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1. Introduction

Let X = (X(t))t∈RN be a zero-mean, mean-square continuous Gaussian random field
starting from the origin, that is, X(0) = 0. Assume that X has homogenous increments,
meaning that for every s ∈ RN , the fields (X(t)−X(s))t∈RN and (X(t− s))t∈RN have the
same finite-dimensional distributions. Moreover, assume that the field is isotropic, that
is, for any A from the group of orthogonal matrices on RN it holds that X has the same
finite-dimensional distributions as the process (X(At))t∈RN . Under these assumptions we
have the spectral representation

EX(s)X(t)=
∫
RN

(
ei〈v,t〉 − 1

)(
e−i〈v,s〉 − 1

)
dρ(v) (1.1)

for the covariance function of X (see, e.g., [21]). Here 〈·,·〉 is the usual inner product on
RN , and ρ is a Borel measure satisfying the condition

∫
RN

‖v‖2

1 +‖v‖2
dρ(v) <∞. (1.2)

In this paper we obtain series expansions and moving average representations for the
random field X . For any doubly indexed orthonormal basis Sml of the space of square
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2 Representations of isotropic random fields

integrable functions on the unit sphere sN−1 in RN we can of course write

X(t)=
∑
l

∑
m

Sml

(
t

‖t‖
)
Xm
l

(‖t‖), (1.3)

where the radial processes Xm
l are defined by

Xm
l (r)=

∫
X(ru)Sml (u)dσN (u), (1.4)

with dσN the surface area element of sN−1. It turns out that if we take for Sml the spherical
harmonics (see Section 3), the processes Xm

l are independent and their distribution only
depends on the parameter l.

We develop a systematic method to obtain a series expansion and moving average
representation for the processX by looking at the radial processesXm

l separately. With the
spectral measure ρ on RN appearing in (1.1) we associate the symmetric Borel measure μ
on the line defined by

μ(dλ)= Γ(N/2)
2πN/2

λ2dΦ(λ), (1.5)

where

Φ(y)=
∫
‖v‖≤y

ρ(dv), y ≥ 0. (1.6)

Due to (1.2) this measure satisfies the integrability condition

∫
μ(dλ)
1 + λ2

<∞. (1.7)

Next, following the ideas developed in [8], we exploit the fact that a measure of this type
can be viewed as the so-called principle spectral measure of a string with a certain mass
distribution. Loosely speaking, μ can be thought of as describing the kinetic energy of a
string vibrating at different frequencies (we recall the precise connection in the next sec-
tion). The general spectral theory of vibrating strings then provides us with the technical
tools to obtain the desired representations.

Our representation results apply to general Gaussian isotropic random fields with ho-
mogeneous increments. As a consequence of the approach we just outlined, the functions
and constants appearing in the theorems are connected to the original process X via the
mass distribution associated with the spectral measure μ. Hence, in concrete examples
one has to compute the particular mass distribution. In general this is difficult, but there is
a number of interesting known cases. In the last section of the paper we highlight the case
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of Lévy’s fractional Brownian motion on RN , which is the field with covariance function

EX(s)X(t)= 1
2

(‖t‖2H +‖s‖2H −‖t− s‖2H), (1.8)

whereH∈(0,1) is the so-called Hurst index. For this process the measure μ has a Lebesgue
density equal to a multiple of λ 	→ |λ|1−2H . The mass distribution associated with this
spectral measure was recently computed in [8]. In combination with our general re-
sults this leads to representations of Lévy’s fracional Brownian motion extending the
one-dimensional results of [7]. We also refer to [16], where closely related results were
recently obtained.

The rest of the paper is organized as follows. Section 2 recalls the necessary notions
from the spectral theory of vibrating strings. In Section 3 we expand the process X in
terms of the spherical harmonics and obtain a first moving average-type result using the
vibrating string connection. In Sections 4 and 5 this is further developed into general
series and moving average representations. In Section 6 we apply the theory to the par-
ticular examples of Lévy’s ordinary and fractional Brownian motions.

2. Introduction to theory of strings

In this section we present a short account of the spectral theory of vibrating strings. This
theory was initiated by M. G. Krein in a series of papers in the 1950s. Here we essentially
follow the account given by Dym and McKean [6]. The proofs of all unproved statements
in the present section can be found there.

2.1. The vibrating string. A string is described by the pair lm. The number l ∈ (0,∞]
is called the length of the string and the nonnegative, right-continuous, nondecreasing
function m defined on the interval [0, l] is called the mass distribution of the string. Values
x ∈ [0, l] are interpreted as locations on the string between the left endpoint x = 0 and
the right endpoint x = l. The value m(x) is thought of as the total mass of the [0,x]-part
of the string. The jump of m at the point x is denoted by Δm(x) =m(x)−m(x−). We
assume that Δm(0)=m(0).

It is said that the string is long if l + m(l−)=∞ and short if l + m(l−) <∞. In the case
of a short string we need another constant in order to describe the string, that is, the
so-called tying constant k∈ [0,∞]. We define also the Hilbert space L2(m)= L2([0, l],m).
The norm on this space is denoted by ‖ · ‖m.

With the general string (not necessarily smooth) we can associate the differential op-
erator

G f = df +

dm
, (2.1)

where f +( f −) denotes the right- (left-) hand side derivative of the function f . It can be
proved (cf. [6, 8]) that in both cases of long and short strings there exists a dense subset
D(G ) of L2(m) such that every f ∈D(G ) has left and right derivatives, satisfies f −(0)= 0
(and f (l) + k f +(l)= 0 in case of short string) and the operator G : D(G )→ L2(m) is well
defined, self-adjoint, and negative definite. Let us just remark that the domain D(G )
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consists of functions defined on the real line and satisfying f (x) = f (0) + x f −(0) for
x ≤ 0, f (x)= f (l) + (x− l) f +(l) for x ≥ l if l <∞, and

f (x)= f (0) + f −(0)x+
∫ x

0

(∫
[0,y]

G f (z)dm(z)

)
dy (2.2)

for 0≤ x < l.
We consider the differential equation GA=−λ2A. Since the spectrum of the operator

G is a subset of the half-line (−∞,0] (self-adjoint and negative definite), this equation
cannot have a solution in D(G ) if λ2 is not a real, nonnegative number. However, this
equation has solutions for any complex λ2. We define the function x 	→ A(x,λ) as the
solution of

GA(·,λ)=−λ2A(·,λ), A(0,λ)= 1, A−(0,λ)= 0. (2.3)

The function A can be represented (cf. [6, pages 162 and 171]; [13, page 29]) as follows

A(x,λ)=
∞∑
n=0

(−1)nλ2npn(x), (2.4)

where the pn’s are defined recurrently according to pn(x) = ∫ x0
∫ y

0 pn−1(z)dm(z)dy and
p0(x) = 1. Thus the function A(x,λ) (and A+(x,λ)) for any fixed x ∈ [0, l] is an entire
function of the variable λ, taking real values for real λ.

