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A random map is a discrete-time dynamical system in which one of a number of transfor-
mations is randomly selected and applied at each iteration of the process. The asymptotic
properties of a random map are described by its invariant densities. If Pelikan’s average
expanding condition is satisfied, then the random map has invariant densities. For indi-
vidual maps, piecewise expanding is sufficient to establish many important properties of
the invariant densities, in particular, the fact that the densities are bounded away from 0
on their supports. It is of interest to see if this property is transferred to random maps
satisfying Pelikan’s condition. We show that if all the maps constituting the random map
are piecewise expanding, then the same result is true. However, if one or more of the
maps are not expanding, this may not be true: we present an example where Pelikan’s
condition is satisfied, but not all the maps are piecewise expanding, and show that the
invariant density is not separated from 0.

Copyright © 2006 Paweł Góra et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A fundamental problem in ergodic theory is to describe the asymptotic behavior of tra-
jectories defined by a dynamical system. In general, the long term behavior of trajectories
of a chaotic dynamical system is unpredictable. Therefore, it is natural to describe the
behavior of the system by statistical means. In this approach, one attempts to prove the
existence of meaningful invariant measures and determine their ergodic properties. For
a single transformation, much is known about the densities of the absolutely continuous
invariant measures (acim). For example, it is known that the densities inherit smoothness
properties from the map itself (Halfant [7]), that the supports consist of a finite union
of intervals, and that the densities are bounded below on their supports (Keller [8] and
Kowalski [9]).
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2 Invariant densities of random maps

Random dynamical systems provide a useful framework for modeling and analyzing
various physical, social, and economic phenomena [4, 12]. A random dynamical system
of special interest is a random map where the process switches from one map to another
according to fixed probabilities [11] or, more generally, position-dependent probabilities
[2, 6]. In [4] we model the two-slit experiment of quantum mechanics by a random map.
More specifically, given two probability density functions, f1 and f2, we construct maps
τ1 and τ2 which have f1 and f2 as their respective invariant probability density functions.
We then define a random map based on these two maps; that is a discrete-time random
process which at each time chooses one map or the other with specified probability. This
process is referred to as a random map and possesses an invariant probability density
function which is a “combination” of f1 and f2. Computer experiments on this random
map confirm the similarity to the interference results of the two-slit experiment. Random
maps are also a convenient framework for modeling processes with randomly changing
environment, for example, stock market. We used it in [2] to replace the binomial model
applied to determine option prices.

The existence and properties of invariant measures for random maps reflect their long
time behavior and play an important role in understanding their chaotic nature. It is,
therefore, important to establish properties of their absolutely continuous invariant mea-
sures. In this paper we generalize to random maps results of Keller [8] and Kowalski [9],
which state that the density of an acim of a nonsingular map is strictly positive on its sup-
port. Our main results are proven under the assumption that the individual maps used to
construct the random map are piecewise expanding. We also give an example satisfying
Pelikan’s condition (2.5), showing that the assumption of expanding cannot be removed.

In Section 2 we present the notation and summarize the results we will need in the
sequel. In Section 3 we prove the main result.

2. Preliminaries

Let (X ,�,λ) be a measure space, where λ is an underlying measure and τk : X → X , k =
1,2, . . . ,K are nonsingular transformations. A random map T with constant probabilities
is defined as

T = {τ1,τ2, . . . ,τK ; p1, p2, . . . , pK
}

, (2.1)

where {p1, p2, . . . , pK} is a set of constant probabilities. For any x ∈ X , T(x)= τk(x) with
probability pk and, for any nonnegative integer N , TN (x)= τkN ◦ τkN−1 ◦ ··· ◦ τk1 (x) with
probability ΠN

j=1pkj . A measure μ is T-invariant if and only if it satisfies the following
condition [11]:

μ(E)=
K∑

k=1

pkμ
(
τ−1
k (E)

)
, (2.2)

for any E ∈�.
We now recall some definitions and results which will be needed to prove the main

result in Section 3.
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Definition 2.1. Let τ : (X ,�,λ)→ (X ,�,λ) be a nonsingular transformation and let μ be
an acim with respect to Lebesgue measure λ possessing density function f . We define the
support of μ as follows:

supp(μ)= supp( f )= {x ∈ X : f (x) > 0
}
. (2.3)

Definition 2.2. A function f :R→R is said to be a lower semicontinuous function if and
only if f (y)≤ liminfx→y f (x) for any y ∈R.

