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We consider the coupling of a single server queue and a storage model defined as a
queue/store model. We establish that if the input variables, arrivals at the queue and store,
satisfy large deviations principles and are linked through an exponential tilting, then the
output variables (departures from each system) satisfy large deviations principles with
the same rate function.
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1. Introduction

A celebrated theorem of Burke [1] asserts that when a Poisson process {an, n∈ Z} with
mean interarrival time 1/λ is input to a single server queue whose service times {sn, n∈
Z} are i.i.d. exponentials (./M/1/∞ following the Kendall nomenclature) with mean 1/μ <
1/λ, the equilibrium departure process {dn, n ∈ Z} from the queue is also a mean 1/λ
Poisson process. In this sense the mean 1/λ Poisson process is a fixed point for the ./M/1/∞
operator. In [6, 7], we prove a generalization of Burke’s theorem to the couple of depar-
tures and the sequence of times spent at the very back of the queue {rn, n∈ Z}. The se-
quence {rn, n∈ Z} can also be seen as the sequence of departures from a storage model,
where sn is the amount of P supplied at slot n+ 1, and an is the amount of P asked for at
the same slot. More precisely, we show that under the conditions of Burke’s theorem the
couple of output variables from the Queue/Store model {(dn,rn), n∈ Z} has the same law
as the couple of input variables {(an,sn), n∈ Z}.

In this paper, we consider the fixed point question at large deviations scaling. A similar
result has been presented by Ganesh et al. [10] for discrete-time queues. Assuming that
the input variables satisfy a large deviations principle, we show that if their laws are linked
through an exponential tilting, then the large deviations principle is preserved by the
Queue/Store system (i.e., the output variables satisfy large deviations principles with the
same rate functions as the input variables).
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This paper is organized as follows. Section 2 is devoted to giving some background on
large deviations that will be useful for our analysis. The Queue/Store model is presented
in Section 3. Section 4 focuses on the workload process. We define the concept of effective
bandwidth in Section 5. Finally, in Section 6, we derive a large deviations principle for the
output variables of the Queue/Store model (Section 6.1) and we give the condition on the
rate functions of the input variables (Section 6.2) which are preserved by the Queue/Store
operator.

2. Large deviations

Let (Ω,�,P) be a probability space and let x = {xn,n∈N} be a sequence of i.i.d. random
variables. We define the sequence of partial sums X = {Xn,n∈N} by

Xn =
n∑

i=1

xi. (2.1)

If E|x0| <∞, then X satisfies the strong law of large numbers, that is,

lim
n→∞

Xn
n
= Ex0, a.s. (2.2)

We also focus on the fluctuation of a random variable around its mean. Suppose Ex2
0 <

∞ then the central limit theorem gives the fluctuations of the scale of O(1/
√
n), of Xn/n

around Ex0. More precisely the sequence
√
n(Xn/n− Ex0) converges in law a Gaussian

random variable with mean zero and variance the one of x0. Large deviations theory
deals with the fluctuations of the scale of O(1).

Definition 2.1. Let � be a real Hausdorff space. A function I : �→ R+ = R+ ∪{∞} is a
rate function if I is lower semicontinuous, that is, the sets {x : I(x)≤ α} are closed, for all
α∈R. In addition, if these sets are compact, then I is a good rate function.

Definition 2.2. A sequence {xn, n∈N} in � satisfies a large deviations principle with the
rate function I : �→R+, if for each Borel subset � of �,

− inf
x∈�◦

I(x)≤ liminf
n→∞

1
n

logP(xn ∈�)≤ limsup
n→∞

1
n

logP(xn ∈�)≤− inf
x∈�

I(x), (2.3)

where �◦ denotes the interior of � and � its closure.

Throughout the rest of this section, we are interested in real-valued random variables.

Definition 2.3. The cumulant generating function of a real-valued random variable x is
given by

ΛX(θ)= logEeθx ∀θ ∈R, (2.4)

which can be infinite.
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Using Hölder’s inequality and Fatou’s lemma, we check that ΛX is convex, lower semi-
continuous and for all θ in the effective domain of ΛX (i.e., {θ |ΛX(θ) <∞}), we have

Λ′X(θ)= E
(
X0eθX0

)

eΛX (θ)
. (2.5)

We define the Legendre transform of ΛX as

IX(x)= sup
θ∈R

{
θx−ΛX(θ)

}
. (2.6)

The function IX is positive, convex, and lower semicontinuous. If ΛX is finite at the origin,
then

Λ′X(0)= EX0, IX
(
EX0

)= 0. (2.7)

Moreover, we easily check that

IX(x)= sup
θ≥0

{
θx−ΛX(θ)

}
for x ≥ Ex0,

IX(x)= sup
θ≤0

{
θx−ΛX(θ)

}
for x ≤ Ex0.

(2.8)

We recall the statement of Cramér’s theorem for real-valued random variables.

Theorem 2.4. Let {xn, n ∈ N} be an i.i.d. sequence of real-valued random variables and
let ΛX be its cumulant generating function which is finite at the origin. Then the sequence of
random variables {Xn/n, n∈N∗}, where Xn =

∑n
i=1 xi, satisfies a large deviations principle

with rate function IX defined in (2.6): for each closet subset F of R,

limsup
n→∞

1
n

logP
(
Sn ∈ F

)≤− inf
x∈F

IX(x), (2.9)

and for each open subset O of R,

liminf
n→∞

1
n

logP
(
Sn ∈O

)≥− inf
x∈O

IX(x). (2.10)

The inequalities (2.9) and (2.10) are known as the upper and lower bounds of the large
deviations principle. For the different extensions of Cramér theorem we refer to [5]. We
can have a large deviations principle for a couple of independent random variables.

Theorem 2.5. Let � and � be two real Hausdorff spaces, and {xn, n∈N} and {yn, n∈N}
be two sequences satisfying large deviations principles on � and �, with rate functions IX and
IY . Suppose that they are independent, then the sequence {(xn, yn), n∈N} satisfies a large
deviations principle on �×� with rate function

IX ,Y (x, y)= IX(x) + IY (y). (2.11)

In this paper, we will establish large deviations principles relying on indirect meth-
ods. Once we have a large deviations principle for one sequence of random variables, we
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can effortlessly obtain large deviations principles for a whole class of random sequences,
namely, those obtained via continuous transformations. We present the contraction prin-
ciple, the tool that enables this.

