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1. Introduction

We consider an (s,S) inventory system with service time with some additional features.
To highlight the main additional feature, we first of all describe an inventory with pos-
itive service time. Until 1993, inventory models discussed in the literature did not take
into consideration the service time; rather it was assumed uniformly that service time is
negligible. Hence if the item is available at a demand epoch, it is served instantly. How-
ever, there are various situations arising in real life situations where positive processing
time is involved before an item is delivered to the customer. The first of such result is due
to Berman et al. [1] where they consider deterministic modelling. Berman and Kim [2]
deal with stochastic inventory models with positive service time wherein the average cost
is minimised using dynamic programming technique. Berman and Sapna [3] consider an
(s,S) inventory with positive service time. They consider a finite state model and identify
a Markov renewal process to study the system behaviour. In all these models, the process-
ing (service) starts only on the arrival of a customer; in the absence of customers (and of
course in the absence of the item (inventory)) the server remains idle.

Now to the present problem. We relax the condition stated in the last sentence of the
previous paragraph as follows. If an item is available at a service completion epoch, the

Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis
Volume 2006, Article ID 69068, Pages 1–13
DOI 10.1155/JAMSA/2006/69068



2 Utilization of idle time in inventory

server processes it (even in the absence of a customer—e.g., assembling of parts); it keeps
on doing this as long as unprocessed items are available in the inventory, keeping the
sum total of processed and unprocessed items (inclusive of the one being processed, if
any) at most S (the maximum that can be held in the inventory). Thus at a customer
departure epoch, either there is no processed item available or one or more (a maximum
of S) processed items available. We assume that ours is an (s,S) system. Hence the sum
of processed and unprocessed items together cannot exceed S. The processing of items
even in the absence of customers can ensure reduction in the waiting time and hence in
the associated cost. And if there is a queue of customers formed, then no processed item
will be available. As long as processed items are available, queue of customers cannot get
formed and at an epoch of a customer arrival if a processed item is available, his service
time is negligible (like in a classical inventory model); otherwise, he has to wait to get the
item served. In a paper to follow, we consider separate stream demands for unprocessed
items also.

To describe our problem, we need a three-dimensional representation, in the simplest
case. This will be done in the next section. Note that even in the simplest of cases (sys-
tem remaining Markovian), we will not get analytical solution! Hence we proceed for an
algorithmic analysis of the system.

This paper is arranged as follows: next section provides a description of the problem at
hand and its mathematical modelling. In the section to follow, we provide the analysis of
the model. We obtain the stability condition and the system state probabilities under that
regime. Several performance measures are provided in Section 3. In Section 4, we discuss
some associated control problem.

2. Description of the model and its mathematical formulation

We have a single commodity inventory system operating under the (s,S) policy. Unlike
classical inventory model, there is a service time associated with each demand. However,
items are serviced (processed) (e.g., assembling) even in the absence of a demand. Thus
processed items are stacked separately. The server keeps processing the items. The total of
processed and unprocessed items cannot exceed S. Also when the total reaches s, an order
for replenishment is placed and the order materialisation takes place instantly (i.e., lead
time is zero).

Demands for the item arrive according to a Poisson process of rate λ. Service (process)
times are exponentially distributed with parameter μ. A queue of customers is formed
in the absence of processed items at demand epochs. There is no bound assumed to the
queue. Thus the queue of customers can be arbitrarily large. We investigate its stability.
The investigation of the maximum number of processed items that may be stacked is
also important. This is so since it is much more expensive to stack processed items than
unprocessed items. Also note that unlike in classical inventory with zero lead time and
inventory with positive service time and zero lead time, we expect a positive reorder level
(s) as optimal since this will reduce the waiting time of customers and the consequent
cost, thus bringing down the otherwise avoidable holding cost of customers.

Denote by N(t) the number of customers in the systems at time t; by I(t) the total
inventory (processed plus unprocessed) at t; and by C(t) the number of processed items.
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Thus {(N(t),I(t),C(t)), t ∈ R+} is a Markov chain on {(i, j,k) | i= 0, S≥ j ≥ s+ 1, j ≥
k ≥ 0} ∪{(i, j,0) | i > 0, S≥ j ≥ s+ 1}.

Notice that C(t) can be positive only when the number of customers waiting in the
system is zero. We investigate the optimal (s,S) values and also the maximum number of
processed items that could be stored so that the average system running cost is minimum.

