q, T, and
w, which may change from line to line.

To begin with, we fix wy to be a nonempty open subset of Q such that @y C w. Let
¥ € C*(Q) satisfy y >0 in Q, y = 0 on 9Q, and |Vy(x)| >0 for all x € Qp = Q\w.
The existence of function y was proved in [7]. In this paper, we further assume that the
following technical condition holds:

2
(Z—IZ) Zaijninjlro = Const. (2.1)
ij

This technical condition admits several interesting cases such as Q= {x € R" | r < |x| < R}
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for some 0 <7 <R < o0, g;i(x) = 6ij, and dy/on = Const on I'g. In this case, one may
choose y(x) = (|x|> = r*)(R? — |x]?).
The main result in this paper is stated as follows.

THEOREM 2.1. Under the assumption (2.1), system (1.2) is null exact controllable.

By means of the usual duality argument (see, e.g., [3, 9]), the proof of Theorem 2.1
is easily reduced to the obtention of an observability inequality for the following adjoint
system of system (1.2):

ou d ou .
—Lu __g_ > aTc,-(“"f'(x)ach) =0 inQ,
ulr, =0, ulp, =c(t), (2.2)

J I gs=0,  ueT)=u(T) inQ,

I, Ona

where u(T) € L*(Q), and similarly to system (1.2), c¢(-) € L*(0,T) is an unknown func-
tion. More precisely, we need to show the following.

THEOREM 2.2. Under the assumption (2.1), there is a constant C > 0 such that solutions
u €Y of system (2.2) satisfy

H“(O)”LZ(Q) = C||”(x)t)||L2(wX(o,T))- (2.3)

Remark 2.3. Tt would be quite interesting to drop the technical condition (2.1). But this
is by now an unsolved problem.

3. Proof of the main theorem

It suffices to prove Theorem 2.2. To this end, for any given parameters A and y, we set

a(x,t) = (H(T — 1)) " (eV™ — 2llcm),
(3.1)
o(xt)= (LT —1)) Loy () 0(x, t) = M),

Clearly, Theorem 2.2 is an easy consequence of the following global Carleman-type
estimate for solutions of (2.2).

THEOREM 3.1. Let (2.1) hold. Then there exist a constant yy and a function Ay : Rt — (1, 00)
such that for any y > uy and A > A, (u), solutions u € Y of system (2.2) satisfy

)PJ 92g03u2dxdt+/lj 92¢|Vu|2dxdt+)t_1j 029 12 + (Au)|dxdt
Q Q Q (52)
<C\V ngo w*dxdt.

The rest of this section is devoted to prove Theorem 3.1. For this, we need the following
pointwise estimate for parabolic operator Lu, which is a special case of [4, Lemma 3.1].
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LEmMa 3.2. Let u,a € C2(R™') and A > 0 be given. Put 6 = e and v = Qu. Then it holds
that

207,12 2 2 2 12 2
0?|Lu|* = [—Mctv —z(a,-jvxivxj+)t(a,-j)xjaxiv + A0 0, v — A a0 v )]

i,j t

+> [2 D (aijvve + Aajjon, o)
; i

2
+21 Z (aijafm“xi VxeVx,, t Qi (afm“xgxm )x,-v =20 Apm 0, Vx,; Vx,,
i

2
— 2ijApm Oy, VVx; T A Ao Oy, Oy, V

2 42 2
+)Laij(agm)xmax[ocxmv — A0 A0, &, V )]

xj
{)wctt AZ (aij), ocx, +(a,-jocx,,xj)t—/\(ocijocxiocxj)t

_ ZA(aij“xl‘Xt)xj + 4)La,-jocx[x]. (Xt]

+21 Z [ZA(aij)xjaé’m‘xxi“Xexm_(aij(ﬂfm“xexm)x}-)x,_A((aem)xmaij“xi“xe)xf
i,j,6,m '

-2 (aij ApmOx;x; Ay )Xm - 2/\aij Aem Qxix; Koxpxy,
2 2 2
A% (iAo 0, 0 O, ), — 207 i Ao O, ocxgxm]}v