Theorem 2.3 [5]. If f is lower semicontinuous on I = [a,b]⊂R, then it is bounded below
and assumes its minimum value. For any c ∈R, the set {x : f (x) > c} is open.

Lemma 2.4 [5]. If f is of bounded variation on I , then it can be redefined on a countable set
to become a lower semicontinuous function.

Let �0(I) denote the class of transformations τ : I → I that satisfies the following con-
ditions:

(i) τ is piecewise monotonic, that is, there exists a partition �= {Ii = [ai−1,ai], i=
1,2, . . . ,q} of I such that τi = τ | Ii is C1, and

∣
∣τ′i (x)

∣
∣≥ α > 0, (2.4)

for any i and for all x ∈ (ai−1,ai);
(ii) g(x)= 1/|τ′i (x)| is a function of bounded variation, where τ′i (x) is the appropri-

ate one-sided derivative at the end points of �.
We say that τ ∈�1(I) if τ ∈�0(I) and α > 1 in condition (2.4), that is, τ is piecewise
expanding.

Theorem 2.5 [8, 9]. Let τ ∈�1(I) and f be a τ-invariant density which can be assumed
to be lower semicontinuous. Then there exists a constant β > 0 such that f |supp( f ) ≥ β.

Theorem 2.6 [1, 11]. Let T = {τ1,τ2, . . . ,τK ; p1, p2, . . . , pK} be a random map, where τk ∈
�0(I), with the common partition �= {J1, J2, . . . , Jq}, k = 1,2, . . . ,K . If, for all x ∈ [0,1], the
following Pelikan’s condition

K∑

k=1

pk∣
∣τ′k(x)

∣
∣ ≤ γ < 1 (2.5)

is satisfied, then for all f ∈ L1 = L1([0,1],λ):
(i) the limit

lim
n→∞

1
n

n−1∑

i=1

Pi
T( f )= f ∗ exists in L1; (2.6)

(ii) PT( f ∗)= f ∗;
(iii) V[0,1]( f ∗)≤ C · ‖ f ‖1, for some constant C > 0, which is independent of f ∈ L1.
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3. Support of invariant density of random maps

In this section we prove that the invariant density of an acim of the random map T =
{τ1,τ2, . . . ,τK ; p1, p2, . . . , pK}, τ1,τ2, . . . ,τK ∈�1 is strictly positive on its support. For no-
tational convenience, we consider K = 2, that is, we consider only two transformations
τ1, τ2. The proofs for larger number of maps are analogous. We consider random maps
with constant probabilities.

Let � denote the set of endpoints of intervals of partition � except the points 0 and 1.
The main result of this paper applies to random maps, where each component map

is in �1(I), but the first two lemmas are proved under the more general assumptions of
Theorem 2.6.

Lemma 3.1. Let the random mapT = {τ1,τ2; p1, p2} satisfy the assumptions of Theorem 2.6.
In particular,

p1∣
∣τ′1(x)

∣
∣ +

p2∣
∣τ′2(x)

∣
∣ ≤ γ < 1, (3.1)

for all x ∈ I \�. Then, for any interval J disjoint with �, at least one of the images τ1(J),
τ2(J) is longer than J .

Proof. First, let us note that if ν is the normalized Lebesgue measure on J , then

1=
(∫

J
1dν

)2

=
(∫

J

√∣
∣τ′(x)

∣
∣ · 1

√∣
∣τ′(x)

∣
∣
dν(x)

)2

≤
∫

J

∣
∣τ′(x)

∣
∣dν(x) ·

∫

J

1
∣
∣τ′(x)

∣
∣dν(x),

(3.2)

1
∫
J

∣
∣τ′(x)

∣
∣dν(x)

≤
∫

J

1
∣
∣τ′(x)

∣
∣dν(x), (3.3)

or

1
(
1/λ(J)

)∫
J

∣
∣τ′(x)

∣
∣dx

≤ 1
λ(J)

∫

J

1
∣
∣τ′(x)

∣
∣dx. (3.4)

Integrating (3.1) over J , we obtain

p1

∫

J

1
∣
∣τ′1(x)