3. Analysis of the system

Let 0= ((0,s+ 1,0), . . . ,(0,s+ 1,s+ 1),(0,s+ 2,0), . . . ,(0,s+ 2,s+ 2), . . . ,(0,S,0), . . . ,(0,S,S))
and i= ((i,s+ 1,0),(i,s+ 2,0)(i,s+ 2,0), . . . ,(i,S,0)), for i= 1,2,3, . . . .

Then the resulting process is a level independent quasi birth-death process (LIQBD)
with the infinitesimal generator

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

0 A00 A01 0 ···
1 A10 A1 A0 0 ···
2 0 A2 A1 A0 ···

0 A2 A1 A0 ···

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(3.1)

where

A00 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Bs+2 0 ··· C′s+1

Cs+2 Bs+3 ··· 0

...

0 0 CS BS+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A01 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1

D2

...

DS−s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A10 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ··· 0 0 ··· 0 ··· 0 ··· 0 μ 0 ··· 0

μ ··· 0 0 ··· 0 ··· 0 ··· 0 0 0 ··· 0

0 ··· 0 μ ··· 0 ··· 0 ··· 0 ··· ··· ··· 0

0 ··· 0 0 ··· 0 ··· μ ··· 0 0 ··· ··· 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2)
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is a matrix of order

(S− s)×
(

(S− s)s+
(S− s)(S− s+ 1)

2
+ S− s

)
,

A0 = λIS−s,

A1 =−(λ+μ)IS−s,

A2 =

⎡
⎢⎢⎢⎣

0 ··· μ
μ 0··· 0
0 μ··· 0
0 ···μ 0

⎤
⎥⎥⎥⎦

(S−s)×(S−s)

,

Bj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(λ+μ) μ 0 ··· 0
0 −(λ+μ) μ 0··· 0
...
0 −(λ+μ) μ
0 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

j× j

,

Cj =
[

0
λIj

]

( j+1)× j

,

C′s+1 =
[

0 0
λIs+1 0

]

(s+2)×(S+1)

,

D1 =
⎡
⎢⎣
λ 0 ··· 0
0 ··· ··· 0
0 ··· ··· 0

⎤
⎥⎦

(s+2)×(S−s)

,

D2 =

⎡
⎢⎢⎢⎢⎢⎣

0 λ 0 ··· 0
0 0 ··· ··· 0
...
0 ··· ··· ··· 0

⎤
⎥⎥⎥⎥⎥⎦

(s+3)×(S−s)

,

DS−s =
⎡
⎢⎣

0 ··· ··· λ
0 ··· ··· 0
0 ··· ··· 0

⎤
⎥⎦

(S+1)×(S−s)

.

(3.3)

3.1. Calculation of steady state probabilities. Let π = (π0,π1,π2, . . .) be the stationary
probability vector associated with Q. Note that πi is the probability vector associated with
level i. Then πQ = 0 and πe = 1, where e is the column vector of 1’s of appropriate di-
mension. The πi are given by

πi = π1R
i−1 for i≥ 2, (3.4)
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where R is the minimal nonnegative solution of the matrix equation A0 +RA1 +R2A2 = 0.
(For details, see Neuts [5].) π0 and π1 are calculated from the equations

π0A00 +π1A10 = 0, (3.5)

π0A01 +π1A1 +π2A2 = 0. (3.6)

Using (3.4), (3.6) can be rewritten as

π0A01 +π1
(
A1 +RA2

)= 0. (3.7)

From (3.5), we have

π0 = π1
(−A10

)
A−1

00 . (3.8)

Using (3.8) in (3.7), we get

π1
((−A10

)
A−1

00 A01 +A1 +RA2
)= 0. (3.9)

Thus π0 and πi (i≥ 2) are expressed in terms of π1, and π1 can be obtained by solving
(3.9) subject to the condition that

π1
((−A10

)
A−1

00 e + e +R(I −R)−1e
)= 1. (3.10)

Let T = (−A10)A−1
00 A01 +A1 +RA2. Then (3.9) reads as π1T = 0. Write T as T = T1−T2,

where T1 = TU +TD and T2 = −TL. Then by block Gauss-Seidel method, the recursive

scheme of equations is given by π(l+1)
1 T1 = π(l)

1 T2.

3.2. Stability criterion. At first glance, it may appear that the stability condition can be
weaker than λ < μ. Such suspicion arises out of the fact that some customers have zero
waiting time. However, it turns out that a few of the items were processed by the server in
the absence of the customers and hence such customers who encounter the system with
processed items do not have to wait. In any case, service was given and thus a certain
amount of time was already spent on processed items towards service. Hence here also
we can expect that λ < μ, which is true and its proof is given below.