+21 Z [Zaij(agmocxk)xjvxivxm — (aijagm)xmocxevxivxj +a,-jagm(xxgxmvxivxj].
i,j,6m

(3.3)

Proof of Theorem 3.1. The main idea of our proof is to use the pointwise estimate in
Lemma 3.2. The proof is divided into several steps.
Step 1. Recall that 6 = €, v = Ou. We claim that

I GZ(Lu)zdxdt—J didexdt+C)t3y3J o*Vidxdt + CAyi J oV dxdt
Q Q Q Q (3.4)
zzAZmﬁJ ¢3|Vw|4v2dxdt+2A2Ay2J 0|V Vy | 2dxdt,
Q Q
where V = (V,Va,..., V,), and
Vj=- ZZ (aijvave + A aijoa0v?)

2
+21 Z (@ijAem 0t Vi, Vi, — 20ijAem 0, Vi, Vs, +Adij (agm)xm Oy, V (3.5)
i,6,m .

2 2 2
= A% aij Ao Oy, Oy O,V + Ay j Qg O, Oy, V

2
= 20ij@em Oy, Vi + Qi (Gem g, ) V7).
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By the definition of @ and ¢ in (3.1), it is easy to see that
IQ [ —dagv? + IZ]: (aijvs vy, +)L(aij)xjocxiv2 - )Lzaijocxicxﬁj + A 0, vz)} tdt =0. (3.6)

Let us estimate the last three “energy” terms of first order in the right-hand side of
(3.3). First,

‘JQML Z a,-j(agmocxe)xjvxivxmdxdt

i,j,6,m

JQ 41 Z (aij (afm)xjHWXe‘Pfo Vi, T GijAem (W/’Xexj?’ + Y, Yx; @) Vx;Vx, ) dxdt

i,j,&,m
< C/\‘uj @|Vv2dxdt+ C)Lyzj @|Vv|2dxdt,
Q Q
(3.7)

where C is a positive constant for A large enough.
Next, it is easy to see that

' —J 21 Z (@ijaem), O, VyVxdxdt
Q m

i,j,¢,m

< C)L‘u[ (pIVvlzdxdt,
Q

J 2) Z i Aem Oy, ViV, dx At
bitm (3.8)

= J 2 Z (,uaija(.’megxm(Pin Vy, +y2aijaemwx€ Yy, (pvx,.vx].)dx dt
Q

i,j,C,m
> —CAyJQ¢|Vv|2dxdt+2Ay2A2 JQ¢|W|2|W|2dxdt.

It remains to deal with the “energy” term of zero order, that is, fQ{- -« 12dxdt, in the
right-hand side of (3.3). Similarly to [4], we have

== Jl 2A3M3 z (2aija€m1//xi Yx; Yxexn §03V2 + ZWijaemV’xi Yx; Vg Wy (p3v2

ivjotm
- (aijaé’mll’xi‘//xj' ‘//Xe)xm‘PSVZ —3uaijaemVx, Y, Y, Y, @ V) dx dt

> —cmﬁj go3v2dxdt+2/13y4A2J 0|Vl v2dxdt.
(3.9)
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Therefore, for large A, the following estimate holds:
J {/\(xn )LZ (aij), ocxx = Maijo o), + (i@, ) — ZA(aijaxioct)xj + 400 0 ]

+2A Z [ (@ijAom Oy, Oy 0y ) . — M @ij Al O O, )., _/\((Wm)xmaij“xi“xj)xj
i,j,€;m
2
+2A(a,~j)xjagmocxiocxgxm — 207G Qpm Oy, Ol O, x,,

2
_ Zlaijafm“xix] Kxpx,, — (aij (afm(xxexm )xj >x ] }V dxdt

> —CAVy? J;Z P> vidxdt+ 2)L3//¢4A2I @’ |Vy |V dxdt.
Q

(3.10)

