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To derive a Baum-Katz-type result, we establish a Chover-type law of the iterated loga-
rithm for the weighted sums of ρ∗-mixing and identically distributed random variables
with a distribution in the domain of a stable law. Our result obtained not only generalizes
the main results of Peng and Qi (2003) and Qi and Cheng (1996) to ρ∗-mixing sequences
of random variables, but also improves them.
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1. Introduction

Let {Xi, i ≥ 1} be independent and identically distributed (i.i.d.) with symmetric stable
distributions, which belong to the domain of normal attraction and nongeneration. So,
their characteristic functions are of the forms:

Eexp
(
itXi

)= exp
(−|t|α), t ∈ R, i≥ 1. (1.1)

Chover [4] has obtained that

limsup
n→∞

(∣
∣∑n

i=1Xi

∣
∣

n1/α

)1/ log logn

= e1/α a.s. (1.2)

We call this a Chover-type LIL (laws of the iterated logarithm). This type LIL has been
established by Vasudeva and Divanji [13], Zinchenko [14] for delayed sums, by Chen
and Huang [3] for geometric weighted sums, and by Chen [2] for weighted sums. Qi
and Cheng [11] extended the Chover-type law of the iterated logarithm for the partial
sums to the case where the underlying distribution is in the domain of attraction of a
nonsymmetric stable distribution (see below for details).

Let Lα denote a stable distribution with exponent α∈ (0,2). Recall that the distribution
of X is said to be in the domain of attraction of Lα if there exist some constants An ∈ R
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and Bn > 0 such that

Sn−An

Bn

d
Lα. (1.3)

Under (1.3), Qi and Cheng [11] and Peng and Qi [10] showed that

limsup
n→∞

(∣
∣∑n

i=1Xi−An

∣
∣

Bn

)1/ log logn

= e1/α a.s. (1.4)

It is well known that (1.3) holds if and only if

1−F(x)= C1(x)l(x)
xα

, F(−x)= C2(x)l(x)
xα

, for x > 0, (1.5)

where, for x > 0, Ci(x)≥ 0, limx→∞Ci(x)= Ci, i= 1,2, C1 +C2 > 0, and l(x)≥ 0 is slowly
varying in the sense of Karamata function, that is,

lim
t→∞

l(tx)
l(t)

= 1, for x > 0. (1.6)

By Lin et al. [6, page 76, Exercise 21], we have Bn = (nl(n))1/α.
For nonempty sets S,T ⊂�, we define �S = σ(Xk, k ∈ S). And we define the maximal

correlation coefficient ρ∗n = supcorr( f ,g) where the supremum is taken over all (S,T)
with dist(S,T)≥ n and for all f ∈ L2(�S), g∈L2(�T), and dist(S,T)= infx∈S, y∈T |x− y|.

A sequence of random variables {Xn, n≥ 1} on a probability space {Ω,�,P} is called
ρ∗-mixing if

lim
n→∞ρ

∗
n = 0. (1.7)

As for ρ∗-mixing sequences of random variables, one can refer to Bryc and Smolenski
[1], who established bounds for the moments of partial sums for a sequence of random
variables satisfying

lim
n→∞ρ

∗
n < 1. (1.8)

Peligrad [7] established a CLT. Peligrad [8] established an invariance principle. Peligrad
and Gut [9] established Rosenthal-type maximal inequalities and Baum-Katz-type re-
sults. Utev and Peligrad [12] established an invariance principle of nonstationary se-
quences.

To derive a Baum-Katz-type result, the main purpose of this paper is to establish a
Chover-type law of the iterated logarithm for the weighted sums of ρ∗-mixing and iden-
tically distributed random variables with a distribution in the domain of a stable law. Our
result not only generalizes the main results of Peng and Qi [10] and Qi and Cheng [11]
to ρ∗-mixing sequences of random variables, but also improves them.

Throughout this paper, let h∈ B[0,1] denote that the function h is bounded on [0,1].
C will represent a positive constant though its value may change from one appearance to
the next, and an =O(bn) will mean an ≤ Cbn.
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2. The main results

In order to prove our results, we need the following lemma and definition.

Lemma 2.1 (Utev and Peligrad [12]). Let {Xi, i≥ 1} be a ρ∗-mixing sequence of random
variables, EXi = 0, E|Xi|p <∞ for some p≥2 and for every i≥1. Then there exists C=C(p),
such that

E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ C

⎧
⎨

⎩

n∑

i=1

E
∣
∣Xi

∣
∣p +

( n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭ . (2.1)

Definition 2.2 (Lin and Lu [5]). A function f (x) > 0 (x > 0) is said to be quasimonotone
nondecreasing, if

limsup
x→∞

sup
0≤t≤x

f (t)
f (x)

<∞. (2.2)

Here are our main results.