Theorem 3.1. The system is stable if and only if λ < μ.

This follows from the fact that if the rate of drift from level i to i− 1 is greater than
that to level i+ 1 (the two immediate neighbours of i and the process is LIQBD which is
skip free to either direction) then ΠA2e >ΠA0e (see Neuts [5]), where Π is the stationary
probability vector associated with A= A0 +A1 +A2. This on simplification gives λ < μ.

3.3. First passage time analysis. Here we obtain expression for the first passage time
probability from a level i to the level i− 1 for i ≥ 1. This provides the mean number of
customers served during the transition of the number of customers from i to i− 1. Also it
provides the mean time for the above transition. These measures are helpful in the design
of service facilities.
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Let Gj j(k,x) be the conditional probability that the Markov process, starting in the
state (i, j,0) (for i > 1), at time t = 0, reaches the level i− 1 for the first time at or prior to
x, after exactly k transitions to the left (i.e., after exactly k service completions) and does
so by entering the state (i− 1, j′,0) for s+ 1≤ j′ ≤ S. The matrix with elements Gj j′(k,x)
is denoted by G(k,x). Let G∗(z,θ)=∑∞

k=1 z
k
∫∞

0 e−θxdG(k,x).
Then, for 0 < z < 1, θ > 0, the matrix G∗(z,θ) is the minimal nonnegative solution

to the equation. zA2(θI −A1)G∗(z,θ) +A0G∗
2
(z,θ)= 0 lims→0,z→1G∗(z,θ)=G= (Gj j′),

where

Gj j′ = Pr
{
τ <∞,

(
N(τ),M(τ),M1(τ)

)= (i− 1, j′,0) | (N(0),M(0),M, (0)
)= (i, j,0)

}

(3.11)

and τ is the first passage time from the level i to the level i− 1.
LetMij be the mean first passage time from the level i (i > 1) to the level i− 1, given that

it started in the state (i, j,0) and let M̃1 be a row vector of dimension S− s with elements
M1 j . Let M2 j be the mean number of service completions during this first passage time

and let M̃2 be a row vector of dimension S− s with elements M2 j .
Then

M̃1 =− ∂

∂s
G∗(z,θ)e|θ=0, z=1 =−

(
A1 +A0(I +G)

)−1
e,

M̃2 =−
(
A1 +A0(I +G)

)
A2e

[
∂

∂z
G∗(z,θ)e|θ=0,z=1

]
.

(3.12)

Similar to G∗(z,θ), M̃1, and M̃2, we define matrices G∗(1,0)(z,θ), M̃1
(1,0)

, and M̃2
(1,0)

for

the first passage time from the level 1 to the level 0 and G∗(0.0)(z,θ), M̃1
(0,0)

and M̃2
(0,0)

for the first passage time from the level 0 to the level 0.
Then G∗(1,0)(z,θ)=z(θI −A1)−1A10 +(θI −A1)−1A0G∗(z,θ)G∗(1,0)(z,θ) and G∗(0,0)(z,

θ)= (θI −A00)−1A01G∗(1,0)(z,θ).
Hence

M̃(1,0)
1 =− ∂

∂θ
G∗(1,0)(z,θ)e|θ=0,z=1 =−

(
A1 +A0G

)−1(
A0M̃1 + e

)
,

M̃2 = ∂

∂z
G∗(1,0)(z,θ)e|θ=0,z=1 =−

(
A1 +A0G

)−1(
A0M̃2 +A10e

)
,

M̃(0,0)
1 =− ∂

∂θ
G∗(0,0)(z,θ)e|θ=0,z=1 =−A−1

00

(
A01M̃

(1,0)
1 + e

)
,

M̃(0,0)
2 = ∂

∂z
G∗(0,0)(z,θ)e|θ=0,z=1 =−A−1

00 A01M̃
(1,0)
2 .

(3.13)
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3.4. Performance measures. (a) Average queue size =∑∞
i=1 iπie

= π1e +
∞∑

i=2

iπ1R
i−1e

= π1
(
I + 2R+ 3R2 + ···)e

= π1(I −R)−2e.