∣
∣dx+ p2

∫

J

1
∣
∣τ′2(x)

∣
∣dx ≤ γ · λ(J), (3.5)

and, using (3.4), we obtain

p1λ(J)
λ
(
τ1(J)

) +
p2λ(J)
λ
(
τ2(J)

) ≤ γ. (3.6)

Thus, at least one of the numbers λ(τ1(J)), λ(τ2(J)) is larger than λ(J). �
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Corollary 3.2. Under assumptions of Lemma 3.1, if J is an interval disjoint with endpoints
of the partition �(n) =�∨∨τ−1

jn−1
τ−1
jn−2
···τ−1

j1 � for n > 1, then

∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1
λ(J)

λ
(
τjnτ jn−1 ···τj1 (J)

) ≤ γn, (3.7)

where jn, jn−1, . . . , j1 ∈ {1,2}. In particular, we have

max
J∈�(n)

diam(J)≤ γn, n≥ 1. (3.8)

Proof. It follows from the fact that Pelikan’s condition (2.5) implies

sup
x

∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1∣
∣(τjn ◦ τjn−1 ◦ ··· ◦ τj1

)′
(x)
∣
∣ ≤ γn, (3.9)

n≥ 1, jn, jn−1, . . . , j1 ∈ {1,2}. �

Remark 3.3. Instead of Pelikan’s condition (2.5) we can use throughout the paper a
weaker condition

p1 ln
∣
∣τ′1(x)

∣
∣+ p2 ln

∣
∣τ′2(x)

∣
∣≥ β > 0, x ∈ [0,1], (3.10)

which one could call Morita’s condition [10]. Condition (3.10) implies the existence of
absolutely continuous invariant measure but its density may not be of bounded variation,
see [3, Example 1.2]. If we assume additionally that this density is of bounded variation or
at least is a lower semicontinuous function, then we can reprove the results of this paper
under assumption of condition (3.10).

Condition (3.10) implies
∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1 ln
∣
∣(τjn ◦ τjn−1 ◦ ··· ◦ τj1

)′
(x)
∣
∣≥ nβ > 0, x ∈ [0,1], (3.11)

n≥ 1, jn, jn−1, . . . , j1 ∈ {1,2}. Using condition (3.10) we can prove an analogue of Lemma
3.1.

For any interval J contained in an element of partition �, we have

p1 ln
λ
(
τ1(J)

)

λ(J)
+ p2 ln

λ
(
τ2(J)

)

λ(J)
≥ β > 0, (3.12)

which implies that at least one of the images is longer than interval J .
Analogously, for any interval J contained in an element of partition �(n), we have

∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1 ln
λ
(
τjn ◦ τjn−1 ◦ ··· ◦ τj1 (J)

)

λ(J)
≥ nβ > 0, (3.13)

n≥ 1, jn, jn−1, . . . , j1 ∈ {1,2}. This, in particular, implies that

max
J∈�(n)

diam(J)≤ e−nβ, n≥ 1. (3.14)



6 Invariant densities of random maps

Lemma 3.4. Let T = {τ1,τ2; p1, p2} be a random map on [0,1] satisfying the conditions of
Theorem 2.6. Then, the support of the invariant density of T contains an interval which is
not disjoint with �.

Proof. Let supp( f ) = {x ∈ [0,1] : f (x) > 0}. The density function f of the acim μ is a
function of bounded variation by Theorem 2.6 and thus, by Lemma 2.4, f can be rede-
fined on a countable set to become a lower semicontinuous function f and f = f al-
most everywhere. Thus, supp( f )= supp( f )= {x : f > 0} is an open set by Theorem 2.3.
Thus, supp( f )=∪∞i=1Ii, where Ii’s are open disjoint intervals. Without loss of generality,
let us assume that λ(Ii) ≥ λ(Ii+1) for i = 1,2, . . . . We will prove that �∩ I1 �= ∅. Suppose
�∩ I1 =∅. Then I1 is contained in one of the subintervals, J∗, of the partition � and
τ1(I1) and τ2(I1) are both open intervals. Since f is an invariant density of the random
map T , we have

f (x)= p1 ·
q∑

i=1

f
(
τ−1

1,i (x)
)

∣
∣τ′1

(
τ−1

1,i (x)
)∣∣χτ1(Ii)(x) + p2 ·

q∑

i=1

f
(
τ−1

2,i (x)
)