Theorem 2.6. If {xn, n∈N} satisfies a large deviations principle on � with rate function
IX , and if f : �→ � is a continuous function, then the sequence {yn, n ∈ N} defined by
yn = f (xn) satisfies a large deviations principle on � with rate function

IY (y)= inf
x, f (x)=y

IX(x). (2.12)

Sometimes f is “almost continuous,” that is, the sequence {yn, n ∈ N} is close to a
sequence { f (xn), n∈N}, where f is continuous.

Definition-Proposition 2.7. Let {xn, n∈N} and {yn, n∈N} be two sequences on �.
They are said exponentially equivalent, if for all ε > 0,

limsup
n→∞

logP
(∥∥xn− yn

∥∥ > ε
)=−∞. (2.13)

In this case, if {xn, n∈N} satisfies a large deviation principle, then {yn, n∈N} satisfies a
large deviations principle, and IX = IY .

Theorem 2.8. If {xn, n∈N} satisfies a large deviations principle on � with rate function
IX , and if {yn, n ∈ N} and { f (xn), n ∈ N} are exponentially equivalent, with f : �→�
continuous, then {yn, n∈N} satisfies a large deviations principle on � with rate function

IY (y)= inf
x∈�, f (x)=y

IX(x). (2.14)

For a thorough presentation of large deviations’ results and applications, we refer
to [5].

3. The model

Let �= {An, n∈ Z} be a point process and assume thatA0 ≤ 0 < A1 andAn < An+1, ∀n∈
Z. We define the R∗+ -valued sequence of r.v.’s a = {an, n ∈ Z} by an = An+1 −An. Let
s = {sn, n ∈ Z} be another R∗+ -valued sequence of r.v.’s. The sequences a and s are the
input variables of the model.

Define the sequence of r.v.’s �= {Dn, n∈ Z} by

Dn = sup
k≤n

[
Ak +

n∑

i=k
si

]
. (3.1)

A priori the Dn’s are valued in R∪ {+∞}. Assume that a and s are such that the Dn’s
are almost surely finite. Set dn = Dn+1 −Dn and d = {dn, n ∈ Z}. Define an additional
sequence of r.v.’s r = {rn, n∈ Z}, valued in R∗+ , by

rn =min
(
Dn,An+1

)−An. (3.2)
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The sequences d and r are the output variables of the model. In view of the future analysis,
it is convenient to introduce the sequence w = {wn, n∈ Z} of random variables valued in
R+, defined by

wn =Dn− sn−An = sup
k≤n−1

[n−1∑

i=k

(
si− ai

)
]+

. (3.3)

These random variables satisfy the following recursion (Lindley’s equation):

wn+1 =
[
wn + sn− an

]+
. (3.4)

Using the variables wn, we can give alternative definitions of Dn and rn:

∀l ≤ n, Dn =
[
wl +Al +

n∑

i=l
si

]
∨max

l<k≤n

[
Ak +

n∑

i=k
si

]
, (3.5)

rn =min
{
wn + sn,an

}= sn +wn−wn+1. (3.6)

We now interpret the variables defined above in two different contexts: a queueing model
and a storage model.

3.1. The single server queue. We are concerned with a single server queue where each
customer is characterized by an instant of arrival in the queue and a service demand.
Customers are served upon their arrival in the queue and in their order of arrival. Since
there is a single server, a customer may have to wait in a buffer before the beginning
of its service. Using Kendall’s nomenclature, our model is a ·/ · /1/∞/FIFO queue. The
customers are numbered by Z according to their order of arrival in the queue (customer
1 being the first one to arrive strictly after instant 0). Let An be the instant of arrival of
customer n and sn its service time. Then the variables defined in (3.1)–(3.4) have the
following interpretations:

(i) Dn is the instant of departure of customer n from the queue, after completion of
its service; {dn, n∈ Z} is the sequence of interdeparture times;

(ii) wn is the waiting time of customer n in the buffer between its arrival and the
beginning of its service;

(iii) rn is the time spent by customer n at the very back of the queue.
The variables {rn, n∈ Z} are less classical in queueing theory [16].

3.2. The storage model. Some product P is supplied, sold, and stocked in a store in the
following way: events occur at integer-valued epochs, called slots. At each slot, an amount
of P is supplied and an amount of P is asked for by potential buyers. The rule is to meet
all demands, if possible. The demand of a given slot which is not met is lost. The supply
of a given slot which is not sold is not lost and is stocked for future consideration.

Let sn be the amount of P supplied at slot n+ 1, and let an be the amount of P asked for
at the same slot. In this context, the variables in (3.1)–(3.4) can be interpreted as follows:

(i) wn is the level of the stock at the end of slot n. It evolves according to (3.4);
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(ii) rn is the demand met at slot n+ 1, see (3.6); it is the amount of P departing at
slot n+ 1.

The variables {Dn, n∈ Z} do not have a natural interpretation in this model.
It is important to remark that while the equations driving the single server queue and

the storage model are exactly the same, the relevant variables are different. The important
variables are the ones corresponding to the departures from the system. The departures
are coded in the variables {dn, n ∈ Z} for the single server queue and in the variables
{rn, n∈ Z} for the storage model. For a more detailed discussion of these two models we
refer to [7].

3.3. Rare events. We recall that wn is the waiting time of customer n before it starts its
service (resp., the level of the stock at the end of slot n) and it is given by

wn =
(
wn−1 + sn−1− an−1

)+ = sup
m≤n

[ n−1∑

k=m
sk − ak

]
. (3.7)

We assume that the sequences a = {an, n ∈ Z} and s = {sn, n ∈ Z} are stationary and
ergodic. Under the stability condition Es0 < Ea0, we can use the above expression of wn

to give its asymptotic behavior using the large deviations properties of the input variables
a= {an, n∈ Z} and s= {sn, n∈ Z}. We start with an example.