(3.14)

(b) If we partition πi by states in level i as πi = (πi,s+1,0, . . . ,πi,s+1,s+1, . . . ,πiSS), then the
average inventory size (processed + unprocessed) is

=
∞∑

i=0

S∑

j=s+1

jπi j0 +
S∑

j=s+1

j∑

k=1

jπ0 jk

=
∞∑

i=0

S∑

j=s+1

j∑

k=0

j×πi jk.

(3.15)

(c) Average number of processed items held =∑S
j=s+1

∑ j
k=1 kπ0 jk.

(d) Average service rate = λ
∑S

j=s+1

∑ j
k=1π0 jk +μ

∑∞
i=1

∑S
j=s+1πi j0.

(e) Probability of a customer getting serviced instantaneously (i.e., his service time is

negligible, i.e., waiting time is zero) =∑S
j=s+1

∑ j
k=1π0 jk.

(f) Probability that a customer will have to wait for service =∑∞
i=0

∑S
j=s+1πi j0.

(g) Average replenishment rate = λ
∑s+1

k=1π0,s+1,k +μ
∑∞

i=1πi,s+1,0.
(h) π0 j j stands for the probability that there is no customer (first subscript) in the

system, j items are in the inventory (middle subscript) and all these are in processed state
(last subscript). Only when no customer is present, there can be processed inventory.
Thus the probability that all these are processed is given by

∑S
j=s+1π0 j j .

(i) Probability that there is no processed item in the inventory =∑∞
i=0

∑S
j=s+1πi j0.

(j) Probability that the inventory size is maximum (i.e., S) =∑∞
i=0πiS0 +

∑S
k=1π0Sk.

(k) Average waiting time of an arbitrary customer in the system

= 1
μ

[ S∑

j=s+1

π0 j0 +
∞∑

i=1

S∑

j=s+1

iπi j0

]
. (3.16)

(l) Probability that the inventory level moves from S back to S without any intervening
arrivals having to wait

S∑

i1=1

S−1∑

i2=1

···
s+1∑

iS−s=1

π0Si1π0,S−1,i2 ···π0,s+1,iS−s . (3.17)

(m) Probability that during an S to S transition, all customers have to wait is given by

∑

i0≥1

∑

i1≥i0−1

···
∑

iS−(s+2)≥iS−(s+3)−1

∑

iS−(s+1)≥iS−(s+2)−1

πi0S0πi1, S−1,0 ···πiS−(s+1), s+1,0. (3.18)



8 Utilization of idle time in inventory

The reasoning is as follows: there are i0 (≥ 1) customers when a replenishment takes place.
At the first departure epoch, there are i1 customers left (i1 ≥ 0); if this is zero, an arrival
should take place before the next service commences, else the next service commences
immediately; the S− (s+ 1)th service in that cycle, with s+ 1 items in the inventory, pro-
ceeds and leaves behind one or more customers at its departure and the next service starts.
Also the replenishment takes place.

4. Control problem

We notice a glaring departure from classical inventory and inventory with service (as
introduced by Berman et al.) on the one side and the problem under discussion here on
the other side. In the former, the optimal reorder level is zero (whenever lead time is zero)
whereas in the latter this is not always true. Here a trade-off between the waiting cost of
customers and the holding cost of finished products has to be obtained. If the former is
very high compared to the latter, always a positive reorder level (that too pretty high) is
called for, whereas when the holding cost of finished products is very high in comparison
with the cost towards the waiting of customers, the reorder level may tend towards zero.
The numerical illustrations are suggestive of these observations.

In this section, we show numerically that it is optimal to place replenishment order
before the inventory level drops to zero whenever the waiting cost of customers is very
high compared to the holding cost of processed item. Since analytical expressions are not
available for the system state probabilities, it is difficult to give a formal proof for the
above statement. Neverthless, it can be intuitively shown to hold. For when the customer
waiting cost is very high in comparison with the holding cost of processed items, a heavy
expenditure is incurred for the former in the absence of processed items. If processed
item is available, the demand is immediately met with the result that the waiting cost of
customer is completely avoided. This is brought out through Tables 4.4, 4.5, and 4.6. Note
that the optimal values of s in these cases are 9, 3, and 1, respectively. In these tables, the
service rates are given the values 2.5, 3.0, and 3.5, respectively, and all other parameters
are kept fixed. In arriving at the results given in Tables 4.7, 4.8, and 4.9, we constructed a
profit function

F̂(k)= π0Sk
(
k ·h′1 + (S− k)h′2− λh2

)
. (4.1)

This is to numerically establish that for a given inventory level, say S, there is a corre-
sponding optimal value for the number of processed items to be kept in the inventory.
Tables 4.7, 4.8, and 4.9 show that the optimal values of this are 9, 3, and 1, respectively,
with service rates 2.5, 3.0, and 3.5.