If λ2 is not a positive real number, we can construct a complementary solution D(x,λ)
satisfying

GD(·,λ)=−λ2D(·,λ), D−(0,λ)=−1, (2.5)

by putting

D(x,λ)= A(x,λ)
∫ l+k

x

1
A2(y,λ)

dy. (2.6)

Another function that will be important in the remainder of this paper is the function

B(x,λ)=−1
λ
A+(x,λ). (2.7)

2.2. Spectral measure of the string. We define the so-called resolvent kernel

rλ(x, y)=
⎧⎪⎨
⎪⎩
A(x,λ)D(y,λ), if x ≤ y,

A(y,λ)D(x,λ), if x ≥ y.
(2.8)
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The name comes from the fact that for any λ2 outside [0,∞) we can define the resolvent
Rλ = (−λ2I −G )−1 which can be represented as the integral operator

Rλ f (x)=
∫

[0,l]
rλ(x, y) f (y)dm(y). (2.9)

Having at hand all required notions, we can now formulate the fundamental theorem.

Theorem 2.1. For every given string, there exists a unique symmetric measure μ on R such
that

rλ(x, y)= 1
π

∫
R

A(x,ω)A(y,ω)
ω2− λ2

μ(dω). (2.10)

This measure is called the principal spectral function of the string. Conversely, given a sym-
metric measure μ on R such that

∫
R

μ(dλ)
1 + λ2

<∞, (2.11)

there exists a unique string for which (2.10) holds true.

To make this assertion less abstract, we will now give the reader some idea of the con-
struction of the principal spectral measure. In case of the short string the spectrum of the
operator G is {−ω2

n : n= 1,2, . . .} where ωn’s are nonnegative roots of the equation

kA+(l,λ) +A(l,λ)= 0 (2.12)

(or A+(l,λ) = 0 if k = ∞). Since GA(·,λ) = −λ2A(·,λ) for every λ, the corresponding
eigenfunctions are A(·,ωn). Now, we define the symmetric measure μ on the real line
which jumps by the amount

π

2
∥∥A(·,ωn)∥∥2

m

(2.13)

at the points ±ωn. It is not difficult to show that such a measure, indeed, satisfies (2.10)
(we use the fact that eigenvalues of the operator G coincide with eigenvalues of Rλ which
is compact operator on L2(m), hence A(·,ωn) form a complete system in which we can
expand the resolvent kernel).

If the string is long, we first cut it to make it short. Then construct the measure for the
short string according to the procedure described above and let the cutting point tend to
infinity.

2.3. The transforms. In this section we introduce the key concept of odd and even trans-
forms. Let μ be the principal spectral function of the string lmk and let A and B be the
functions associated with m. We denote by L2

even(μ) and L2
odd(μ) the spaces of all even and,

respectively, odd functions in L2(μ). The norm on L2(μ) is denoted by ‖ · ‖μ.
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Theorem 2.2. The map ∧ : L2(m)→ L2
even(μ) defined by

∧ : f −→ f̂even(λ)=
∫

[0,l]
A(x,λ) f (x)dm(x) (2.14)

is one to one and onto. Its inverse is given by

∨ : ψ −→ ψ̌even(x)= 1
π

∫
R
A(x,λ)ψ(λ)μ(dλ). (2.15)

It holds that ‖ f̂even‖2
μ = π‖ f ‖2

m.

Before introducing the odd analogue of the above, we need to define the space X ,
which will be the subspace of L2([0, l + k]) (ordinary L2-space with respect to Lebesgue
measure) of all functions which are constant on a mass-free intervals. Note that k = 0
if the string is long. If k = ∞, we require also that the functions vanish on [l,∞]. The
ordinary L2-norm is denoted by ‖ · ‖2.

Theorem 2.3. The map ∧ : X → L2
odd(μ) defined by

∧ : f −→ f̂odd(λ)=
∫ l+k

0
B(x,λ) f (x)dx (2.16)

is one to one and onto. Its inverse is given by

∨ : ψ −→ ψ̌odd(x)= 1
π

∫
R
B(x,λ)ψ(λ)μ(dλ). (2.17)

It holds that ‖ f̂odd‖2
μ = π‖ f ‖2

2.

Define

T(x)=
∫ x

0

√
m′(y)dy (2.18)

where m′ is the derivative of the absolute continuous part of m. Let x(T+) and x(T−)
denote the biggest and the smallest root x ∈ [0, l] of the equation

T =
∫ x

0

√
m′(y)dy. (2.19)

Now we will describe the concept of the Krein space. If x ∈ (0, l) is a growth point of
the string lmk, then we define the class Kx of all functions f ∈ L2(μ) that satisfy

f̌even(y)= f̌odd(y)= 0 for y > x. (2.20)
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Let us introduce one more notion. The entire function f (z) is said to be of exponential
type τ if

limsup
R→∞

R−1 max
|z|=R

log
∣∣ f (z)

∣∣= τ (2.21)

(cf. [2, 6]).
Denoting by IT the set of all entire functions f ∈ L2(μ) of exponential type less than

or equal to T , we can formulate the following Paley-Wiener-type theorem for this set.

Theorem 2.4. Either T < T(l) and IT coincide with the Krein space Kx(T+) or else T ≥ T(l)
and IT span L2(μ).

In other words, this theorem states that if the function is of finite exponential type, its
inverse transforms are supported on a finite interval.

2.4. The orthogonal basis. Let us deal for a while with the short string, assuming l +
m(l−) <∞ with the tying constant k= 0. Consider the family of functions

x 	−→ A
(
x,ωn

)
, n= 1,2, . . . , (2.22)

where the ωn’s are the positive, real zeros of A(l,·) (we suppress the dependence of ωn’s
on l, but the reader should keep it in mind).

By definition of A and integration by parts we have

−ω2
∫ l

0
A(x,λ)A(x,ω)dm(x)=

∫ l

0
A(x,λ)dA+(x,ω)

= [A(x,λ)A+(x,ω)
]l

0−
∫ l

0
A+(x,ω)A+(x,λ)dx.

(2.23)

Reversing the roles of ω and λ gives

−λ2
∫ l

0
A(x,λ)A(x,ω)dm(x)= [A(x,ω)A+(x,λ)

]l
0−

∫ l

0
A+(x,λ)A+(x,ω)dx. (2.24)

Taking the difference of the above two equalities results in

∫ l

0
A(x,λ)A(x,ω)dm(x)= A(l,ω)A+(l,λ)−A(l,λ)A+(l,ω)

ω2− λ2
, (2.25)

which is the so-called Lagrange identity ([13, Lemma 1.1]; see also [6, page 189, Exercise
3]). Now we easily see that

∫ l

0
A
(
x,ωn

)
A
(
x,ωk

)
dm(x)= ∥∥A(·,ωn)∥∥2

mδ
k
n , k,n= 1,2, . . . , (2.26)

where δkn is Dirac’s delta.
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It is also true that the family (2.22) spans the function space L2(m). To show that, let us
suppose that there exists f ∈ L2(m) such that for all n∈N we have f⊥A(·,ωn). It means
that

f̂even
(
ωn
)= 〈 f ,A

(·,ωn)〉m = 0, n= 1,2, . . . . (2.27)

Recall that in the present situation the principal spectral measure of the string has atoms
only at the points ±ωn so that

∫
R

∣∣ f̂even(λ)
∣∣2
μ(dλ)=

∑
n∈Z

∣∣ f̂odd
(
ωn
)∣∣2

μ
({
ωn
})= 0. (2.28)

According to Theorem 2.2, ‖ f ‖2
m = 1/π‖ f̂even‖2

μ = 0. Hence, f = 0 in L2(m). So, we have
proved the following.