Example 3.1. Suppose that customers arrive in a deterministic fashion, that is, an = 1, ∀n,
and that the sequence {sn, n∈ Z} is i.i.d. with

P
(
sn = 2

)= 1−P(sn = 0
)= p <

1
2
. (3.8)

The process {wn, n∈ Z} is a discrete time birth-and-death process with stationary distri-
bution

P
(
w0 ≥ q

)=
(

p

1− p

)q

. (3.9)

We get

1
n

logP
(
w0 ≥ nq

)=−δq, (3.10)

where δ = log((1− p)/p). This approximation remains valid under general conditions
on the input variables, with an expression of δ that depends upon the rate functions
associated to the sequences a and s. Indeed it has been proved [2, 8, 12] that the stationary
version of wn satisfies the following property:

lim
n→∞

1
n

logP
(
w0 > nq

)=−δq, (3.11)

or alternatively

P

(
w0

n
> q

)
� e−nδq. (3.12)
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First we give a heuristic proof of this result which will be asserted rigorously in Section 4.
We assume the sequences {an, n∈ Z} and {sn, n∈ Z} i.i.d. mutually independent with

ΛA(θ)= logEeθa0 , ΛS = logEeθs0 (3.13)

finite near the origin. Let xn = sn − an for all n ∈ Z, and Xk =
∑k

i=1 x−i for all k ∈ N
then w0 = supk≥0Xk, with X0 = 0. Using Cramér’s theorem (Theorem 2.4), the sequences
{an, n ∈ Z} and {sn, n ∈ Z} satisfy large deviations principles on R with rate function
IA and IS the Legendre transforms of ΛA and ΛS. Thus the sequence {xn, n ∈ Z} satis-
fies a large deviations principle with rate function IX , which is the Legendre transform of
ΛX(θ)=ΛS(θ) +ΛA(−θ), that is, P(Xn/n > x)� e−nIX (x). Moreover,

P
(
w0 ≥ nq

)= P
(

sup
k≥0

Xk ≥ nq
)
= P(∪k≥0

{
Xk ≥ qn

})≤
∞∑

k=1

P
(
Xk ≥ qn

)
. (3.14)

Since P(Xk ≥ nq)= P(Xk/k ≥ nq/k)� e−kIX (nq/k), we check that

P
(
w0 ≥ nq

)�
∞∑

k=1

e−nq(IX (nq/k)/(nq/k)). (3.15)

We conclude using the principle of the largest term, that is,

∞∑

k=1

e−nq(IX (nq/k)/(nq/k)) � e−qnδ , (3.16)

where δ = infx>0(IX(x)/x) and we get (3.11). The principle of the largest term translates
the fact that rare events occur in the most likely way. Indeed, the dominant term in (3.15),
which gives the explosion of the waiting times in the queueing system (or the overflow of
the stock in the storage model), happens following the most probable scenario.

4. Large deviations for the workload process

First, we give the assumptions under which the approximation (3.11) is fulfilled. For more
general assumptions we refer to the paper by Ganesh et al. [11].

Assumptions 4.1. (i) The sequences {an, n∈ Z} and {sn, n∈ Z} are i.i.d., mutually inde-
pendent. Their cumulant generating functions are given by

ΛA(θ)= logEeθa0 , ΛS(θ)= logEeθs0 . (4.1)

We assume that both ΛA and ΛS are differentiable near the origin.
(ii) The stability condition

1
μ
=Λ′S(0)= Es0 < Ea0 =Λ′A(0)= 1

λ
(4.2)

is satisfied.
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Under (i) and (ii), we have the following proposition.

Proposition 4.2. The sequence {w0/n, n∈N∗} satisfies a large deviations principle with
good rate function IW (q)= δq, that is, limn→∞(1/n) logP(w0/n≥ q)=−δq, with

δ = inf
0<a<s

IA,S(a,s)
s− a = sup

{
θ : ΛS(θ) +ΛA(−θ)≤ 0

}
. (4.3)

Proof. First we prove (4.3). Recall that xn = sn− an, Xn =
∑n

i=1 x−i, and

w0 = sup
k≥0

Xk. (4.4)

By the independence assumption, we have

ΛX(θ)=ΛS(θ) +ΛA(−θ). (4.5)

By direct application of the contraction principle, we check that

IX(x)= inf
y>x

{
IS(y) + IA(y− x)

}
. (4.6)

Let θ ≤ infx≥0 IX(x)/x, then

θ ≤ inf
x≥0

IX(x)
x

⇐⇒ θ ≤ IX(x)
x

, ∀x ≥ 0

⇐⇒ θx− IX(x)≤ 0, ∀x ≥ 0

⇐⇒ sup
x≥0

{
θx− IX(x)

}≤ 0

⇐⇒ΛX(θ)≤ 0.

(4.7)

The last equivalence is due to the fact that Ex0 < 0 (stability condition) and (2.8). We
proved that

inf
0<a<s

IA,S(a,s)
s− a = inf

x≥0

IX(x)
x

= sup
{
θ : ΛS(θ) +ΛA(−θ)≤ 0

}
. (4.8)

(i) Lower bound: for q > 0, we haveP(w0≥q)≥ P(Xk ≥ q). Notice that for p ≥ q/�q/p�,
we have

P
(
w0 ≥ q

)≥ P
(

1
�q/p�X�q/p� ≥ p

)
. (4.9)

Since 1/q ≥ (1/p)(1/�q/p�), we get

liminf
q→∞

1
q

logP(w0 ≥ q)≥ 1
p

liminf
q→∞

1
�q/p� logP

(
1

�q/p�X�q/p� ≥ p

)

= 1
p

liminf
n→∞

1
n

logP
(

1
n
Xn ≥ p

)
≥− 1

p
IX(p),

(4.10)
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for all p > 0. We conclude that

liminf
q→∞

1
q

logP
(
w0 ≥ q

)

≥− inf
x>0

1
x
IX(x)=− inf

x>0

1
x

inf
y>x

{
IS(y) + IA(y− x)

}

=− inf
0<a<s

IS(s) + IA(a)
s− a .