Theorem 2.3. Let {X ,Xi, i ≥ 1} be a ρ∗-mixing sequence of identically distributed ran-
dom variables. Let h be a bounded function on [0,1], continuous at x0 ∈ (0,1). Let Sn =∑n

i=1h(i/n)Xi, EX = 0, when α > 1. Let f (x) > 0 be quasimonotone nondecreasing and∫∞
1 (1/x f (x))dx <∞. Then under condition (1.3), for any ε > 0,

∞∑

n=1

n−1P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > ε

(
n f (n)l(n)

)1/α
)
<∞. (2.3)

Proof of Theorem 2.3. For any i≥ 1, defineX (n)
i =XiI(|Xi| ≤ an), S(n)

j =∑ j
i=1(h(i/n)X (n)

i −
Eh(i/n)X (n)

i ), where an = (n f (n)l(n))1/α. Then for any ε > 0,

P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > εan

)

≤ P
(

max
1≤ j≤n

∣
∣Xj

∣
∣ > an

)
+P

(

max
1≤ j≤n

∣
∣S(n)

j

∣
∣ > εan− max

1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

Eh
(
i

n

)
X (n)
i

∣
∣
∣
∣
∣

)

.

(2.4)

First we show that

1
an

max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

Eh
(
i

n

)
X (n)
i

∣
∣
∣
∣
∣−→ 0, as n−→∞. (2.5)
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In fact, (i) when 0 < α≤ 1, h∈ B[0,1]. For any positive integers n,N ,

1
an

max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

Eh
(
i

n

)
X (n)
i

∣
∣
∣
∣
∣

≤ 1
an

n∑

i=1

E
∣
∣h
(
i

n

)
X (n)
i

∣
∣≤ Cn

an

∫

|x|≤an
|x|dF(x)

≤ Cn

an
aN +

Cn

an

∫

aN<|x|≤an
|x|dF(x)=: C(A+B).

(2.6)

Since f (x) > 0 is a quasimonotone nondecreasing and by (1.5), we have, for n ≥ N , N
large enough,

B = n

an

n∑

k=N+1

∫

ak−1<|x|≤ak
|x|dF(x)≤ n

an

n∑

k=N+1

akP
(
ak−1 < |X| ≤ ak

)

≤ C
n∑

k=N+1

kP
(
ak−1 < |X| ≤ ak

)≤ CNP
(|X| ≥ aN

)
+C

∞∑

k=N
P
(|X| ≥ ak

)

≤ C
1

f (N)
+C

∞∑

k=N

1
k f (k)

≤ C
1

f (N)
+C

∫∞

N

dx

k f (k)
<
ε

4
.

(2.7)

It is obvious that for each given N ,

A≤ C
aN

(
f (n)

)1/α −→ 0, as n−→∞. (2.8)

So, for 0 < α≤ 1, we have (2.5).
(ii) When 1 < α < 2, using EXi = 0, h∈ B[0,1], and (1.5), when n→∞, we have

1
an

max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

Eh
(
i

n

)
X (n)
i

∣
∣
∣
∣
∣

= 1
an

max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

Eh
(
i

n

)
XiI
(∣∣Xi

∣
∣ > an

)
∣
∣
∣
∣
∣≤

1
an

n∑

i=1

E
∣
∣
∣h
(
i

n

)
Xi

∣
∣
∣I
(∣∣Xi

∣
∣ > an

)

≤ Cn

an
E|X|I(|X| > an

)= Cn

an

∫∞

an
P
(|X| ≥ x

)
dx = Cn

an

∫∞

an

Cl(n)
xα

dx

= n

an
Ca1−α

n = C

f (n)
<
ε

2
.

(2.9)

So, for 1 < α < 2, we also have (2.5). Hence (2.5) holds for 0 < α < 2.
By (2.4) and (2.5), we have that

P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > εan

)
≤

n∑

j=1

P
(∣∣Xj

∣
∣ > an

)
+P

(
max
1≤ j≤n

∣
∣S(n)

j

∣
∣ >

ε

2
an

)
, (2.10)
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for n large enough. Hence we need only to prove

I =:
∞∑

n=1

n−1
n∑

j=1

P
(∣∣Xj

∣
∣ > an

)
<∞,

II =:
∞∑

n=1

n−1P
(

max
1≤ j≤n

∣
∣S(n)

j

∣
∣ >

ε

2
an

)
<∞.