We introduce the following cost function. Let the costs associated with the system
operation be as follows.

Fixed ordering cost = K , procurement cost = c per unit item, holding cost of cus-
tomers = h2 per unit/time, holding cost of processed items = h′1 per unit/time, and hold-
ing cost of unprocessed items = h′2 per unit/time.
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Table 4.1. μ= 2.1.

S 12 16 20 24 25 26 27 28 30

Average
queue size 11.203 10.784 10.495 10.264 10.212 10.162 10.113 10.067 9.978

Average
inventory
held

11.207 13.169 15.130 17.091 17.582 18.072 18.563 19.053 20.034

Average
number of
processed
items

2.756 3.138 3.435 3.694 3.754 3.814 3.872 3.930 4.041

P (inventory
contains only
processed
items)

0.0464 0.0465 0.0465 0.0466 0.0466 0.0466 0.0466 0.0466 0.0466

Average
waiting time
of a customer
in system

5.602 5.393 5.248 5.132 5.106 5.081 5.057 5.034 4.989

Expected cost 1437.68 1122.88 1071.40 1058.70 1058.04 1058.01 1058.51 1059.47 1062.47

We analyse the following cost function:

F(s,S)= (K + c(S− s)
)
(
λ
s+1∑

k=1

π0,s+1,k +μ
∞∑

i=1

πi,s+1,0

)
+h′1

S∑

j=s+1

j∑

k=1

kπ0 jk

+h′2

( ∞∑

i=0

S∑

j=s+1

j∑

k=0

jπi jk −
S∑

j=s+1

j∑

k=1

kπ0 jk

)
+h2π1(I −R)−2e.

(4.2)

The objective is to minimize this cost. Since analytical expressions are not available
for the system state probabilities, we resort to numerical procedure. Tables 4.1, 4.2, and
4.3, respectively, show the effect of the maximum inventory level on the system running
cost when service rates are 2.1, 2.5, and 3, respectively, with λ fixed at 2. The values of
all other parameters are also kept fixed. Tables 4.4, 4.5, and 4.6 indicate the effect of the
replenishment level on the system running cost and other system parameters, with service
rates varying as 2.5, 3.0, and 3.5, respectively. In all these tables, we notice that the cost
first shows a decreasing trend, reaches a minimum, and then climbs up.

Effect of S on the expected system cost. Here we take λ= 2.0, s= 10, K = 500, C = 100,
h′1 = 50, h′2 = 10, h2 = 50.

Tables 4.4 to 4.6 show effect of replenishment level s on the expected system cost λ=
2.0, S= 20, K = 50.0, c = 20.0, h′1 = 15.0, h′2 = 10.0, h2 = 200.0.
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Table 4.2. μ= 2.5.

S 12 14 16 18 19 20 21 22 25

Average
queue size 0.317 0.288 0.266 0.249 0.242 0.235 0.229 0.223 0.208

Average
inventory
held

11.354 12.356 13.356 14.355 14.854 15.354 15.853 16.353 17.850

Average
number of
processed
items

7.541 8.022 8.429 8.769 8.968 9.136 9.298 9.457 9.913

P (inventory
contains only
processed
items)

0.1975 0.1977 0.1979 0.1980 0.1981 0.1981 0.1982 0.1982 0.1983

Average waiting
time of a
customer in
system

0.1587 0.1439 0.1332 0.1247 0.1210 0.1176 0.1145 0.1116 0.1039

Expected cost 944.04 746.21 694.26 677.72 675.25 675.06 676.56 679.32 692.58

Table 4.3. μ= 3.0.