(4.11)

(ii) Upper bound: recall that ΛX(θ) = ΛS(θ) +ΛA(−θ). By the stability condition, we
have

Λ′X(0)= log
E
(
s1
)

E
(
a1
) < 0. (4.12)

Moreover, ΛX is differentiable near 0 with ΛX(0)= 0. Thus, there is a constant Θ > 0 such
that ΛX(Θ) < 0 and EeΘXn <∞. Applying Chernoff ’s bound, we get, for n∈N,

P
(
Xn ≥ q

)≤ e−ΘqEeΘXn . (4.13)

This leads to

limsup
q→∞

1
q

logP
(
Xn ≥ q

)≤−Θ. (4.14)

For N ∈N, we check that

P
(

max
0≤n≤N

Xn ≥ q
)
≤N max

0≤n≤N
P
(
Xn ≥ q

)
. (4.15)

Allowing q go to infinity,

limsup
q→∞

1
q

logP
(

max
0≤n≤N

Xn ≥ q
)
≤ max

0≤n≤N
limsup
q→∞

log
1
q
P
(
Xn ≥ q

)≤−Θ. (4.16)

We need now to have a bound for large values of n. Applying the union bound, we have

P

(
sup
n>N

Xn ≥ q
)
≤
∑

n>N

P
(
Xn ≥ q

)≤ e−Θq
∑

n>N

EeΘXn . (4.17)

Since (1/n) logEeΘXn =ΛX(Θ) < 0, there is 0 < ε <−ΛX(Θ) et NΘ ∈N such that

∀n > NΘ,
1
n

logEeΘXn ≤−ε. (4.18)

Combining (4.17) and (2.10), we obtain

P

(
sup
n>NΘ

Xn > q

)
≤ e−Θq

∑

n>NΘ

e−nε <
e−Θq

1− e−ε e
−
(
NΘ+1

)
ε. (4.19)
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To sum up, we derived the following bound:

limsup
q→∞

1
q

logP

(
sup
n>NΘ

Xn ≥
)
≤−Θ. (4.20)

Therefore, for Θ > 0 such that ΛX(Θ) < 0, we have

limsup
q→∞

1
q

logP

(
sup
n≥0

Xn ≥ q
)
≤−Θ. (4.21)

We conclude using (4.3). �

This result can be interpreted naively in terms of the following approximation:

P
(

sup
n
Xn ≥ q

)
≈ sup

n
P
(
Xn ≥ q

)
. (4.22)

This is nothing more than a consequence of the fact that rare events occur in the most
likely way. Moreover, using this approximation one can predict the frequency at which
the waiting time (or the level of stock) overflows a given threshold. Indeed if (3.11) is
fulfilled, then we represent the graph (in logarithmic squale) of the frequency of exceed-
ing a level q. The above approximation (Proposition 4.2) inspired numerous applications
(described by Courcoubetis et al. [3]) of large deviations to the analysis of the statistics of
networks of queues.

5. Effective bandwidth

The bandwidth of a traffic flow has become a classical feature in communication networks
literature. We are interested in the notion of effective bandwidth introduced by Kelly [13],
which gives an analytical way of describing the properties of a stochastic flow by means
of rare events occurring in the network through which it passes.

In practice, the queues and stores we are interested in have finite capacities, that is, the
queue (resp., the store) rejects customers (resp., stock) each time the waiting time (resp.,
the amount of stock) overpasses a given threshold. In the queueing context, we assume
{sn, n∈ Z} given and we seek the (deterministic) minimal value ap of interarrival times
such that the probability that the waiting times exceed the threshold is less than a fixed
value p. For the storage model, we assume {an, n ∈ Z} given and we seek the maximal
value sp of product arriving at the store at each slot of time, such that the store rejects
it with a probability less than p. More precisely, we want to identify the arrivals to both
models such that

P
(
w0 ≥ q

)≤ p, (5.1)

for given values of q and p.

Queue. Let an = a, ∀n∈ Z, that is, ΛA(θ)= aθ. If s is i.i.d., then by Proposition 4.2,

P
(
w0 ≥ q

)≤ e−δ(a)q (5.2)
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with

δ(a)= sup
{
θ : θ ≥ 0, ΛS(θ)≤ aθ}. (5.3)

The minimal interarrival time for the inequality (5.1) to be fulfilled is given by ap such
that

ap = inf
{
a : a≥ 0 et e−δ(a)q ≤ p

}
. (5.4)

Let θp =− log p/q, then δ(ap)= θp and

ap =
ΛS(θp)

θp
. (5.5)

The variable ap is the effective bandwidth of the queue. For more details we refer to Kelly’s
review [14].

Store. Let sn = s, ∀n∈ Z, then ΛS(θ)= θs and

δ(s)=− inf
{
θ < 0 : ΛA(θ)≤ sθ}. (5.6)

The inequality (5.1) is satisfied if no more than sp amount of stock arrives to the store at
each slot with

sp = sup
{
s≥ 0 : e−δ(s)q ≤ p

}
. (5.7)

The quantity sp is the effective bandwidth of the store, with

sp =
ΛA

(
θp
)

θp
. (5.8)

We generalize this notion to nondeterministic arrivals by introducing the functions
αA(θ) and αS(θ) given by

αA(θ)= ΛS(θ)
θ

, αS(θ)= ΛA(θ)
θ

, (5.9)

representing the effective bandwidths of the queue and the store, respectively.

6. Principle of large deviations for the output variables

We proved, in Section 4, a large deviations principle for the workload process using clas-
sical techniques. It is generally hard to apply these techniques to derive large deviations
principles for the output variables. In this section, we will apply the contraction principle
to this end. Following the outline of the proof of the existence of fixed points for discrete-
time queues in [10], we use theoretical results on large deviations for continuous-time
processes.
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First, we go back to the workload process to illustrate this method. For n ∈ N∗, we
define

An =
n∑

i=1

a−i, Sn =
n∑

i=1

s−i. (6.1)

It is obvious that w0 = supk≥0(Sk −Ak).
To apply the contraction principle it is crucial to define an adapted topology under

which the workload process is obtained through a continuous mapping of the input
variables. Therefore, we define the polygonal approximation in n of a given sequence
{Xk,k ∈N∗} by

X̃n(t)= 1
n
X�nt� +

(
t− �nt�

n

)(
X�nt�+1−X�nt�

)
, t ≥ 0. (6.2)

Let Ãn and S̃n be the polygonal approximations in n of the sequences {Ak,k ∈ N} and
{Sk,k ∈N}. Notice that for n∈N∗,

w0

n
= 1
n

sup
k∈N

(
Sk −Ak

)= 1
n

sup
t≥0

(
S�nt� −A�nt�

)

= sup
t>0

(
S̃n(t)− Ãn(t)

)
.