Lemma 2.5. If l + m(l−) <∞, k = 0, and ωn’s (n = 1,2, . . .) are all positive, real zeros of
A(l,·), then the family of functions

ϕn(x) := A
(
x,ωn

)
∥∥A(·,ωn)∥∥m

, x ∈ [0, l], n= 1,2, . . . , (2.29)

form an orthonormal basis of the function space L2(m).

We would also like to have a basis of the corresponding space X . To achieve this goal
we use the Christoffel-Darboux-type relation (cf. [6, Section 6.3, page 234])

∫ l

0
A(x,ω)A(x,λ)dm(x) +

∫ l

0
B(x,ω)B(x,λ)dx = A(l,ω)B(l,λ)−B(l,ω)A(l,λ)

λ−ω . (2.30)

Combined with (2.25), it yields the corresponding relation for B, that is,

∫ l

0
B(x,λ)B(x,ω)dx = ωA(l,ω)B(l,λ)− λA(l,λ)B(l,ω)

λ2−ω2
. (2.31)

Now, we can prove the following.

Lemma 2.6. If l + m(l−) <∞, k = 0, and ωn’s (n = 1,2, . . .) are all positive, real zeros of
A(l,·), then the family of functions

ψn(x) := B
(
x,ωn

)
∥∥B(·,ωn)∥∥2

, x ∈ [0, l], n= 1,2, . . . , (2.32)

form an orthonormal basis of the function space X .

Proof. The orthonormality is self-evident by virtue of (2.31). The completeness is shown
in the same manner as for (2.22) by using the odd transform instead of even one. �

As we will see further on, the norms appearing in the basis functions (2.29) and (2.32)
will also appear in the series expansions. Therefore, we will derive a simpler representa-
tion of these norms.
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Lemma 2.7. If l + m(l−) <∞, k = 0, and ω1 < ω2 < ω3 < ··· are positive real zeros of
A(l,·), then the norms of the functions A(·,ωn) and B(·,ωn) in the spaces L2(m) and
L2([0, l]), respectively, simplify to

∥∥A(·,ωn)∥∥2
m =

∥∥B(·,ωn)∥∥2
2 =−

1
2
B
(

l,ωn
)∂A(l,ω)

∂ω

∣∣∣∣
ω=ωn

. (2.33)

Proof. We begin by showing the continuity of the function A(·,λ) in the space L2(m) in
case of short string, that is, l + m(l−) <∞. In other words, we have to prove thatA(·,λ)→
A(·,ω) in L2(m), as λ→ ω. The mean value theorem ensures existence of such γ0 between
λ and ω, that is,

∫ l

0

∣∣A(x,λ)−A(x,ω)
∣∣2
dm(x)≤ |λ−ω|2

∫ l

0

∣∣∣∣∂A(x,γ)
∂γ

∣∣∣∣
γ=γ0

∣∣∣∣
2

dm(x). (2.34)

Using the representation (2.4) of A(x,λ) we can establish the upper bound

∫ l

0

∣∣∣∣∂A(x,γ)
∂γ

∣∣∣∣
γ=γ0

∣∣∣∣
2

dm(x)≤ 4
∑
n,k≥1

nkγ2(n+k)−2
0

∫ l

0
pn(x)pk(x)dm(x). (2.35)

In view of the property pn(x) ≤ (n!)−2[xm(x)]n (see [6, page 162]), we can bound the
above integral using

∑
n,k≥1

nk

(n!k!)2
γ2(n+k)−2

0

∫ l

0
xn+km(x)n+kdm(x)

≤
∑
n,k≥1

nk

(n!k!)2
γ2(n+k)−2

0

(
lm
(

l)
)n+k+1

<∞,

(2.36)

since lm(l) <∞ by assumption. Hence, we have proved that with some positive finite
constant c,

∫ l

0

∣∣A(x,λ)−A(x,ω)
∣∣2
dm(x)≤ c|λ−ω|2. (2.37)

The same property holds for the function B(·,λ). Now, according to formulas (2.25) and
(2.31) we can write

∥∥A(·,ω)
∥∥2

m = lim
λ→ω

ωA(l,λ)B(l,ω)− λA(l,ω)B(l,λ)
ω2− λ2

,

∥∥B(·,ω)
∥∥2

2 = lim
λ→ω

ωA(l,ω)B(l,λ)− λA(l,λ)B(l,ω)
λ2−ω2

.

(2.38)
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Since both limits are 0/0, application of the l’Hospital’s rule (knowing from (2.4) that
involved functions are smooth enough) gives us, for ω �= 0,

∥∥A(·,ω)
∥∥2

m =
ω
[
A(l,ω)(∂/∂ω)B(l,ω)−B(l,ω)(∂/∂ω)A(l,ω)

]
+A(l,ω)B(l,ω)

2ω
,

∥∥B(·,ω)
∥∥2

2 =
ω
[
A(l,ω)(∂/∂ω)B(l,ω)−B(l,ω)(∂/∂ω)A(l,ω)

]−A(l,ω)B(l,ω)
2ω

.

(2.39)

Recall A(l,ωn)= 0 to complete the proof. �

So, we have not only found a simple expression for the norms (derivative instead of an
integral), but also showed that they are, in fact, the same numbers for A and B.

3. Representations of the covariance

In this section we present representations of the covariance function of the random field
X . The results involve the so-called spherical harmonics. These are classical special func-
tions, constituting an orthonormal basis of the space of square integrable functions on the
unit sphere in RN . We denote them by Sml , with l = 0,1, . . . and m= 1, . . . ,h(l,N), where

h(l,N)= (2l+N − 2)(l+N − 3)!
(N − 2)!l!

. (3.1)

For details about the spherical harmonics, see, for instance, [9] or [20]. Let us just men-
tion here that the functions can be obtained as eigenfunctions of the Laplace-Beltrami op-
erator on the unit sphere. It holds that each Sml is an eigenfunction corresponding to the
eigenvalue −l(l+N − 2), and h(l,N) is the dimension of the corresponding eigenspace.

Along with the spherical harmonics, we also make use of the spherical Bessel functions
jl, l = 0,1, . . . , that are defined in terms of the usual Bessel function of the first kind Jν of
order ν as follows:

jl(u)= Γ
(
N

2

)
Jl+(N−2)/2(u)
(u/2)(N−2)/2

. (3.2)

(We suppress the dependence of the function on N in the notation.) Observe that jl(0)=
δl0. These two sets of spherical functions are related to each other via the Fourier trans-
form: the result known as the Bochner theorem can be found, for example, in [1, Section
9.10]. We will need below only the following partial result:

j0
(
λ‖t‖)= 1∣∣sN−1(λ)

∣∣
∫
sN−1(λ)

ei〈v,t〉dσN (v), (3.3)

where dσN is the surface area element of the sphere sN−1(λ) with radius λ in RN and

∣∣sN−1(λ)
∣∣= 2πN/2

Γ(N/2)
λN−1 (3.4)
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is its surface area (cf. [20, Section XI.3.2]). In the case of a unit sphere, we will simply
write |sN−1(1)| = |sN−1|. We will also need the so-called addition formula

j0
(
λ‖t− s‖)= ∣∣sN−1

∣∣ ∞∑
l=0

h(l,N)∑
m=1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)
jl
(
λ‖t‖) jl(λ‖s‖) (3.5)