S 12 14 16 18 19 20 21 22 25

Average
queue size 0.020 0.017 0.015 0.014 0.013 0.012 0.012 0.011 0.0096

Average
inventory
held

11.474 12.476 13.478 13.978 14.478 14.979 15.479 16.480 17.981

Average
number of
processed
items

9.333 9.889 10.374 10.602 10.822 11.036 11.246 11.653 12.241

P (inventory
contains only
processed
items)

0.3326 0.3327 0.3328 0.3328 0.3328 0.3329 0.3329 0.3329 0.3330

Average
waiting time
of a customer
in system

0.010 0.008 0.007 0.007 0.0066 0.0063 0.006 0.0054 0.0048

Expected cost 879.46 713.31 677.01 672.11 671.50 673.73 677.92 690.23 714.49
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Table 4.4. μ= 2.5.

S 0 3 5 8 9 10 11 12 15

Average
queue size 1.640 0.920 0.623 0.346 0.285 0.235 0.193 0.160 0.091

Average
inventory
held

9.971 11.566 12.671 14.298 14.828 15.353 15.875 16.394 17.934

Average
number of
processed
items

2.123 3.892 5.290 7.562 8.345 9.135 9.929 10.724 13.087

P (inventory
contains only
processed
items)

0.1869 0.1926 0.195 0.1972 0.1977 0.1981 0.1984 0.1987 0.1992

Average waiting
time of a
customer in
system

0.820 0.460 0.311 0.173 0.142 0.117 0.097 0.080 0.045

Expected cost 454.52 337.31 297.22 271.94 269.93 270.31 272.73 276.89 298.95

Table 4.5. μ= 3.0.

S 0 1 2 3 4 5 6 10 15

Average
queue size 0.442 0.309 0.216 0.150 0.104 0.072 0.050 0.012 0.002

Average
inventory
held

10.128 10.691 11.253 11.808 12.355 12.893 13.423 15.479 17.995

Average
number of
processed
items

3.472 4.173 4.915 5.683 6.466 7.259 8.056 11.246 15.138

P (inventory
contains only
processed
items)

0.317 0.3219 0.325 0.328 0.329 0.331 0.331 0.333 0.333

Average waiting
time of a
customer in
system

0.221 0.155 0.108 0.075 0.052 0.036 0.025 0.006 0.001

Expected cost 213.2 196.2 187.18 183.84 184.5 187.95 193.35 225.53 278.89
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Table 4.6. μ= 3.5.

S 0 1 2 3 4 5 7 10 15

Average
queue size 0.183 0.111 0.067 0.04 0.024 0.014 0.005 0.001 0.0001

Average
inventory
held

10.250 10.825 11.38 11.918 12.45 12.965 13.986 15.497 17.999

Average
number of
processed
items

4.452 5.2 5.965 6.738 7.513 8.288 9.833 12.133 15.88

P (inventory
contains only
processed
items)

0.414 0.420 0.423 0.425 0.427 0.427 0.428 0.428 0.429

Average waiting
time of a
customer in
system

0.092 0.055 0.033 0.020 0.012 0.007 0.003 0.0006 0.00005

Expected cost 163.81 158.96 159.71 163.87 170.09 177.55 194.48 222.32 274.7

Table 4.7. μ= 2.5, s= 9.

k 1 4 7 8 9 10 11 15 19

F̂(k) 0.32 0.574 0.807 0.844 3.825 2.056 1.104 0.091 0.007

Table 4.8. μ= 3.0, s= 3.

k 1 2 3 4 5 8 11 15 19

F(k) 0.231 0.272 3.821 2.231 1.301 0.257 0.05 0.006 0.0006

Table 4.9. μ= 3.5, s= 1.

k 1 2 3 4 7 11 15 19

F(k) 3.539 2.194 1.359 0.842 0.199 0.029 0.004 0.0006

Tables 4.7 to 4.9 provide the profit gained by stacking processed items in the inventory.
In these tables, we fix λ= 2.0, S= 20, K = 50.0, c = 20.0, h′1 = 15.0, h′2 = 10.0, h2 = 200.0,
the values of s and μ alone are varied.
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5. Conclusion

In conclusion, we have considered in this paper an effective way to improve the server
idle-time utilization. Even though the lead time is assumed to be zero, we notice that
when the holding cost of customers is very high, reorder level remains positive. In a fol-
lowup paper, we study a variant of the present one with demands for processed and un-
processed items. This is especially noticed in food processing industries. In this case, there
are some customers requiring negligible service time (as in classical inventory models)
and some others requiring positive service time. The need for stacking processed items is
also brought out in this paper.
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