(6.3)

A function x is absolutely continuous (on R) if for every ε > 0, there is η > 0 such that for
any finitely many disjoint open intervals (ai,bi), i = 1, . . . ,n, satisfying

∑n
i=1(bi − ai) ≤ η,

we have
∑n

i=1( f (bi)− f (ai))≤ ε. If x is absolutely continuous, then its derivative x′ exists
almost everywhere and we can write

x(v)− x(u)=
∫ v

u
x′(t)dt. (6.4)

For μ > 0, we define �μ (resp., �μ) the set of continuous functions (resp., absolutely con-
tinuous) x :R+ →R with x(0)= 0 and

lim
t→+∞

x(t)
t+ 1

= 1
μ
<∞, (6.5)

equipped with the norm

‖x‖ = sup
t∈R+

∣∣∣∣
x(t)
t+ 1

∣∣∣∣. (6.6)

We now focus on large deviations on processes in continuous time in �μ.

Definition 6.1. A sequence of processes {Xn, n∈N}, where Xn ∈�μ, satisfies a functional
large deviations principle with linear geodesics, with instantaneous rate function I , if

(i) the function I is a rate function, with I(1/μ)= 0,
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(ii) the sequence {Xn, n∈N} satisfies a large deviations principle �μ with rate func-
tion

	X(φ)=
⎧
⎪⎨
⎪⎩

∫ +∞

0
I
(
φ′(t)

)
dt if φ∈�μ,

+∞ otherwise.
(6.7)

Dembo and Zajic explored extensions [4] of large deviations principles to processes in
continuous time under the topology of uniform convergence on compact intervals. How-
ever, this topology is not appropriate in the context of queueing systems. We introduce a
coarser topology corresponding to the norm (6.6). The following large deviations princi-
ple is due to Ganesh and O’Connell [9]. Notice that if x = {xn, n∈N} an i.i.d. sequence
with mean 1/μ, then for n∈N∗, X̃n ∈ �μ, where X̃n is the polygonal approximation in n
of the sequence X = {Xn,n∈N} with Xn =

∑n
i=1 xi

Theorem 6.2 [9]. Let x = {xn, n∈N} be a sequence of real-valued random variables and
ΛX its cumulant generating function, which is differentiable near the origin. Then the se-
quence of polygonal approximations {X̃n, n∈N∗} ofX = {Xn, n∈N}, whereXn =

∑n
i=1 xi,

satisfies a functional large deviations principle with linear geodesics on �μ equipped with the
norm (6.6), with mean 1/μ=Λ′X(0) and instantaneous rate function IX , that is,

	X(φ)=
⎧
⎪⎨
⎪⎩

∫ +∞

0
IX
(
φ′(t)

)
dt if φ ∈�μ,

+∞ otherwise.
(6.8)

Under (i), the processes Ãn and S̃n satisfy functional large deviations principles with linear
geodesics and instantaneous rate functions 	A and 	S defined by

	A(φ)=
⎧
⎪⎨
⎪⎩

∫ +∞

0
IA
(
φ′(t)

)
dt if φ∈�λ,

+∞ otherwise,
(6.9)

with IA(x) = supθ∈R{θx−ΛA(θ)}, the Legendre transform of ΛA. Define IS and 	S in the
same way.

We check (see [11]) that f : �μ×�λ→R+ defined by

f (φ,ψ)= sup
t>0

(
ψ(t)−φ(t)

)
(6.10)

is continuous on �μ×�λ for the topology induced by the norm (6.6). Indeed f is not contin-
uous under the topology of uniform convergence [11, Example 5.2].

Applying the contraction principle, we check that {w1/n,n∈ Z} satisfies a large devia-
tions principle on R+ with rate function

IW (q)= inf
{∫∞

0
IA,S

(
φ′(s)

)
ds | (φ1,φ2)∈�λ×�μ, f (φ1,φ2)= q

}

= inf
{∫∞

0
IA,S

(
φ′(s)

)
ds | (φ1,φ2)∈�λ×�μ, sup

t>0

(
φ2(t)−φ1(t)

)= q
}

,
(6.11)
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where IA,S(φ′(s)) = IA(φ′1(s)) + IS(φ′2(s)). Combining this with Proposition 4.2, we have
the following corollary.

Corollary 6.3. The solution of the following optimization problem:

Minimizing
∫∞

0
IA,S

(
φ′(s)

)
dsverφ= (φ1,φ2)∈�λ×�μ

subject to sup
t>0

(
φ2(t)−φ1(t)

)= q
(6.12)

is given by IW (q)= δq where δ is defined in (4.3).

In the following section, we make use of the same techniques to give large deviations
principles for the output variables

dn = an +wn+1−wn + sn+1− sn, rn = sn−wn+1 +wn. (6.13)

We define D = {Dn, n∈N} and R= {Rn, n∈N} by

Dn =
n∑

i=1

d−i, Rn =
n∑

i=1

r−i. (6.14)

Let D̃n and R̃n be their polygonal approximations in n. Under (i), (ii) and by Loynes’
scheme [15], we check that

(
D̃n, R̃n

)∈�λ×�μ. (6.15)

6.1. Optimization problem. To make the proof as clear as possible, we introduce a new
variable

bn = an +wn+1−wn, (6.16)

which stands, in a queueing context, for the time between instances of beginning of ser-
vices for customers n and n+ 1. Let B = {Bn, n∈N} defined by Bn =

∑n
i=1 b−i and B̃n its

polygonal approximation in n then B̃n ∈�λ. Under (i), we have the following lemma.