∣
∣τ′2

(
τ−1

2,i (x)
)∣∣χτ2(Ii)(x). (3.15)

Let x ∈ τ1(I1). It is clear that at least one element of {τ−1
1,∗(x)} is in I1 and since I1 ⊂

supp( f ) we have f (x) > 0. Thus, τ1(I1) is a subset of supp( f ). Similarly, τ2(I1) is a subset
of supp( f ). By Lemma 3.1, at least one of the intervals τ1(I1), τ2(I1) has larger length than
the length of I1. This is a contradiction because supp( f ) does not contain an interval of
length greater than λ(I1). This proves that �∩ I1 �= ∅. �

Corollary 3.5. The number of different ergodic acim for the random map T satisfying the
assumptions of Theorem 2.6 is at most equal to the cardinality of the partition � minus one.

For Theorem 3.6 we assume that τ1,τ2 ∈�1. After the theorem we give an example
showing that it fails if we assume only τ1,τ2 ∈�0.

Theorem 3.6. Let T = {τ1,τ2; p1, p2} be a random map on [0,1], where τ1,τ2 ∈�1 and
have a common partition �= {J1, J2, . . . , Jq}. Then the support of the invariant density f of
T , supp( f ) is a finite union of open intervals almost everywhere.

Proof. Again we can assume that supp( f )=∪∞i=1Ii, where Ii’s are open disjoint intervals.
Let � = { j ≥ 1 : I j contains a discontinuity of τ1,τ2, or both}. By Lemma 3.4, � is not
empty. Also, � is a finite set. If j ∈�, then τi(I j), i= 1,2 is a finite union of intervals. Let
J be the shortest interval of the family

{
I j
}
j∈�∪

{
I : I is a connected component of τi

(
I j
)
, i= 1,2, j ∈�

}
. (3.16)

Let �= {i≥ 1 : λ(Ii)≥ λ(J)}, where i is not necessarily in � and let

S=∪i∈�Ii ⊂∪iIi = supp( f ). (3.17)

S is a finite union of open disjoint intervals since it is a family of disjoint intervals with
length ≥ λ(J) > 0. For any j ∈�, I j ⊆ S.
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We will prove that τi(S)⊆ S, i= 1,2. Let Ik ⊂ S. If k /∈�, then τi(Ik) is contained in an
interval Iki , i= 1,2 and

λ
(
Iki
)≥ λ

(
τi
(
Ik
))=

∫

Ik

∣
∣τ′i (x)

∣
∣dλ > inf

x∈[0,1]

∣
∣τ′i (x)

∣
∣ · λ(Ik

)
, i= 1,2. (3.18)

Since infx∈[0,1] |τ′i (x)| > 1 for i= 1,2, we have

λ
(
Iki
)≥ λ

(
Ik
)
> λ(J). (3.19)

Thus, by the definition of S, we get Iki ⊆ S, i = 1,2 and hence τi(Ik) ⊂ Iki ⊆ S, i = 1,2. If
k ∈�, then by the definition of S, τi(Ik)⊂ S, i= 1,2. Thus, τi(S)⊆ S, i= 1,2.

Now we will prove that supp( f ) ⊆ S. Suppose not. Let Is be the largest interval of
supp( f ) \ S. Thus, s /∈� and

λ
(
τi
(
Is
))=

∫

Is

∣
∣τ′i (x)

∣
∣dλ > inf

x∈[0,1]

∣
∣τ′i (x)

∣
∣ · λ(Is

)
> λ
(
Is
)
, i= 1,2. (3.20)

Then τi(Is) ⊂ S, i = 1,2. Thus, Is ⊂ τ−1
i (S), i = 1,2. But Is �⊂ S, so Is ⊂ τ−1

i (S) \ S, i =
1,2. Let μ = f · λ be the T-invariant absolutely continuous measure. We will show that
μ(τ−1

i (S) \ S)= 0, i= 1,2. Since τi(S)⊆ S, i= 1,2, we have

S⊆ τ−1
i

(
τi(S)

)⊆ τ−1
i (S), i= 1,2. (3.21)

Thus,

0= μ(S)−μ(S)= [p1μ
(
τ−1

1 S
)

+ p2μ
(
τ−1

2 S
)]− [p1μ(S) + p2μ(S)

]

