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For a d-dimensional array of random elements {Vn, n ∈ Zd+} in a real separable stable
type p (1≤ p < 2) Banach space, a mean convergence theorem is established. Moreover,
the conditions for the convergence in mean of order p are shown to completely charac-
terize stable-type p Banach spaces.

Copyright © 2006 Le Van Thanh. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Zd+, where d is a positive integer, denote the positive integer d-dimensional lattice
points. The notation m ≺ n, where m = (m1,m2, . . . ,md) and n = (n1,n2, . . . ,nd) ∈ Zd+,
means that mi � ni, 1 � i� d, |n| is used for

∏d
i=1ni.

Gut [5] proved that if {X ,Xn,n ∈ Zd+} is a d-dimensional array of i.i.d. random vari-
ables with E|X|p <∞ (0 < p < 2) and EX = 0 if 1 � p < 2, then

∑
j≺nXj

|n|1/p −→ 0 in Lp as min
1�i�d

ni −→∞, (1.1)

where (n1,n2, . . . ,nd)= n∈ Zd+.
Recently, Thanh [11] proved (1.1) under condition of uniform integrability of {|Xn|p,

n∈ Zd+}.
Mean convergence theorems for sums of random elements Banach-valued are studied

by many authors. The reader may refer to Wei and Taylor [12], Adler et al. [2], Rosal-
sky and Sreehari [9], or more recently, Rosalsky et al. [10], Cabrera and Volodin [3].
However, we are unaware of any literature of investigation on the mean convergence for
multidimensional arrays of random elements in Banach spaces.

Consider a d-dimensional array {Vn, n ∈ Zd+} of independent random elements de-
fined on a probability space (Ω,�,P) and taking values in a real separable Banach space
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� with norm ‖ · ‖. In the current work, we establish the convergence in mean of order
p (1� p < 2) of the sums

∑
j≺nVj/|n|1/p, n∈ Zd+, under the condition that {‖Vn‖p, n∈

Zd+} is uniformly integrable. The main results of this paper are Theorems 2.1 and 2.2.
Theorem 2.1 is a stable-type p Banach space version of the main result of Thanh [11].
While the proof of Theorem 2.1 and the proof of the main result in Thanh [11] are simi-
lar, we will show in Theorem 2.2 that the implication in Theorem 2.1 indeed completely
characterizes stable-type p Banach spaces.

Let 0 < p � 2 and let {θn, n � 1} be independent and identically distributed stable
random variables each with characteristic function φ(t) = exp{−|tp|}. The real separa-
ble Banach space � is said to be of stable-type p if

∑∞
n=1 θnvn converges a.s. whenever

vn ∈�, n� 1 with
∑∞

n=1‖vn‖p <∞. Equivalent characterizations of a Banach space being
of stable-type p, properties of stable-type p Banach spaces, as well as various relation-
ships between the conditions Rademacher-type p, and stable-type p may be found by
Woyczyński in [13], by Marcus and Woyczyński in [7], and by Pisier in [8], see also the
discussion by Adler et al. in [1]. We now mention explicitly some characterizations of this
concept. The first theorem was obtained by Mandrekar and Zinn [6] and by Marcus and
Woyczyński [7].

Theorem 1.1. Let 1 � p < 2 and let � be a real separable Banach space. Then the following
statements are equivalent.

(i) � is of stable-type p.
(ii) For every symmetric random elements V , the condition npP(‖V‖ > n)→ 0 as n→

∞ implies that

∑n
j=1Vj

n1/p −→ 0 in probability, (1.2)

where {Vj , j � 1} are independent copies of V .

Theorem 1.2 (see [13, Theorem V.9.3]). Let 1 � p < 2 and let � be a real separable Banach
space. Then the following statements are equivalent.

(i) � is of stable-type p.
(ii) For each bounded sequence {xn, n� 1} of elements of �,

∑n
j=1 xkεk
n1/p −→ 0 a.s., (1.3)

where {εn, n� 1} is a Rademacher sequence.