Lemma 6.4. For 0 ≤ t ≤ 1 fixed, the sequences {D̃n(t), n ∈N∗} and {B̃n(t), n ∈N∗} are
exponentially equivalent.

Proof. Let γ > 0,

P

(
sup

0≤t≤1

∣∣D̃n(t)− B̃n(t)
∣∣ > γ

)
≤ P

(
sup

0≤k≤n

∣∣s−k − s0
∣∣ > nγ

)

≤
n∑

k=0

P
(∣∣s−k − s0

∣∣ > nγ
)

≤ e−γνn
n∑

k=0

Eeγ
∣∣s−k−s0

∣∣ ≤ (n+ 1)e−γνne2ΛS(γ).

(6.17)
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Since limn→∞ log((n+ 1)e−γνn)=−∞ and thanks to assumption (i) (ΛS(γ) <∞ for γ close
to 0), we are done. �

Thus if one of the sequences {D̃n(t), n ∈ N∗} and {B̃n(t), n ∈ N∗} satisfies a large
deviations principle then the other does too and they both have the same rate function.
Since the expression of B̃n (in terms of the input variables) is easier than the one of D̃n,
we concentrate on B̃n and R̃n. In fact, we have the following.

Lemma 6.5. The sequences B̃n(t) and R̃n(t) satisfy

B̃n(t)= Ãn(t) + sup
s>0

{
S̃n(s)− Ãn(s)

}− sup
s>t

{(
S̃n(s)− S̃n(t)

)− (
Ãn(s)− Ãn(t)

)}
,

R̃n(t)= S̃n(t)− sup
s>0

{
S̃n(s)− Ãn(s)

}
+ sup

s>t

{(
S̃n(s)− S̃n(t)

)− (
Ãn(s)− Ãn(t)

)} (6.18)

Proof. We check the result for B̃n(t), the proof goes along the same arguments for R̃n(t).
Since B̃n(t) is a linear interpolation of B�nt�/n, we will prove the result for B�nt�. First, we
check that

B�nt� = A�nt� +w0−w−�nt�. (6.19)

However, we have w0 = sups>0{S̃n(s)− Ãn(s)} then

w−�nt� = sup
s>t

{(
S̃n(s)− S̃n(t)

)− (
Ãn(s)− Ãn(t)

)}
. (6.20)

�

Theorem 6.6. Under assumptions (i) and (ii), the sequence {(Dn/n,Rn/n,w0/n), n∈N∗}
satisfies a large deviations principle on R3

+ with rate function

J
(
x1,x2,w

)= inf
{
δ
(
w− x1 + x2

)
+ IA,S

(
x2,x1

)
; inf

C
g
(
q,τ,v1,v2

)}
, (6.21)

where

g
(
q,τ,v1,v2

)= τIA,S

(
x2− v2

τ
,
x2− v2 +w

τ

)
+ (1− τ)IA,S

(
v1

1− τ ,
v2− q
1− τ

)
+ δq, (6.22)

with δ = inf0<a<s((IA(a) + IS(s))/(s− a)) and C = {(q,τ,v1,v2) | q ≥ 0, 0 ≤ τ ≤ 1, x2 −
v2 +w = x1− v1 + q}.
Proof. By Loynes [15] and Lemma 6.5, we check that (B̃n, R̃n,w0/n) =Φ(Ãn, S̃n) with

Φ : �λ×�μ −→�λ×�μ×R+. (6.23)

Let Φ= (Φ1,Φ2,Φ3) and φ= (φ1,φ2)∈�λ×�μ, we have

Φ1(φ)(t)= φ1(t) + sup
s>0

{
φ2(s)−φ1(s)

}− sup
s>t

{(
φ2(s)−φ2(t)

)− (
φ1(s)−φ1(t)

)}
,

Φ2(φ)(t)= φ2(t)− sup
s>0

{
φ2(s)−φ1(s)

}
+ sup

s>t

{(
φ2(s)−φ2(t)

)− (
φ1(s)−φ1(t)

)}
,

Φ3(φ)(t)= sup
s>0

{
φ2(s)−φ1(s)

}
.

(6.24)
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Applying the contraction principle, the sequence {(B̃n, R̃n,w0/n), n∈N∗} satisfies a large
deviations principle with rate function

J
(
ψ1,ψ2,w

)= inf
{∫∞

0
IA,S

(
φ′1(s),φ′2(s)

)
ds |Φ(φ1,φ2

)= (
ψ1,ψ2,w

)}
. (6.25)

This variational problem is generally hard to solve, we restrict ourselves to t = 1. By the
law of large numbers, {(B̃n(1), R̃n(1)), n ∈ N∗} = {(Bn/n,Rn/n), n ∈ N∗} converges to
the mean values of the output variables, whereas the large deviations principle gives the
fluctuations around these values. The sequence {(Bn/n,Rn/n,w0/n), n ∈ N∗} satisfies a
large deviations principle with rate function

J
(
x1,x2,w

)= inf
{∫∞

0
IA,S

(
φ′1(s),φ′2(s)

)
ds | [Φ(φ1,φ2

)]
(1)= (

x1,x2,w
)}
. (6.26)

We introduce the variables q0 and q1 given by

q0 = sup
s>0

{
φ2(s)−φ1(s)

}
,

q1 = sup
s>1

{(
φ2(s)−φ2(1)

)− (
φ1(s)−φ1(1)

)}
.