= p1
[
μ
(
τ−1

1 S
)−μ(S)

]
+ p2

[
μ
(
τ−1

2 S
)−μ(S)

]

= p1μ
(
τ−1

1 S \ S)+ p2μ
(
τ−1

2 S \ S).
(3.22)

Thus, both μ(τ−1
1 S \ S) = 0 and μ(τ−1

2 S \ S) = 0 if p1, p2 > 0. Thus, μ(Is) = 0, which con-
tradicts the fact that Is ⊂ supp( f ). �

Example 3.7. We present a random map satisfying the assumptions of Theorem 2.6,
where the support of absolutely continuous T-invariant measure is an infinite countable
union of disjoint intervals. In this case the invariant density cannot be bounded away
from 0 on its support. Let us define the maps

τ1(x)=
(
8x−E(8x)

)

4
,

τ2(x)=

⎧
⎪⎪⎨

⎪⎪⎩

3
4

+
x

2
for 0≤ x ≤ 1

2
,

x

2
for

1
2
< x ≤ 1,

(3.23)

where E(t) denotes the integral part of t, as shown in Figure 3.1.
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0 1/4 1/2 1

1/4

1/2

1

(a)

0 1/2 1

1/4

1/2

3/4

1

(b)

Figure 3.1. The graphs of τ1 and τ2.

Let us consider the random map T = {τ1,τ2;3/4,1/4}. It satisfies all the assumptions of
Pelikan’s Theorem 2.6. In particular, T admits an absolutely continuous invariant mea-
sure μ with density f of bounded variation. Let S denote the support of f . Lebesgue
measure restricted to the interval L0 = [0,1/4] is invariant for τ1. Since τ1([0,1]) = L0

and τ1 is exact on L0, we have L0 ⊂ S. Since the interval K0 = (1/4,1/2) is not in the image
of τ1 or τ2, it is disjoint from S. Every image of L0 is in S. Since τ1([0,1])= L0, we consider
only images by τ2. We have

τ2
(
L0
)= [1− 1/4,1− 1/8]= L(1)

1 ,

τ2

(
L(1)

1

)
= [1/2− 1/8,1/2− 1/16]= L(2)

1 ,

τ2

(
L(2)

1

)
= [1− 1/16,1− 1/32]= L(1)

2 ,

τ2

(
L(1)

2

)
= [1/2− 1/32,1/2− 1/64]= L(2)

2 ,

(3.24)

and in general, for L(1)
n = [1− 1/4n,1− 1/(2 · 4n)] and L(2)

n = [1/2− 1/(2 · 4n),1/2− 1/(4 ·
4n)],

τ2
(
L(1)
n

)= L(2)
n , τ2

(
L(2)
n

)= L(1)
n+1. (3.25)

Let K (1)
n be the open interval between L(1)

n and L(1)
n+1, and let K (2)

n be the open interval
between L(2)

n and L(2)
n+1, n≥ 1. Then, obviously, we have for all n≥ 1,

τ2
(
K (1)
n

)= K (2)
n , τ2

(
K (2)
n

)= K (1)
n+1. (3.26)
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Since τ2 is an injective map, we also have

τ−1
2

(
K (2)
n

)= K (1)
n ,

τ−1
2

(
K (1)
n+1

)= K (2)
n , n≥ 1.

(3.27)

We have

τ−2
2

(
K (1)

1

)= K0 (3.28)

and τ−1
1 (K (i)

n )=∅ for i= 1,2, n≥ 1. Thus,

(
K (i)
n

)∩ S=∅, i= 1,2; n≥ 1. (3.29)

We have proved that

S= L0∪
⋃

i=1,2

⋃

n≥1

L(i)
n , (3.30)

that is, the support of the absolutely continuous T-invariant measure is an infinite count-
able union of disjoint intervals. Since the invariant density f is of bounded variation, we
have

sup
x∈L(i)

n

f (x)−→ 0, n−→ +∞, (3.31)

for i= 1,2, so the density f is not bounded away from 0.

In Lemma 3.8 and Theorem 3.9, we return to the assumption τ1,τ2 ∈�0, but we as-
sume additionally that the support of the invariant density is a finite union of disjoint
intervals. That was proved in Theorem 3.6 using the assumption τ1,τ2 ∈�1.