Step 2. From (3.4), one finds

C(J 02 (Lu) dxdt - j div dedt+)t3y3j (p3v2dxdt+/1ptzj (pIVvlzdxdt)
Q Q Q Q (3.11)
> /\3y4j @’ |Vy v dxdt + Ay J @|Vy*|Vv|2dxdt.
Q Q
Set

QY = wyx (0, T). (3.12)

Noting that |Vy/(x)| >0 for all x € Qg = Q \ wy, by (3.11), it is easy to see that
c(f 02 (Lu) dxdt - J div dedt+/13/43j q)3v2dxdt+A‘uZJ (pIVvlzdxdt)
Q Q Qo Qo

> mﬁj ¢3v2dxdt+)w2f o Vy[2dxdt.
Q Q
(3.13)

Returning v to e**u in (3.13), we arrive at
C(J 02 (Lu) dxdt J didexdt+)L3J 92<p3u2dxdt+lj 92<,)|W|2dxdt)
Q Q Qo Qo

> /\3J 92<p3u2dxdt+)tj 02| Vul2dxdt.
Q Q
(3.14)
Step 3. The purpose of this step is to get rid of the fourth term in the left-hand side of

(3.14). To this end, we multiply Lu by y0*¢u and then integrate it over Q, where ¥ €
Cy’ (w), ¥ = 1in wy, and § = 0 in Q\w. Then, we obtain

3 X92¢udxdt+J Z (alj )37”);792¢udxdt=J (Lwjblgudxdt.  (3.15)
j Q
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Using integration by parts, it is easy to deduce from (3.15) that
A JQ% 02| Vul2dxdt < c( JQ 02 (Lu) dxdt + 1? JQw 92<p3u2dxdt). (3.16)
Combining (3.13) and (3.16), we end up with

C(J ez(Lu)2dxdt+A3J 92(p3u2dxdt—J didexdt)
Q Qv Q
(3.17)
z}ﬁj 92¢3u2dxdt+AJ 02¢| Vul2dxdt.

Q Q

Step 4. This step is to estimate the “divergence” term div V. Denote the terms on the
right-hand side of (3.5) by I;, i = 1,2,...,9. First,

L+D = JQZ (22 (a,-jvx,.vt+/12aijocxioc,v2))
j i xj

1

T T
=/12yL 92¢tc2(t)dtjr Zaiij,.njds—ZﬂyJO ngooctcz(t)cltjr > ajjyyn;ds.
0 ij 0 i,j
(3.18)

Next,

L+ 15+ 1o =JQ > <Z)L D (@ijaem0t Vi, Vx,, — 201 AemOix, Vs, Vi, —)Lza,-jagmocx,.ocxmvz)> dxdt
j x

it,m J

T
= —4%° JO <p3c2(t)02dtL D i Aem Y Y Y, 1S

0ij.em

T
— 4\’ L g0292c(t)dtjr D, Gijaem Y, Y, njds

04,j,6,m

T
—ZJ Ay(p@zdtj Z i Apm Y, Ux, U, 1 5.
0 r

i,j,€;m

(3.19)

Further,

Iy = J 2. <2Azaij(a€m“xgxm)x.v2) dxdt
Q j i '

Xj

T
- ZA‘uzJ Hz(pcz(t)dtj > aij(aem) , Yx, Y, njds
0 I !

Vi j.em

T
+2/\yf 92¢c2(t)dtj Z aij (aem) o W1 jds
0 T !

04,j,6,m

T
+2Ay3j Gz(pcz(t)dtj D, aijaem Y Y, Y, 1ds
0 T

04,j,8,m
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T
+ 202 J 92<p62(t)dtj 2. Gijfem Yo Y, s
0

0ij,6m

T
+ 2042 J 92<p62(t)dfj 2. @ijemYsYsx,jds
0 T

04j,6,m

T
+2A‘uI 92¢c2(t)dtj Z aijafml//xmxenjds
0 T

04,j,6,m

T
ZCAySI Gz(pcz(t)dtj Z i Aem Vs, Y, Y, 1 5.
0

04,j,6,m

(3.20)