The symbol C denotes throughout a generic constant (0 < C <∞) which is not neces-
sarily the same one in each appearance.

2. Main results

We can now present the main results. Theorem 2.1 is a stable-type p Banach space version
of the main result of Thanh [11].
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Theorem 2.1. Let {Vn, n∈ Zd+} be a d-dimensional array of independent mean-zero ran-
dom elements in a real separable stable-type p (1 � p < 2) Banach space �. If

{∥
∥Vn

∥
∥p, n∈ Zd+

}
is uniformly integrable, (2.1)

then

∑
j≺nVj

|n|1/p −→ 0 in Lp as |n| −→∞. (2.2)

Proof. For arbitrary ε > 0, there exists M > 0 such that

E
(∥
∥Vn

∥
∥pI
(∥
∥Vn

∥
∥ >M

))
< ε, ∀n∈ Zd+. (2.3)

Set

V ′
n =VnI

(∥
∥Vn

∥
∥�M

)
, n∈ Zd+, V ′′

n =VnI
(∥
∥Vn

∥
∥ >M

)
, n∈ Zd+. (2.4)

Since � is of stable-type p and p < 2, it is of Rademacher-type q for some p < q < 2.
Thus

E

∥
∥
∥
∥
∥
∥

∑

j≺n
Vj

∥
∥
∥
∥
∥
∥

p

� 2p−1

⎡

⎣E

∥
∥
∥
∥
∥
∥

∑

j≺n

(
V ′

j −EV ′
j

)
∥
∥
∥
∥
∥
∥

p

+E

∥
∥
∥
∥
∥
∥

∑

j≺n

(
V ′′

j −EV ′′
j

)
∥
∥
∥
∥
∥
∥

p⎤

⎦

� 2p−1E

∥
∥
∥
∥
∥
∥

∑

j≺n

(
V ′

j −EV ′
j

)
∥
∥
∥
∥
∥
∥

p

+C
∑

j≺n
E
∥
∥V ′′

j −EV ′′
j

∥
∥p

� 2p−1

⎛

⎝E

∥
∥
∥
∥
∥
∥

∑

j≺n

(
V ′

j −EV ′
j

)
∥
∥
∥
∥
∥
∥

q⎞

⎠

p/q

+C
∑

j≺n
E
∥
∥V ′′

j −EV ′′
j

∥
∥p

(by the Jensen inequality)

� C

⎛

⎝
∑

j≺n
E
∥
∥V ′

j −EV ′
j

∥
∥q

⎞

⎠

p/q

+C
∑

j≺n
E
∥
∥V ′′

j

∥
∥p

� C
(|n|Mq

)p/q
+C|n|ε

= o
(|n|), as |n| −→∞.

(2.5)

�

While the proof of Theorem 2.1 and the proof of the main result in Thanh [11] are
similar, we now show in Theorem 2.2 that the implication ((2.1)⇒(2.2)) in Theorem 2.1
indeed completely characterizes stable-type p Banach spaces.
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Theorem 2.2. Let 1 � p < 2 and let � be a real separable Banach space. Then the following
statements are equivalent.

(i) � is of stable-type p.
(ii) For every d-dimensional array {Vn, n ∈ Zd+} of independent mean-zero random

elements in �, the condition (2.1) implies (2.2).
(iii) For every d-dimensional array {V ,Vn, n∈ Zd+} of independent mean-zero random

elements in �, the conditions

E‖V‖p <∞, sup
n∈Zd+

P
{∥
∥Vn

∥
∥ > t

}
� CP

{‖V‖ > t
}

, ∀t > 0, (2.6)

imply (2.2).