Lemma 3.8. Let T = {τ1,τ2; p1, p2} be a random map on [0,1], where τ1,τ2 ∈�0 and have
a common partition � = {J1, J2, . . . , Jq}. Let f be the invariant density of an acim μ of the
random map T and S = supp( f ) = {x : f (x) > 0}. We assume that S is a finite union of
disjoint intervals. Then

(i) τi(S \ {a0,a1, . . . ,aq})⊆ S, i= 1,2;
(ii) λ(S \ τi(S \ {a0,a1, . . . ,aq}))= 0, i= 1,2;

where {a0,a1, . . . ,aq} are the endpoints of the intervals in the partition �.

Proof. We assume that f is lower semicontinuous. If it is not, we modify it on at most a
countable set. By assumption, S = ∪r

i=1Ii. Let x ∈ S \ {a0,a1, . . . ,aq}. Then x ∈ IntIk, for
some k ∈ {1,2, . . . ,r} and there exists ε > 0 such that B(x,ε)⊂ Ik and f (y) > (1/2) f (x) >
0 for all y ∈ B(x,ε) since f is lower semicontinuous. We may assume that τi | Ik, i= 1,2 is
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increasing and that f (τi(x))= limy→τi(x)+ f (y), i= 1,2. Now, for any δ > 0, τi([x,x+ δ))=
[τi(x),τi(x) + δ′), i= 1,2 and δ′ → 0 as δ→ 0. Then, for i= 1,2, we have

∫

[τi(x),τi(x)+δ′)
f dλ= μ

(
τi
(
[x,x+ δ)

))≥ μ
(
[x,x+ δ)

)

=
∫

[x,x+δ)
f dλ≥ 1

2
f (x)λ

(
[x,x+ δ)

)

≥ 1
2
f (x)

1
max

∣
∣τ′i

∣
∣λ
([
τi(x),τi(x) + δ′

))
.

(3.32)

Since f is lower semicontinuous,

f
(
τi(x)

)= lim
δ′→0

1
λ
([
τi(x),τi(x) + δ′

))
∫

[τi(x),τi(x)+δ′)
f dλ

≥ 1
2
f (x)

1
max

∣
∣τ′i

∣
∣ > 0, i= 1,2.

(3.33)

Hence, τi(x)∈ S, i= 1,2, and part (i) is proved.
Part (ii) is proved using reasoning similar to the end of Theorem 3.6 (3.22), which

does not depend on the expanding property of τ1, τ2. �

Theorem 3.9. Let T = {τ1,τ2; p1, p2} be a random map on [0,1], where τ1,τ2 ∈�1 and
have a common partition � = {J1, J2, . . . , Jq}. Let f be the invariant density of an acim μ of
the random map T and let S= supp f = {x : f (x) > 0}. We assume that S is a finite union
of disjoint intervals. Then there exists a constant a > 0 such that f|S ≥ a.

Proof. Since S = {x : f (x) > 0} is a finite union of open intervals, S = ∪r
i=1Ii, we can as-

sume they are separated by intervals of positive measure. Then Ŝ = S \ {a0,a1, . . . ,aq}
is also a finite union of intervals: Ŝ = ∪s

i=1Ji. Let � = {Ii}ri=1, and let � = {J j}sj=1. For
any Jk ∈ �,τj|Jk , j = 1,2 is of class C1. Therefore, there exist Ii j ∈�, j = 1,2 such that
τj(Jk)⊆ Ii j , j = 1,2.

Let (c,d) be any interval in � or �. We associate with its endpoints two classes of
standard intervals:

ηc =
{

(c,c+ ε) : ε > 0
}

, ηd =
{

(d− ε,d) : ε > 0
}
. (3.34)

The points c and d are referred to as the endpoints of the classes ηc and ηd, respectively.
Let

	= {ηc,ηd : c,d are endpoints of intervals of �,�
}
. (3.35)

We now define a relation �→ between elements of 	. For η,η′ ∈	 : η �→ η′ if and only
if τj(U)∈ η′ for at least one of j = 1,2 and for sufficiently small U ∈ η. The relation has
the following two properties:

(1) if η′ is associated with an endpoint of Ii ∈�, then there exists at least one η such
that η �→ η′. To prove this, let us fix Ii and η′ associated with one of its endpoints. We
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claim that for each Jk ∈�, either τj(Jk)⊆ Ii, j = 1,2 or τj(Jk)∩ Ii =∅, j = 1,2. To show
this, let us note that since τj(Jk), j = 1,2 is contained in S=∪r

i=1Ii and {Ii} are separated,
τj(Jk), j = 1,2 is contained in one of Ii j , j = 1,2. Now, since

λ
(
Ii j \ τj(Ŝ)

)≤ λ
(
S \ τj(Ŝ)

)= 0, j = 1,2, (3.36)

there must exist Jk with τj(Jk)∈ η′, j = 1,2 and this implies (1);
(2) if c′ is an endpoint of Ii such that limx→c′ f (x)= 0, η′ is associated with c′, η �→ η′,

and c is an endpoint of η, then for any U ∈ η,

lim
x→c
x∈U

f (x)= 0. (3.37)

To prove this let us suppose that limx∈U , x→c f (x)= a > 0, for some U ∈ η. By the def-
inition of the relation �→, for at least one of j = 1,2, say j = 1, if η = {(c,c+ ε)}, then we
have τ1(c,c+ ε)= (c′,c+ ε′), for ε small enough. Then,

lim
x→c′
x∈U′

f (x)= lim
ε→0

1
λ
(
(c′,c′ + ε′)

)
∫

(c′,c′+ε′)
f (t)dt = lim

ε→0

μ
(
(c′,c′ + ε′)

)

λ
(
(c′,c′ + ε′)

)

≥ lim
ε→0

p1 · μ
(
(c,c+ ε)

)

max
∣
∣τ′1

∣
∣ · λ((c,c+ ε)

) = p1

max
∣
∣τ′1

∣
∣a > 0,

(3.38)

which is a contradiction.
We make the following observations:
(3) in the setting of (2) above, c /∈ S. Therefore, c is an endpoint of an interval Ii ∈�.
Now we define

	0 =
{

η : η is associated with an endpoint c of Ii ∈�, lim
x→c
x∈Ii

f (x)= 0

}

. (3.39)

From (2) and (3) we obtain what follows:
(4) if η′ ∈	0 and η �→ η′, then η ∈	0.
We note that by (1) and (4), for each η′ ∈	0 there exists at least one η ∈	0 such that

η �→ η′.
Now let η ∈ 	0. For any n ≥ 1, any η′ such that η′ �→ η in n-steps also belongs to

	0. Choose U ∈ η to be sufficiently small, that is, completely contained in an element of
partition �. Then, all the preimages τ−1

jn ◦ τ−1
jn−1
◦ ··· ◦ τ−1

j2 ◦ τ−1
j1 (U), ji ∈ {1,2} touch an

endpoint of some η′ in 	0. Let M be the number of elements in 	0 and let γ < 1 be the
constant from Pelikan’s condition (2.5). Then,

μ(U)=
∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1μ
(
τ−1
jn ◦ τ−1

jn−1
◦ ··· ◦ τ−1

j1 (U)
)

≤ sup f ·
∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1λ
(
τ−1
jn ◦ τ−1

jn−1
◦ ··· ◦ τ−1

j1 (U)
)
.

(3.40)
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Each τ−1
jn ◦ τ−1

jn−1
◦ ··· ◦ τ−1

j1 (U) consists of intervals contained in elements of partition �(n)

and touches one of M endpoints of classes in 	0. Thus, using Corollary 3.2, we have

λ
(
τ−1
jn ◦ τ−1

jn−1
◦ ··· ◦ τ−1

j2 ◦ τ−1
j1 (U)

)≤M · γn,

μ(U)≤ sup f ·
∑

( jn, jn−1,..., j1)

pjn p jn−1 ··· pj1Mγn = sup f ·Mγn.
(3.41)

Thus, μ(U) = 0 which implies that λ(U) = 0 since U ⊆ S. This contradicts the fact that
U ∈ η is an open, nonempty interval. Hence, 	0 =∅ and limx∈U , x→c f (x) > 0 for each
of finitely many endpoints of intervals Ii ∈�. On the other hand, since f is lower semi-
continuous, it assumes its infimum on any closed interval. Hence, there exists a > 0 such
that f (x)≥ a for all x ∈ S. �
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