(6.27)

We rewrite (6.24) as follows

x1 = φ1(1) + q0− q1, x2 = φ2(1)− q0 + q1, w = q0. (6.28)

To solve this variational problem we condition on the value of q1 to be equal to q. By the
stability condition λ < μ, we check that q is finite. Then J(x1,x2,w) is the solution of the
following optimization problem

Minimize
∫ 1

0
IA,S

(
φ′(s)

)
ds+

∫∞

1
IA,S

(
φ′(s)

)
ds over φ ∈�λ×�μ, q ≥ 0

subject to q1 = q, x1 = φ1(1) + q0− q1, x2 = φ2(1)− q0 + q1, w = q0,
(6.29)

where φ = (φ1(s),φ2(s)) and IA,S(φ′(s))= IA(φ′1(s)) + IS(φ′2(s)).
Using the auxiliary variable q allows the decomposition of the initial optimization

problem into two minimization problems on s∈ [0,1] and s > 1 coupled through q. More
precisely, we suppose the variables x1, x2, and w = q0 given, if we fix q = q1, then φ1(1)
and φ2(1) are fixed. For s > 1, the only constraint on φ1 and φ2 is q1 = q. Consequently,
the first minimization consists of

Minimizing
∫∞

1
IA,S

(
φ′1(s),φ′2(s)

)
ds, subject to q1 = q. (6.30)

The second minimization consists of

Minimizing
∫ 1

0
IA,S

(
φ′1(s),φ′2(s)

)
ds

subject to x1 = φ1(1) + q0− q1, x2 = φ2(1)− q0 + q1, w = q0,
(6.31)

knowing q1 = q. In both cases the minimization is for φ∈�λ×�μ.
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For the first problem, let ψ ∈�λ ×�μ with ψi(s− 1) = φi(s)− φi(1), s ≥ 1, i = 1,2.
By Corollary 6.3, this optimization gives the rate function associated with w0 given in
Proposition 4.2 and the minimum is δq where δ = infa<s(IA,S(a,s)/(s− a)).

Hence, to determine J(x1,x2,w) it remains to

Minimize
∫ 1

0
IA
(
φ′1(s)

)
+ IS

(
φ′2(s)

)
ds+ δq, (6.32)

for (φ1,φ2)∈�λ×�μ subject to

q ≥ 0, w = sup
s≥0

{
φ2(s)−φ1(s)

}
,

x1 = φ1(1) +w− q
x2 = φ2(1)−w+ q.

(6.33)

(i) Suppose sups≥0{φ2(s) − φ1(s)} = sups≥1{φ2(s) − φ1(s)}, then w = q + φ2(1)
−φ2(1), that is,

x1 = φ2(1), x2 = φ1(1), q =w− x1 + x2. (6.34)

The optimization problem (6.32) is fulfilled by linear functions φ1 and φ2 and we have

δ
(
w− x1 + x2

)
+ IA

(
x2
)

+ IS
(
x1
)
. (6.35)

(ii) If φ2(s)−φ1(s) reaches its maximum for τ ∈ [0,1], then

x1 =−q+φ1(1)−φ1(τ) +φ2(τ),

x2 = q+φ2(1)−φ2(τ) +φ1(τ).
(6.36)

We define yi = φi(τ)/τ, zi = (φi(1)−φi(τ))/(1− τ), i= 1,2 and χ ∈�λ×�μ,

χi(t)=
⎧
⎨
⎩
yit if t ∈]0,τ],

yiτ + zi(t− τ) if t ∈]τ,1].
(6.37)

Using the convexity of IA and IS and Jensen’s inequality, we have

∫ 1

0
IA,S

(
χ′1(s),χ′2(s)

)
ds≤

∫ 1

0
IA,S

(
φ′1(s),φ′2(s)

)
ds. (6.38)

Since
∫ 1

0 IA,S(χ′1(s),χ′2(s))ds = τIA,S(y) + (1− τ)IA,S(z) where y = (y1, y2) and z = (z1,z2),
it remains to minimize

δq+ τIA,S(y) + (1− τ)IA,S(z), (6.39)



18 LDP and fixed points

subject to

q ≥ 0, y1 ≥ y2,

x1 =−q+ (1− τ)z1 + τ y2,

x2 = q+ (1− τ)z2 ≤ (1− τ)z1,

q+ (1− τ)z2 ≤ (1− τ)z1.

(6.40)

Let v1 = (1− τ)z1 and v2 = (1− τ)z2 + q, we check that y1 = (x2 − v2)/τ, y2 = (w + x2 −
v2)/τ and

J
(
x1,x2,w

)= inf
{
δ
(
w− x1 + x2

)
+ IA,S

(
x2,x1

)
, inf

C
g
(
q,τ,v1,v2

)}
, (6.41)

g and C are defined in Theorem 6.6. �

Let us give an interpretation of this result in a queueing context. Indeed, the most likely
ways to get departures with mean x1, times spent at the back of queue with mean x2, and
waiting times with mean w are when

(i) all customers belong to the same busy period (the system is never empty). Thus
the mean of the departures is equal to the mean of the services and the average
time spent at the very back of the queue is equal to the mean of the arrivals,

(ii) or let (q,τ,v1,v2)∈ C the variables where g reaches its minimum. Then the cus-
tomer −nτ finds the system empty, and the optimal path splits into two periods.
Customer−n waits nq time before starting its service. During the first period the
average of arrivals and services is (x2− v2)/τ and (x2− v2 +w)/τ and it consists of
nτ customers. During the second period the mean of services is (v2− q)/(1− τ)
and the arrivals occur with mean v1/(1− τ).

Equation (6.21) determines the rate functions of the output variables in terms of the rate
functions of the input variables. A natural question is when are these functions equal?
More precisely, when do we have (ID,IR)= (IA,IS)? We start with an example which trans-
lates the result stated in [7] in terms of large deviations.

Example 6.7 (the M/M/1 queue). Suppose that {an, n ∈ Z} and {sn, n ∈ Z} are i.i.d.
mutually independent and for t ≥ 0,

P
(
a0 > t

)= e−λt, P
(
s0 > t

)= e−μt. (6.42)

For θ < λ < μ,

ΛA(θ)= log
(

λ

λ− θ
)

, ΛS(θ)= log

(
μ

μ− θ

)
. (6.43)

Since δ = sup{θ > 0,ΛS(θ) +ΛA(−θ) < 0}, we check that δ = μ− λ. Moreover we have

IA(a)= λa− log(λa)− 1, IS(s)= μs− log(μs)− 1. (6.44)
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Resolving the above optimization problem, we have

J
(
x1,x2,w

)= λx1− log
(
λx1

)− 1 +μx2− log
(
μx2

)− 1 + (μ− λ)w

= IA,S
(
x1,x2

)
+ δw.