(as is given, e.g., by Yaglom [21, page 370] or in [14, page 20]).
For notational convenience we set

Gl(r,λ)= jl(0)− jl(rλ)
λ

. (3.6)

By using the integral representation of the Bessel function, the so-called Poisson formula
as well as it’s consequence Gegenbauer’s formula (see, e.g., [20, Chapter XI, formulas
(3.2.5) and (3.3.7)], resp., or [1, Section 4.7]), we arrive at the following representations:

G0(r,λ)= 1
B
(
1/2,(N − 1)/2

)
∫ r
−r

(
1− u2

r2

)(N−3)/2 1− cos(uλ)
rλ

du (3.7)

and for l > 0,

−Gl(r,λ)= (−i)l−1B(l,N − 1)
B
(
1/2,(N − 1)/2

)
∫ r
−r

(
1− u2

r2

)(N−1)/2

CN/2l−1

(
u

r

)
eiλudu, (3.8)

where C
γ
l are the Gegenbauer polynomials. These integral representations show, in par-

ticular, that Gl’s are alternately odd (l = 0,2, . . .) and even (l = 1,3, . . .) functions of λ.
Moreover, by virtue of the Paley-Wiener theorem (cf. [4] or [6]) we see from (3.7) and
from the real and imaginary parts of (3.8) that all the functionsGl(r,·) are of exponential
type at most r. Thus, we have the following.

Lemma 3.1. For each r ∈R+, the functionGl(r,λ) of λ∈R is an odd function for l = 0,2, . . .
and an even function for l = 1,3, . . . .Moreover, it is an analytic function of finite exponential
type less than or equal to r.

Our next task is to obtain the representation (3.14) for the covariance function of the
random fields X . Observe first that due to the homogeneity of the increments, EX(s)X(t)
= (1/2)(E|X(s)|2 +E|X(t)|2−E|X(t− s)|2). Since, in addition, our field is isotropic, the
variance E|X(t)|2 is a function only of the norm of t. Denoting this function (called
by Yaglom [21] the structure function) by D we thus write D(‖t‖) = E|X(t)|2. With this
notation the covariance can be rewritten as

EX(s)X(t)= 1
2

(
D
(‖s‖)+D

(‖t‖)−D(‖t− s‖)). (3.9)

By putting t = s in (1.1), we get the following spectral representation for the structure
function:

D
(‖t‖)= 2

∫
RN

(
1− ei〈v,t〉)ρ(dv)= 2

∫
RN

(
1− cos〈v, t〉)ρ(dv) (3.10)

(the imaginary part vanishes, since our field X is real, cf. [21, page 435]).
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It is useful to associate with the spectral measure ρ the bounded nondecreasing func-
tion Φ defined by (1.6). Note that condition (1.2) implies

∫∞
0

λ2

1 + λ2
dΦ(λ) <∞. (3.11)

By rewriting the variable v = (v1, . . . ,vN ) in polar coordinates with radius λ= ‖v‖, we get
|sN−1(λ)|ρ(dv)= dσN (v)dΦ(λ) (cf. (3.3) and (3.4)). Due to formula (3.3), the represen-
tation (3.10) can be rewritten in polar coordinates as

D(r)= 2
∫∞

0

(
1− j0(rλ)

)
dΦ(λ). (3.12)

Formula (3.9) for the covariance function then becomes

EX(s)X(t)=
∫∞

0

[
1− j0

(
λ‖t‖)− j0

(
λ‖s‖)+ j0

(
λ‖t− s‖)]dΦ(λ). (3.13)

The following representation of the covariance function is implicit in [16]. Since it
serves as starting point in our considerations, we provide an explicit proof.

Theorem 3.2. The covariance function of the isotropic Gaussian random field X with ho-
mogeneous increments can be represented as follows:

EX(s)X(t)= ∣∣sN−1
∣∣ ∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)

×
∫∞

0
Gl
(‖t‖,λ

)
Gl
(‖s‖,λ

)
λ2dΦ(λ).

(3.14)

Proof. Note that h(0,N)= 1, S1
0(·) is a constant function for everyN and since the spheri-

cal harmonics are orthonormal, this constant is given by S1
0(·)≡ 1/

√|sN−1|. Hence, (3.14)
is equivalent to

EX(s)X(t)−
∫∞

0

(
1− j0

(
λ‖t‖))(1− j0

(
λ‖s‖))dΦ(λ)

= ∣∣sN−1
∣∣ ∞∑
l=1

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)∫∞

0
jl
(
λ‖t‖) jl(λ‖s‖)dΦ(λ),

(3.15)

which we are now going to prove. The addition formula (3.5) implies

j0
(
λ‖t− s‖)− j0

(
λ‖t‖) j0(λ‖s‖)

= ∣∣sN−1
∣∣ ∞∑
l=1

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)
jl
(
λ‖t‖) jl(λ‖s‖). (3.16)
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Taking the integral with respect to dΦ(λ) on both sides we see that the expression on the
right-hand side of (3.15) is equal to the integral

∫∞
0

(
j0
(
λ‖t− s‖)− j0

(
λ‖t‖) j0(λ‖s‖))dΦ(λ). (3.17)

But in view of (3.13) we see that also the left-hand side of (3.15) equals to the latter
integral. Thus (3.15) holds true. �

We now introduce the spectral measure μ defined by

μ(dλ)= λ2dΦ(λ)∣∣sN−1
∣∣ (3.18)

and view it as the principle spectral measure of a unique string lmk in the sense of
Theorem 2.1. Note that condition (2.11) is ensured due to (3.11).

Corollary 3.3. The covariance function of the isotropic Gaussian random field X with
homogeneous increments can be represented as follows:

EX(s)X(t)= π∣∣sN−1
∣∣2 ∑

l=0,2,...

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)∫ l+k

0
Ǧl
(‖t‖,x

)
Ǧl
(‖s‖,x

)
dx

+π
∣∣sN−1

∣∣2 ∑
l=1,3,...

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)∫ l

0
Ǧl
(‖t‖,x

)
Ǧl
(‖s‖,x

)
dm(x),

(3.19)

where

Ǧl(r,x)= 1
π

∫
R
Gl(r,λ)A(x,λ)μ(dλ), l = 1,3, . . . ,

Ǧl(r,x)= 1
π

∫
R
Gl(r,λ)B(x,λ)μ(dλ), l = 0,2, . . . ,

(3.20)

and the functions A(x,λ) and B(x,λ) are the eigenfunctions associated with the string lmk
whose principal spectral measure μ is given by (3.18).

Proof. Condition (2.11) ensures that the measure μ satisfies the assumptions of Theorem
2.1. By virtue of this theorem there exists an unique associated string with mass m and
length l≤∞. Note that the function Ǧl(r,x) is defined as the even or odd (for appropriate
l’s) inverse transform of the function Gl(r,λ). Since transforms are isometries, we have

〈
Gl
(
r1,·),Gl

(
r2,·)〉μ = π

〈
Ǧl
(
r1,·),Ǧl

(
r2,·)〉m, l = 1,3, . . . ,

〈
Gl
(
r1,·),Gl

(
r2,·)〉μ = π

〈
Ǧl
(
r1,·),Ǧl

(
r2,·)〉2, l = 0,2, . . . .