(2.11)

From (1.5), it is easily seen that

I =
∞∑

n=1

P
(|X| > an

)≤
∞∑

n=1

C

n f (n)
≤ C

∫∞

1

dx

x f (x)
<∞. (2.12)

By Lemma 2.1 and the fact that h∈ B[0,1], it follows that

II ≤ C
∞∑

n=1

n−1E max
1≤ j≤n

∣
∣S(n)

j

∣
∣2 1

a2
n
≤ C

∞∑

n=1

n−1 1
a2
n

( n∑

i=1

E
∣
∣
∣h
(
i

n

)
X (n)
i

∣
∣
∣

2
)

≤ C
∞∑

n=1

1
a2
n
E|X|2I(|X| ≤ an

)= C
∞∑

n=1

1
a2
n

∫

|x|≤an
x2dF(x)

= C
∞∑

n=1

1
a2
n

n∑

k=1

∫

ak−1<|x|≤ak
x2dF(x)≤ C

∞∑

k=1

a2
kP
(
ak−1 < |X| ≤ ak

) ∞∑

n=k

1
a2
n

≤ C
∞∑

k=1

kP
(
ak−1 < |X| ≤ ak

)≤ C
∫∞

1

dx

x f (x)
<∞,

(2.13)

which completes the proof of Theorem 2.3. �

Corollary 2.4. Under the conditions of Theorem 2.3,

limsup
n→∞

(∣∣Sn
∣
∣

Bn

)1/ loglogn

≤ e1/α a.s. (2.14)

Proof of Corollary 2.4. Notice that for any positive integer n, there exists an nonnegative
integer k, such that 2k ≤ n < 2k+1. And there exists a t ∈ [0,1), such that n= 2k+t. By (2.3),
we have

∞∑

k=0

2k+1−1∑

n=2k

(
2k+1− 1

)−1
P
(

max
1≤ j≤2k+t

∣
∣Sj

∣
∣ > ε

(
2k+1 f

(
2k+t)l

(
2k+t))1/α

)
<∞. (2.15)

Then

∞∑

k=0

P
(

max
1≤ j≤2k+t

∣
∣Sj

∣
∣ > ε

(
2k+1 f

(
2k+t)l

(
2k+t))1/α

)
<∞. (2.16)
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Then

max1≤ j≤2k+t

∣
∣Sj

∣
∣

(
2k+1 f

(
2k+t

)
l
(
2k+t

))1/α −→ 0 a.s. (2.17)

So
∣
∣Sn

∣
∣

(
n f (n)l(n)

)1/α ≤
max1≤ j≤2k+t

∣
∣Sj

∣
∣

(
2k+1 f

(
2k+t

)
l
(
2k+t

))1/α

(
2k+1 f

(
2k+t

)
l
(
2k+t

))1/α

(
n f (n)

)1/α

≤ 21/α max1≤ j≤2k+t

∣
∣Sj

∣
∣

(
2k+1 f

(
2k+t

))1/α −→ 0 a.s.

(2.18)

Then

limsup
n→∞

∣
∣Sn

∣
∣

(
n f (n)l(n)

)1/α = 0 a.s. (2.19)

Given ε > 0, let f (x)= log1+ε x. It is obvious that
∫∞

1 (1/x f (x))dx <∞. By (2.19), we have

limsup
n→∞

∣
∣Sn

∣
∣

(
nl(n) log1+ε n

)1/α = 0 a.s. (2.20)

Then

limsup
n→∞

(∣
∣Sn

∣
∣

B(n)

)1/ loglogn

≤ e(1+ε)/α a.s. (2.21)

Therefore

limsup
n→∞

(∣
∣Sn

∣
∣

B(n)

)1/ loglogn

≤ e1/α a.s., (2.22)

which completes the proof of (2.14). �

Remark 2.5. Corollary 2.4 generalizes the estimate

limsup
n→∞

(∣
∣Sn

∣
∣

Bn

)1/ loglogn

≤ e1/α a.s. (2.23)

obtained in Peng and Qi [10, Theorem 2.1] to ρ∗-mixing sequences of random variables.

Corollary 2.6. Under the conditions of Corollary 2.4, letting h(x)≡ 1, yields

limsup
n→∞

(∣
∣∑n

i=1Xi

∣
∣

Bn

)1/ loglogn

≤ e1/α a.s. (2.24)

Remark 2.7. Corollary 2.6 generalizes in Qi and Cheng [11, Theorem 1.1] to ρ∗-mixing
sequences of random variables.
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