(6.45)

6.2. Existence of fixed points. Suppose {an, n ∈ Z} and {sn, n ∈ Z} i.i.d., mutually in-
dependent with means 1/λ and 1/μ. They satisfy large deviations principles with rate
functions IA and IS differentiable on R+. Let β > 0 such that

I′S(x)− I′A(x)= β, ∀x ∈R+. (6.46)

We can rewrite this relation in the following which will be useful for future analysis:

IA(x)− IA(y)= IS(x)− IS(y)−β(x− y), ∀(x, y)∈ (
R+

)2
. (6.47)

Before stating the fixed point result for the Queue/Store operator for the rate functions,
we give an interpretation of the relations (6.46) and (6.47) in terms of exponential tilting
of measures.

Definition 6.8. Let β > 0, it is said that a measure ν′ is the β-exponentially tilted measure
of a given measure ν if for all x ∈R,

dν′

dν
(x)= eβx∫

eβxdν(x)
, (6.48)

where (dν′/dν)(x) denotes the density of ν′ with respect to ν.

Proposition 6.9. Suppose {an, n ∈ Z} and {sn, n ∈ Z} satisfy relation (6.46) or (6.47),
with marginals νA and νS. Then νA is the β-exponentially tilted function of νS.

Proof. Recall that IA(1/λ)= 0. We check that

ΛA(θ)= sup
x∈R

[
θx− IA(x)

]= sup
x∈R

[
θx− IS(x) + IS

(
1
λ

)
+β

(
x− 1

λ

)]

= sup
x∈R

[
(θ +β)x− IS(x)

]−
[
β

λ
− IS

(
1
λ

)]
=ΛS(θ +β)−ΛS(β).

(6.49)

Considering the exponentials on both sides, we have

∫

R+

eθxdνA(x)=
∫
R+
e(θ+β)xdνS(x)

∫
R+
eβxdνS(x)

. (6.50)

�

Lemma 6.10. Assume that {an, n ∈ Z} and {sn, n ∈ Z} satisfy assumptions (i) and (ii).
Then the tilt coefficient β is given by

β = sup
{
θ : ΛS(θ) +ΛA(−θ)≤ 0

}
. (6.51)
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Proof. Let θ =−β in (6.49), we have

ΛA(−β)=ΛS(0)−ΛS(β). (6.52)

Since ΛS(0)= 0, we obtain ΛA(−β) +ΛS(β)= 0. Thanks to (4.3), we have

β ≤ sup
{
θ ≥ 0, ΛS(θ) +ΛA(−θ)≤ 0

}= δ. (6.53)

The function G(θ)=ΛS(θ) +ΛA(−θ) is convex with G(0)= 0. Moreover, by assumption
(ii),

G′(0)=Λ′S(0)−Λ′A(0) < 0. (6.54)

This means that G is equal to zero twice on [0,β], at 0 and β, then

β = sup
{
θ ≥ 0, ΛS(θ) +ΛA(−θ)≤ 0

}= δ. (6.55)
�

Theorem 6.11. Let δ > 0 and the sequences {an, n∈ Z} and {sn, n∈ Z} the input variables
of the model with νA the δ-tilted measure of νS (or νS the (−δ)-tilted measure of νA). Then
the sequence {(Dn/n,Rn/n,w0/n), n∈N∗} satisfies a large deviations principle on R3

+ with
rate function

J
(
x1,x2,w

)= δw+ IA,S
(
x1,x2

)
. (6.56)

Moreover,

ID = IA, IR = IS. (6.57)

Proof. By Theorem 6.6, the sequence {(D̃n(1), R̃n(1),w1/n), n∈N∗} satisfies a large de-
viations principle on R3

+ with rate function

J
(
x1,x2,w

)= inf
{
δ
(
w− x1 + x2

)
+ IA,S

(
x2,x1

)
; inf

C
g
(
q,τ,v1,v2

)}
. (6.58)

We start with the first term of this optimization problem, that is,

x1 = φ2(1), x2 = φ2(1), q =w− x1 + x2. (6.59)

We have w = x1− x2 + q, and thanks to (6.47),

δ
(
w− x1 + x2

)
+ IA,S

(
x2,x1

)= δ(w− x1 + x2
)

+ IA,S
(
x1,x2

)
+ δ

(
x1− x2

)

= δw+ IA,S
(
x1,x2

)
.

(6.60)

For the second term, let (q,τ,v1,v2)∈ C,
(i) if v1 = v2, from the convexity property, then

g
(
q,τ,v1,v2

)= δq+ τIA,S

(
x2− v2

τ
,
x2− v2 +w

τ

)
+ (1− τ)IA,S

(
v2

1− τ ,
v2− q
1− τ

)

≥ δq+ IA,S
(
x2,x2 +w− q)= δw+ IA,S

(
x1,x2

)
;

(6.61)
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(ii) if v1 > v2, then

IA,S

(
x2− v2

τ
,
x2− v2 +w

τ

)
= IA,S

(
x2− v2 +w

τ
,
x2− v2

τ

)
+ δ

w

τ
. (6.62)

Notice that

IS

(
v2− q
1− τ

)
= IS

(
v2

1− τ
)

+ IA

(
v2− q
1− τ

)
− IA

(
v2

1− τ
)
− δ q

1− τ . (6.63)

Since IA is convex and v1 ≥ v2, we have

IA

(
v2− q
1− τ

)
− IA

(
v2

1− τ
)
≥ IA

(
v1− q
1− τ

)
− IA

(
v1

1− τ
)
. (6.64)

Thus,

IS

(
v2− q
1− τ

)
+ IA

(
v1

1− τ
)
≥ IS

(
v2

1− τ
)

+ IA

(
v1− q
1− τ

)
− δ q

1− τ . (6.65)

Since IA and IS are convex and x2− v2 +w+ v1− q = x1, we have

g(q)≥ δw+ IA,S
(
x1,x2

)
. (6.66)

We conclude that J(x1,x2,w)= δw+ IA,S(x1,x2). �

In other words, the above theorem states that if the input variables satisfy large devia-
tions principles with rate functions IA and IS with νA the δ-tilted measure of νS, then the
output variables satisfy large deviations principles with the same rate functions.
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