(3.21)

The proof is completed by applying this to representation (3.14). �



14 Representations of isotropic random fields

Remark 3.4. Recall the assertion of Lemma 3.1 that the function Gl(r,·) is of finite expo-
nential type at most r. Combined with Theorem 2.4, this implies that the inverse trans-
forms of such functions are supported on the finite interval [0,x(r+)] and that the repre-
sentation (3.19) is in fact of the form

EX(s)X(t)= π∣∣sN−1
∣∣2 ∑

l=0,2,...

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)∫ n(s,t)

0
Ǧl
(‖t‖, y

)
Ǧl
(‖s‖, y

)
dy

+π
∣∣sN−1

∣∣2 ∑
l=1,3,...

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)∫ n(s,t)

0
Ǧl
(‖t‖, y

)
Ǧl
(‖s‖, y

)
dm(y)

(3.22)

with n(s, t) := x(‖t‖+)∧ x(‖s‖+). This immediately allows us to write down the following
moving average-type representation of the random field X :

X(t)=√π∣∣sN−1
∣∣ ∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)∫ x(‖t‖+)

0
Ǧl
(‖t‖, y

)
dMm

l (y), (3.23)

where for l = 0,1, . . . the sets {Mm
l ,m= 1, . . . ,h(l,N)} consist of h(l,N) independent copies

of mutually independent Gaussian processes Ml with independent increments, whose
variances are given by

E
∣∣Ml(y)

∣∣2 =
⎧⎨
⎩
y, l = 0,2, . . . ,

m(y), l = 1,3, . . . .
(3.24)

In section 5 we will return to this subject.

4. Series expansion

In this section we restrict the parameter t to the ball of radius T , that is,

t ∈�T := {u∈RN : ‖u‖ ≤ T}. (4.1)

We consider a string with the same mass function m (associated via Theorem 2.1 with μ
defined by (3.18)) but we cut it at the point l := x(T+) (which we assume to be finite)
with tying constant k= 0 and m(l−) <∞.

Let us concentrate for a moment on the odd l’s. Since Ǧl(‖t‖,·) then belongs to the
space L2(m), we can expand it in basis (2.29) so that

Ǧl
(‖t‖,x

)=
∞∑
n=0

〈
Ǧl
(‖t‖,·),ϕn〉mϕn(x). (4.2)
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Having this, we can write

∫ l

0
Ǧl
(‖t‖,x

)
Ǧl
(‖s‖,x

)
dm(x)

=
∞∑
n=0

(∫ l

0
Ǧl
(‖t‖,x

)
ϕn(x)dm(x)

)(∫ l

0
Ǧl
(‖s‖,x

)
ϕn(x)dm(x)

)
,

(4.3)

which is the same as

∫ l

0
Ǧl
(‖t‖,x

)
Ǧl
(‖s‖,x

)
dm(x)=

∞∑
n=0

Gl
(‖t‖,ωn

)
Gl
(‖s‖,ωn

)
∥∥A(·,ωn)∥∥2

m

, (4.4)

since

∫ l

0
Ǧl
(‖t‖,x

)
ϕn(x)dm(x)= Gl

(‖t‖,ωn
)

∥∥A(·,ωn)∥∥m
. (4.5)

Exactly the same argument for even l’s results in corresponding formula

∫ l

0
Ǧl
(‖t‖,x

)
Ǧl
(‖s‖,x

)
dx =

∞∑
n=0

Gl
(‖t‖,ωn

)
Gl
(‖s‖,ωn

)
∥∥B(·,ωn)∥∥2

2

. (4.6)

Then, keeping in mind Lemma 2.7, we can rewrite representation (3.19) as follows:

EX(s)X(t)= π∣∣sN−1
∣∣2

∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
) ∞∑
n=0

Gl
(‖t‖,ωn

)
Gl
(‖s‖,ωn

)
∥∥A(·,ωn)∥∥2

m

. (4.7)

Now we can prove the following.

Theorem 4.1. Let X be a centered, mean-square continuous Gaussian isotropic random
field with homogenous increments on RN . If the mass function associated with μ (cf. (3.18))
is such that x(T+) + m(x(T+)−) <∞ for T > 0, then the following representation holds:

X(t)=
∞∑

n= 0

∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Gl
(‖t‖,ωn

)
ξml,n, t ∈�T , (4.8)

where ξml,n are independent, mean-zero Gaussian random variables with variances

σ2
n =−

2π
∣∣sN−1

∣∣2

B
(
x(T+),ωn

)
(∂/∂ω)A

(
x(T+),ω

)∣∣
ω=ωn

(4.9)

and the ωn’s are the zeros of A(x(T+),·). This series converges in mean-square sense for any
fixed t ∈�T . Moreover, if the process (X(t))‖t‖<T is continuous, the series converges with
probability one in the space of continuous functions C(�T) endowed with the supremum
norm.
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Proof. For M ∈N, consider the partial sum of the series defined by

XM(t)=
M∑

n,l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Gl
(‖t‖,ωn

)
ξml,n. (4.10)

The covariance representation (4.7) ensures, as M → ∞, mean-square convergence of
XM(t) to process X(t) for every t.

For the remainder of the proof, assume that X is continuous. The pointwise mean-
square convergence implies weak convergence of the finite-dimensional distributions. So
if we manage to prove the asymptotic tightness in C(�) of the sequence XM , we are able
to use [19, Theorem 1.5.4] which states that weak convergence of finite-dimensional dis-
tributions combined with asymptotic tightness is sufficient for the sequence to converge
weakly in C(�T). By virtue of the Itô-Nisio theorem (see, e.g., [19]) this is equivalent to
convergence with probability one in C(�T). Now we will prove the asymptotic tightness
of XM in the space C(�T).

Asymptotic tightness is equivalent (see, e.g., [19, Theorem 1.5.7]) to the following two
conditions:

(i) XM(t) is asymptotically tight in R for every fixed t ∈�T ;
(ii) there exists semimetric d on �T such that (�T ,d) is totally bounded and

(XM(t))‖t‖<T is asymptotically uniformly d-equicontinuous in probability, that is,
for all ε,η > 0, ∃δ > 0 such that

limsup
M→∞

P

(
sup

d(s,t)<δ

∣∣XM(t)−XM(s)
∣∣ > ε

)
< η. (4.11)

The first condition is automatically satisfied by virtue of the weak convergence of the
partial sums for every t. It suffices to prove the second one.