Proof. The implication ((i)⇒(ii)) is precisely Theorem 2.1, whereas the implication
((ii)⇒(iii)) is immediate. It remains to verify the implication ((iii)⇒(i)). For reasons of
clarity, we collect some of the steps in the following lemmas. The first lemma is a slight
modification of de Acosta [4, Theorem 3.1] which holds for sequences of independent
identically distributed random elements. The proof of the following modification can be
obtained from de Acosta [4, Theorem 3.1] line by line, and so will be omitted. �

Lemma 2.3. Let � be a real separable Banach space, 1 � p < 2. Let {V ,Wk, k ≥ 1} be
sequence of independent random elements such that E‖V‖p <∞ and supk�1P{‖Wk‖ >
t}� CP{‖V‖ > t} for all t > 0. Then

lim
n→∞

∑n
k=1Wk

n1/p = 0 in probability (2.7)

if and only if

lim
n→∞

∑n
k=1Wk

n1/p = 0 a.s. (2.8)

Lemma 2.4. Let 1 � p < 2 and let � be a real separable Banach space. Suppose that for every
sequence {V ,Wk, k � 1} of independent mean-zero random elements in �, the conditions

E‖V‖p <∞, sup
k�1

P
{∥
∥Wk

∥
∥ > t

}
� CP

{‖V‖ > t
}

, ∀t > 0, (2.9)

imply that

lim
n→∞

∑n
k=1Wk

n1/p = 0 in probability. (2.10)

Then � is of stable-type p.

Proof of Lemma 2.4. Let {εk, k � 1} be a Rademacher sequence and let {xk, k � 1} be a
sequence of elements in � such that

sup
k�1

∥
∥xk
∥
∥ <∞. (2.11)
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Then by the hypothesis of the lemma,

lim
n→∞

∑n
k=1 εkxk
n1/p = 0 in probability. (2.12)

By Lemma 2.3,

lim
n→∞

∑n
k=1 εkxk
n1/p = 0 a.s. (2.13)

Hence, by Theorem 1.2, � is of stable-type p. The proof of Lemma 2.4 is completed. �

We now prove the implication ((iii)⇒(i)). If d = 1, then the conclusion follows directly
from Lemma 2.4. So, we can assume that d � 2. Let {V ,Wk, k � 1} be a sequence of inde-
pendent mean-zero random elements in � such that E‖V‖p <∞ and supk�1P{‖Wk‖ >
t}� CP{‖V‖ > t} for all t > 0. For n= (n1, . . . ,nd)∈ Zd+, set

V(n1,...,nd) =Wn1 , if n2 = ··· = nd = 1,

V(n1,...,nd) = 0, if max
{
n2, . . . ,nd

}
� 2.

(2.14)

Then {Vn, n∈ Zd+} is an array of independent mean-zero random elements, and

sup
n∈Zd+

P
{∥
∥Vn

∥
∥ > t

}
� CP

{‖V‖ > t
}

, ∀t > 0. (2.15)

By (iii),

1
|n|1/p

∑

j≺n
Vj −→ 0 in Lp as |n| −→∞. (2.16)

This implies by taking n2 = ··· = nd = 1 and letting n1 →∞ that

1

n
1/p
1

n1∑

k=1

Wk −→ 0 in Lp, so in probability as n1 −→∞. (2.17)

By Lemma 2.4, � is of stable-type p.

Remark 2.5. In Theorem 2.1, if 0 < p < 1, then the independence hypothesis and the hy-
pothesis that the {Vn, n∈ Zd+} have mean-zero are not needed for the theorem to hold.

Indeed, for arbitrary ε > 0, define V ′
n and V ′′

n , n∈ Zd+ as in the proof of Theorem 2.1.
If 0 < p < 1, then

E

∥
∥
∥
∥
∥
∥

∑

j≺n
Vj

∥
∥
∥
∥
∥
∥

p

� E

∥
∥
∥
∥
∥
∥

∑

j≺n
V ′

j

∥
∥
∥
∥
∥
∥

p

+E

∥
∥
∥
∥
∥
∥

∑

j≺n
V ′′

j

∥
∥
∥
∥
∥
∥

p

� E

∥
∥
∥
∥
∥
∥

∑

j≺n
V ′

j

∥
∥
∥
∥
∥
∥

p

+
∑

j≺n
E
∥
∥V ′′

j

∥
∥p

�
(|n|M)p + |n|ε

= o
(|n|), as |n| −→∞.

(2.18)
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