Further,

Iy = —J Z (4/1 Z aijagmocmmvvxi) dxdt
Q B
j xj

it,m

T
= 4%y JO 92¢2c2(t)dtj D ijAem Y Y, Y, 1

0ijem

T
_4AH2 JO 92¢252(t)dtfr Z aijat’mlllxiw;vcexmnjds (3.21)

Vijem

T
_4AM2I0 QZ(Pc(t)dtJ Z aijaeml//le//xmuxinjds

04,j,6,m
T
—4A/,tj 02g0c(t)dtj Z i Apm Vxpx, U 1 5.
0 T

04,j,,m

Finally,

L+ = JQZ <2A2 > (aijaem0ty, 0y, v +a,'j(aem)xM(xx,.(xxmv2)> dxdt
J x

it,m J

T
:212[43 _Io GZ(PZCZ(t)dt,L‘ Z aijafmvfx,-Wngxmnjds

0i,j,6,m

T
+2)L2‘u2j0 qu)zcz(t)dfjr z ijAem VY, Vg, 1 AS

0i,j,6m

(3.22)

T
+2)L2;A2L 62g1)2c2(t)dtJ’r > aij(aem) . VW, 1jds.

04,j,6,m

Now, combining (3.18)—(3.22) and using the technical condition (2.1), we conclude
that, for large A and y, it holds that

T T
J divVdxdt > Oy J 92<p3cz(t)dt—4/\yAJ 92<pdtj Vul’ S agysnids.  (3.23)
Q 0 0 T ij
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Step 5. It remains to estimate [,(Ag) 16 (u7 + > (aijuy,)x;)*dxdt. For this, we observe
that

2
2
(vt +> (a,-jvx,.)xj> < C[,\Z(x?vz +> (A2 (aij);, R+ Vadal, vV
* * (3.24)
2.2

422 2.2,92.2 2 2 2
+Majaz o vV +A a,-jocijocxivxj+(a,-j)xjvxi) .

This implies

(Ap)~! (Vr +> (a,»jvx,.)xj>

i,j

2

- 2
<C(Ag)! [Azatzvz + Z </\2 (aij)xj‘xgzci"z ‘*‘/‘Zaizj‘xazcixj v (3.25)
i )

422 2.2 92,2 .2 2 2 2.2
+Majay o vV + A ageg o vy + (“ij)xj"xi)]
< C(Au*e’v? + dug|Vv|?).

Noting that

ZJ > () wi(aijvy,) , dxdt
Q ij 7
ZZZ(J (aij(A(P)’IinV[)xjdxdt—ZJ aij(A¢);.le,thxdt+J 05 (97 vy vy it
ij \7Q Q i Q

+ J (aij)  (Ap) v vy dxdt + J aij ((A(p)*lvt)x‘vxjdxdt»
Q Q '
(3.26)

we get
2J AQ) 'S (aym), vddt = %J (A(p)’lvfdxdtnLC)LJ o Vv |2dxdt
Q Q Q

ij
(3.27)

T
+/\‘uI Hoc,cz(t)dtj Z aij Y, n;ds.
0 T

0 i,j
By (3.24)—(3.27), we obtain that
J (Afp)fl[vtz-k(vx,xj)z]dxdt
Q

sC(J(Lu)ZezdxdtJnPJ /A3<p3v2dxdt+/lj y(pIVvlzdxdt) (3.28)
Q Qu Qw :

T
+ij Goctcz(t)dtj > aijyyn;ds.
0 T

0 l,]
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This gives
J (@) [v2 + (Av)?]dxdt
Q
< C(J (Lu)zﬁzdxdt+/l3j ;43(p3v2dxdt+/lj y(pIVvlzdxdt) (3.29)
Q Qu Qw :

T
+Ay[ Gatcz(t)dtj > aijyyn;ds.
0 T

0 i,j

It is easy to see that the last term of the above inequality can be absorbed by (3.23) for
large A and p. Finally, replacing v by e**u and combining (2.2), (3.16), (3.17), (3.23), and
(3.29), we get the desired estimate (3.2). This completes the proof of Theorem 3.1. O
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