Let us define a sequence of semimetrics on �T by

d2
M(s, t) := E∣∣XM(t)−XM(s)

∣∣2 ≤ E∣∣X(t)−X(s)
∣∣2 =: d2(s, t). (4.12)

It is known (see, e.g., [19, page 446]) that for any M, any Borel probability measure ν on
(�T ,dM), and every δ,η > 0 it holds that

E sup
dM(s,t)<δ

∣∣XM(t)−XM(s)
∣∣� sup

t

∫ η
0

√
log

1
ν
(
�ε
(
t,dM

))dε+ δ
√
N
(
η,�T ,dM

)
, (4.13)

where �ε(t,d) denotes the ball of radius ε around point t in metric d and N(η,Y,d) is
so-called η-covering number, that is, the minimal number of balls of radius η needed to
cover Y. Since dM(s, t)≤ d(s, t), we have

E sup
d(s,t)<δ

∣∣XM(t)−XM(s)
∣∣≤ E sup

dM(s,t)<δ

∣∣XM(t)−XM(s)
∣∣. (4.14)

Proposition A.2.17 of [19] applied to the processX itself (uniform continuity and bound-
ness with respect to standard deviation semimetric d(s, t) is equivalent to the continuity
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of almost all sample paths with respect to Euclidean distance and continuity of the map
t → E|X(t)|2 (cf. [19, Lemma 1.5.9]), the latter being satisfied by virtue of the mean-
square continuity) yields that there exists some Borel probability measure ν∗ on (�T ,d)
such that

sup
t∈�T

∫ η
0

√
log

1
ν∗
(
�ε(t,d)

)dε η↘0−→ 0. (4.15)

From relation dM ≤ d we can easily see that dM-open sets are also d-open sets. It implies
that σ-algebras of Borel sets satisfy B(�T ,dM)⊂B(�T ,d). Hence, the measure ν∗ is also
a Borel measure on (�T ,dM). By choosing (4.13) for the measure ν∗ and combining it
with (4.14), we get

E sup
d(s,t)<δ

∣∣XM(t)−XM(s)
∣∣� sup

t∈�T

∫ η
0

√
log

1
ν∗
(
�ε
(
t,dM

))dε+ δ
√
N
(
η,�T ,dM

)

≤ sup
t∈�T

∫ η
0

√
log

1
ν∗
(
�ε(t,d)

)dε+ δ
√
N
(
η,�T ,d

)
.

(4.16)

The first term on the right-hand side can be made arbitrarily small by (4.15). It is not dif-
ficult to see that condition (4.15) is sufficient for the space (�T ,d) to be totally bounded
(see, e.g., [19, page 446]). Hence, the number N(η,�T ,d) is finite and also the second
term on the right-hand side can be arbitrarily small. This proves the desired equiconti-
nuity of XM . �

Remark 4.2. Notice that our expansion (4.8) is of a different form than the one derived
by Malyarenko [16, Theorem 1]. The conditions of the latter theorem seem difficult to
verify, except in the case of Lévy’s fractional Brownian motion.

5. Moving average for smooth strings

In this section we will show how the representation (3.23) simplifies when the string
associated to the random field has a smooth mass function. We obtain an integral rep-
resentation in the time domain, which can be viewed as a multivariate moving average
representation.

To this end, we have to invert the function t(x) = ∫ x0
√

m′(y)dy defined in Section 2.
Therefore, we need to require that the mass function is continuously differentiable with
a positive derivative. This then yields the following representation of the covariance func-
tion in the time domain.

Theorem 5.1. If the mass function m associated with the random field X is continuously
differentiable and m′ > 0, then for every s, t ∈RN ,

EX(s)X(t)= 2π2
∣∣sN−1

∣∣2
∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Sml

(
s

‖s‖
)

×
∫ ‖s‖∧‖t‖

0
kl
(‖t‖,u

)
kl
(‖s‖,u

)
dV(2u),

(5.1)
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where V(2u)= π−1m(x(u)) and the kernels are given by

kl
(‖t‖,u

)= Ǧl
(‖t‖,x(u)

)
x′(u), l = 0,2, . . . ,

kl
(‖t‖,u

)= Ǧl
(‖t‖,x(u)

)
, l = 1,3, . . . ,

(5.2)

for u≤ ‖t‖.

Proof. Let us first derive some useful relations between the functions m, x, and V . Differ-

entiating t = ∫ x(t)
0

√
m′(y)dy we obtain

x′(t)= 1√
m′(x(t)

) . (5.3)

Since

m′(x(t)
)
x′(t)= 2πV ′(2t), (5.4)

from (5.3) we get

2πV ′(2t)x′(t)= 1. (5.5)

To prove the representation (5.1) we apply the change of variable y = x(u) to both
terms on the right-hand side of (3.22). Due to (5.5), the measure dy in the integral of the
first term becomes

x′(u)du= 2πx′(u)2dV(2u). (5.6)

Hence,
∫ n(s,t)

0
Ǧl
(‖t‖, y

)
Ǧl
(‖s‖, y

)
dy

= 2π
∫ ‖s‖∧‖t‖

0
Ǧl
(‖t‖,x(u)

)
Ǧl
(‖s‖,x(u)

)
x′(u)2dV(2u).

(5.7)

The same change of variables allows us to write the integral of the second term in (3.22)
in the following manner:

∫ n(s,t)

0
Ǧl
(‖t‖, y

)
Ǧl
(‖s‖, y

)
dm(y)

= 2π
∫ ‖s‖∧‖t‖

0
Ǧl
(‖t‖,x(u)

)
Ǧl
(‖s‖,x(u)

)
dV(2u),

(5.8)

since the measure dm(y)=m′(y)dy turns into m′(x(u))x′(u)du= 2πdV(2u), (cf. (5.4)).
Due to (5.7) and (5.8) the representation (3.22) turns into (5.1). �

Corollary 5.2. Under assumptions of Theorem 5.1,

X(t)=√2π
∣∣sN−1

∣∣ ∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)∫ ‖t‖

0
kl
(‖t‖,u

)
dMm

l (u), (5.9)
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where {Mm
l } are independent copies of the Gaussian martingale M with zero mean and

variance function E|M(u)|2 =V(2u).

Remark 5.3. The representation (5.1) may be compared with a similar result by Mal-
yarenko [16] that is derived under a number of conditions on the spectral measure, listed
in his [16, Theorem 1].

6. Examples

This section is devoted to applications of our general results first to Lévy’s Brownian
motion and then to Lévy’s fractional Brownian motion of arbitrary Hurst index.

6.1. Lévy’s Brownian motion. Lévy [15] defined the Brownian motion on RN as a cen-
tered Gaussian random field with a covariance structure

EX(t)X(s)= 1
2

(‖t‖+‖s‖−‖t− s‖). (6.1)

Properties of this field were investigated by several authors, see, for instance, Chentsov
[3], McKean Jr. [17], and Molchan [18]. Since the structure function in this case is simply
D(r)= r, we can easily verify via formula (3.12) that the corresponding spectral measure
is given by λ2Φ′(λ)= |sN−1|/|sN |. To see this rewrite (3.12) in the form

r =−2
∫ r

0
du
∫∞

0
j′0(uλ)dΦ(λ)=

∣∣sN−1
∣∣∣∣sN∣∣ 2N/2Γ

(
N

2

)∫ r
0
du
∫∞

0

JN/2(z)
zN/2

dz (6.2)

and apply [12, formula (6.561.14)] to evaluate the last integral.
Thus by (3.18) we have μ(dλ)= dλ/|sN |. It is now easy to determine the correspond-

ing mass function of the string. As we know (cf. [6, 8]) the mass function associated
with the Lebesgue spectral measure is m(x) = x. In order to handle the constant mul-
tiplier that presently occurs, only “rule 1” of [6, page 265], is required. It tells us that
the multiplication of a spectral measure by constant c changes the corresponding mass
function to c−1m(c−1x) and the eigenfunctions A and B to A(c−1x,λ) and c−1B(c−1x,λ).
Hence the mass function associated with Lévy’s Brownian motion is m(x)= |sN |2x, while
A(x,λ) = cos(|sN |λx) and B(x,λ) = |sN |sin(|sN |λx). But since in this case x(t) = t/|sN |,
the constant disappears:

V(2t)= m
(
x(t)

)
π

= t

π
, A

(
x(t),λ

)= cos(λt), B
(
x(t),λ

)
x′(t)= sin(λt). (6.3)

In this case the transforms in Section 2.3 are the Fourier cosine and sine transforms.
Equations (3.20), in conjuncture with (5.2), become

k2n+1(r,u)= Ǧ2n+1
(
r,x(u)

)= 2
π
∣∣sN∣∣

∫∞
0
G2n+1(r,λ)cos(uλ)dλ,

k2n(r,u)= Ǧ2n
(
r,x(u)

)
x′(u)= 2

π
∣∣sN∣∣

∫∞
0
G2n(r,λ)sin(uλ)dλ

(6.4)
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for n= 0,1,2, . . . . By definition (3.6), we deal here with the cosine transform of the func-
tion J2n+N/2(rλ)/λN/2 and for n > 0 with the sine transform of the function J2n−1+N/2(rλ)/
λN/2 to be found in the tables in [10]; see formulas (1.12.10) or (1.12.13) for the cosine
transform and formulas (2.12.10) or (2.12.11) for the sine transform. We get, with F
denoting the Gauss hypergeometric function,

π
∣∣sN−1

∣∣k2n+1(r,u)= (−1)nΓ(N)Γ(2n+ 1)
Γ(2n+N)

(
1− u2

r2

)(N−1)/2

CN/22n

(
u

r

)

=−Γ
(
(N + 1)/2

)
Γ(n+ 1/2)√

πΓ(n+N/2)

(
1− u2

r2

)(N−1)/2

F
(
−n,n+

N

2
;
1
2

;
u2

r2

)
,

(6.5)

and for n > 0,

π
∣∣sN−1

∣∣k2n(r,u)= (−1)nΓ(N)Γ(2n)
Γ(2n− 1 +N)

(
1− u2

r2

)(N−1)/2

CN/22n−1

(
u

r

)

=−Γ
(
(N + 1)/2

)
Γ(n+ 1/2)√

πΓ
(
n+ (N − 1)/2

)
(

1− u2

r2

)(N−1)/2 2u
r
F
(

1−n,n+
N

2
;
3
2

;
u2

r2

)

(6.6)

(for the relationship between Gegenbauer’s polynomials and the Gauss hypergeometric
functions see, e.g., [12, formula (8.932)]). Note that the expressions involving Gegen-
bauer’s polynomials can also be obtained by inverting the Fourier transform (3.8) men-
tioned above. Remaining k0 is obtained by integrating (3.7) with respect to 2sin(λu)dλ/
π|sN | over R+. Since

2
π

∫∞
0

1− cos(λw)
λ

sin(λu)dλ= 1(u,r)(w) (6.7)

(see [12, formulas (3.721.1) and (3.741.2)]), we obtain

π
∣∣sN−1

∣∣k0(r,u)= (N − 1)
∫ 1

u/r

(
1− y2)(N−3)/2

dy. (6.8)

Thus Corollary 5.2 yields the following.

Theorem 6.1. Let X be Lévy’s Brownian motion on RN . It can be represented as

X(t)=
√

2
π

∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)∫ ‖t‖

0
π
∣∣sN−1

∣∣kl(‖t‖,u
)
dMm

l (u), (6.9)

where the kernels π |sN−1|kl are given by (6.5)–(6.8), while {Mm
l } are independent copies of

a standard Brownian motion.

Remark 6.2. The kernels (6.5)–(6.8) occurred already in [17], in which McKean Jr. has
pointed out that these kernels are in fact singular in the sense that a nontrivial square
integrable function can be found that is orthogonal to kl when l > 2. He has shown how
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to replace them by more convenient nonsingular kernels that admitted him to confirm
Lévy’s conjecture that the Brownian motions in odd-dimensional spaces are Markov, but
not in even-dimensional spaces. Obviously, the transition from singular to nonsingular
kernels is highly desirable in the present setting as well; however, this step would require
considerable refining of the theory and would bring us too far afield. We intend to return
to this subject in our forthcoming work.

In conclusion, we apply Theorem 4.1 to the present case.

Theorem 6.3. Let X be Lévy’s Brownian motion on RN . It can be represented on the ball
�T of radius T (cf. (4.1)) as follows:

X(t)=
∞∑

n= 0

∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)
Gl
(‖t‖,ωn

)
ξml,n, t ∈�T , (6.10)

where

ωn = (2n+ 1)π
2T

(6.11)

and the ξml,n are independent mean-zero Gaussian random variables with variances

σ2
n =

4π(N+1)/2Γ
(
(N + 1)/2

)
TΓ2(N/2)

. (6.12)

This series converges with probability one in the space of continuous functions on �T .

Remark 6.4. Note that in the scalar case N = 1 we obtain a series representation of stan-
dard Brownian motion on [0,1],

W(t)=√2
∞∑
n=0

1− cos
(
t(n+ 1/2)π

)
(n+ 1/2)π

ξ0
n +
√

2
∞∑
n=0

sin
(
t(n+ 1/2)π

)
(n+ 1/2)π

ξ1
n , (6.13)

where {ξ0
n} and {ξ1

n} are independent sequences of standard Gaussian independent ran-
dom variables, so that (6.10) can be viewed as a multivariate version of the classical Paley-
Wiener expansion.

6.2. Lévy’s fractional Brownian motion. Lévy’s fractional Brownian motion is defined
on RN as a centered Gaussian random field with covariance function

EX(t)X(s)= 1
2

(‖t‖2H +‖s‖2H −‖t− s‖2H), (6.14)

where H ∈ (0,1) is called the Hurst index. Observe that for H = 1/2 it reduces to Lévy’s
Brownian motion considered in the preceding section. In the present case the structural
function is D(r)= r2H , so that we can argue like in the previous section to determine the
corresponding spectral function. First, formula (3.12) is rewritten in the form (6.2) but
with r2H instead of r, and then the density of the form λ1+2HΦ′(λ)= c2

HN |sN−1| is sought,
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with a constant c2
HN to be determined by [12, formula (6.561.14)]. By straightforward

calculations we arrive at

c2
HN =

Γ(H +N/2)Γ(1 +H)sin(πH)
π(N+2)/221−2H

. (6.15)

Thus by (3.18) we deal here with the spectral measure

μ(dλ)= c2
HNλ

1−2Hdλ (6.16)

that differs only by a constant factor from the spectral measure in [8, Section 4]. There-
fore, the expressions for the mass function m and the eigenfunctions A and B, obtained
in the aforementioned work, can be easily adapted to the present situation with the help
of “rule 1” of [6, page 265]. We get

m(x)= κ1/H
HN

4H(1−H)
x(1−H)/H ,

A(x,λ)= Γ(1−H)
(
λ

2

)H√
κHNxJ−H

(
λ
(
κHNx

)1/2H
)

,

B(x,λ)= κHNΓ(1−H)
2H

(
λ

2

)H(
κHNx

)(1−H)/2H
J1−H

(
λ
(
κHNx

)1/2H
)
.

(6.17)

The new constant is

κHN = 2π(N+2)/2

Γ(H +N/2)Γ(1−H)
(6.18)

(it in fact extends the constant κH1 appearing in [8, Section 4], to the multidimensional
case). After the necessary substitution x(t)= t2H/κHN this constant does not occur in the
eigenfunctions

A
(
x(t),λ

)= Γ(1−H)
(
λt

2

)H
J−H(λt), (6.19)

B
(
x(t),λ

)
x′(t)= Γ(1−H)

(
λt

2

)H
J1−H(λt), (6.20)

but it does enter in the expression of the variance function

V(2t)= m
(
x(t)

)
π

= κHN t2−2H

4H(1−H)π
= πN/2 t2−2H

2HΓ(2−H)Γ(H +N/2)
. (6.21)

The assertion of Theorem 6.1 is extended to the present fractional case as follows.

Theorem 6.5. Let X be Lévy’s fractional Brownian motion on RN with Hurst index H ∈
(0,1). Then it is represented as follows:

X(t)=√2
∣∣sN−1

∣∣ ∞∑
l=0

h(l,N)∑
m= 1

Sml

(
t

‖t‖
)∫ ‖t‖

0
πkl

(‖t‖,u
)
dMm

l (u), (6.22)
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where {Mm
l } are independent copies of a Gaussian martingale M with mean zero and the

variance function E|M(u)|2 =V(2u) given by (6.21), with the kernels kl defined by

πk0(r,u)
c2
HNΓ(N/2)

= 2Γ(1−H)
Γ(H − 1 +N/2)

(
2
u

)1−2H ∫ 1

u/r
y1−2H(1−y2)H−2+N/2

dy, (6.23)

for n= 0,1,2, . . . ,

πk2n+1(r,u)
c2
HNΓ(N/2)

=− Γ(n+ 1−H)
Γ(n+H +N/2)

(
2
r

)1−2H(
1− u2

r2

)H−1+N/2

×F
(
−n,n+

N

2
;1−H ;

u2

r2

) (6.24)

and for n= 1,2, . . . ,

πk2n(r,u)
c2
HNΓ(N/2)

=− Γ(n+ 1−H)
(1−H)Γ(n+H − 1 +N/2)

(
2
r

)1−2H(
1− u2

r2

)H−1+N/2

× u

r
F
(

1−n,n+
N

2
;2−H ;

u2

r2

)
.

(6.25)

Proof. We need the inverse transforms of function Gl with respect to the measure (6.16),
as defined by formula (3.20). Since the eigenfunctions are given by (6.19) and (6.20), it
follows from (5.2) that for l > 0 the kernels kl are evaluated as Hankel transforms of the
following form:

k2n+1(r,u)= Ǧ2n+1
(
r,x(u)

)

= 21−Hc2
HNΓ(1−H)uH

π

∫∞
0
G2n+1(r,λ)J−H(uλ)λ1−Hdλ,

k2n(r,u)= Ǧ2n
(
r,x(u)

)
x′(u)

= 21−Hc2
HNΓ(1−H)uH

π

∫∞
0
G2n(r,λ)J1−H(uλ)λ1−Hdλ.

(6.26)

The required results are then found in the tables in [11, formula (8.11.9)]. To complete
the proof we will show

k0(r,u)= c2
HNΓ

2(1−H)
π

(
u

2

)2H−1(
1− Bu2/r2 (1−H ,H − 1 +N/2)

B(1−H ,H − 1 +N/2)

)
, (6.27)

where Bx(α,β) is the incomplete beta function (see [12, formula (8.391)]). Indeed, the
kernel k0 is computed as the sum of the following two terms. The first term is

c2
HNΓ(1−H)

(
u

2

)H 2
π

∫∞
0
J1−H(uλ)

dλ

λH
= c2

HN

π
Γ2(1−H)

(
u

2

)2H−1

(6.28)
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(the integral is taken by means of [12, formula (6.561.14)]). The second term has the same
expression as k2n given above, but evaluated at n = 0 (for the relationship between the
incomplete Beta function and the Gauss hyperbolic function, see [12, formula (8.391)]).

�

Remark 6.6. It can be shown in the present fractional case too that the kernels kl with
l > 2 are singular in the same sense as in the special case H = 1/2 already mentioned in
Remark 6.2. To see this, observe first that the Gauss hypergeometric functions that occur
in the expressions for kl are classical orthogonal polynomials, known in the literature as
generalized Gegenbauer polynomials (see, e.g., [5, Section 1.5.2]). It is then straightforward
to follow McKean’s Jr. arguments in [17]; however, we do not dwell upon this here and
note only that the analogue of McKean’s Jr. nonsingular kernels to the fractional case is
known for the general Hurst index H as well, see Malyarenko [16].

In conclusion we specify our general series expansion of Theorem 4.1 to Lévy’s frac-
tional Brownian motion.

Theorem 6.7. Let ω0 < ω1 < ω2 < ··· be the nonnegative real-valued zeros of the Bessel
function J−H . Then Lévy’s fractional Brownian motion X with Hurst index H restricted to
the ball �T of radius T (cf. (4.1)) can be represented as follows:

X(t)=
∞∑
l=0

h(l,N)∑
m= 1

∞∑
n= 0

Sml

(
t

‖t‖
)
Gl

(
‖t‖,

ωn
T

)
ξml,n, t ∈�T , (6.29)

where the ξml,n are independent mean-zero Gaussian random variables with variances

σ2
n =

2HΓ(H +N/2)
∣∣sN−1

∣∣2

πN/2T2−2HΓ(1−H)
(
ωn/2

)2H
J2
1−H

(
ωn
) . (6.30)

This series converges with probability 1 in the space of continuous functions on �T .

Proof. By (6.19) we have A(x(t),λ)= 0 if and only if λ= ωn/T and

∂

∂ω
A
(
x(T),ω

)∣∣
ω=ωn/T =−Γ(1−H)T

(
ωn
2

)H
J1−H

(
ωn
)
. (6.31)

By (6.20)

B
(
x(T),ωn

)= Γ(1−H)
(
ωn/2

)H
J1−H

(
ωn
)
κHN

2HT2H−1
. (6.32)

The required expression for σ2
n is now verified by (4.9) and (6.21). The assertion of the

present theorem thus follows from Theorem 4.1. �

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its
Applications, vol. 71, Cambridge University Press, Cambridge, 1999.

[2] R. P. Boas Jr., Entire Functions, Academic Press, New York, 1954.



Kacha Dzhaparidze et al. 25

[3] N. N. Chentsov, Brownian motion for several parameters and generalized white noise, Theory of
Probability & Its Applications 2 (1957), no. 2, 265–266.

[4] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, New Jersey, 1968.
[5] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics

and Its Applications, vol. 81, Cambridge University Press, Cambridge, 2001.
[6] H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem,

Academic Press, New York, 1976.
[7] K. Dzhaparidze and H. van Zanten, A series expansion of fractional Brownian motion, Probability

Theory and Related Fields 130 (2004), no. 1, 39–55.
[8] K. Dzhaparidze, H. van Zanten, and P. Zareba, Representations of fractional Brownian motion

using vibrating strings, Stochastic Processes and Their Applications 115 (2005), no. 12, 1928–
1953.
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