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Stochastic differential equations (SDEs) under regime-switching have recently been de-
veloped to model various financial quantities. In general, SDEs under regime-switching
have no explicit solutions, so numerical methods for approximations have become one
of the powerful techniques in the valuation of financial quantities. In this paper, we will
concentrate on the Euler-Maruyama (EM) scheme for the typical hybrid mean-reverting
θ-process. To overcome the mathematical difficulties arising from the regime-switching
as well as the non-Lipschitz coefficients, several new techniques have been developed in
this paper which should prove to be very useful in the numerical analysis of stochastic
systems.
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Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the well-known Black-Scholes model, the asset price is described by a geometric Brow-
nian motion

dX(t)= μX(t)dt+ νX(t)dw1(t), (1.1)

where w1(t) is a scalar Brownian motion, μ is the rate of return of the underlying asset,
and ν is the volatility. In this classical model, Black and Scholes [2] assumed that the rate
of return and the volatility are constants. However, it has been proved by many authors
(see, e.g., [5, 14, 16, 20]) that the volatility is itself an Itô process in many situations.
For instance, Hull and White [16] assume that the instantaneous variance V = ν2 obeys
another geometric Brownian motion

dV(t)= αV(t)dt+βV(t)dw2(t), (1.2)

where α, β are constants while w2(t) is another Brownian motion and w1(t) and w2(t)
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have correlation ρ. Heston [14] assumes that the variance V obeys the mean-reverting
square root process

dV(t)= α(λ−V(t)
)
dt+β

√
V(t)dw2(t) (1.3)

while the mean-reverting process

dV(t)= α(λ−V(t)
)
dt+βV(t)dw2(t) (1.4)

is also proposed as the volatility process by others. In particular, Lewis [18] proposes the
mean-reverting θ-process

dV(t)= α(λ−V(t)
)
dt+βVθ(t)dw2(t), (1.5)

where θ ≥ 1/2. This process unifies processes (1.3) and (1.4).
On the other hand, the rate of return μ is not a constant either and there is a strong

evidence to indicate that it is a Markov jump process (see, e.g., [4, 6, 7, 10, 17, 22, 23, 25]).
Of course, when the rate jumps, the volatility will jump accordingly. For example, the
hybrid geometric Brownian motion

dX(t)= μ(r(t))X(t)dt+ ν
(
r(t)

)
X(t)dw1(t) (1.6)

has been proposed by several authors (see [27, 28] among others). Here, r(t) is a Markov
chain with a finite state space � = {1,2, . . . ,N} and μ, ν are mappings from � to [0,∞).
Equation (1.6) is also known as the geometric Brownian motion under regime-switching.
We observe that in this model, the volatility is also assumed to obey a Markov jump pro-
cess. Recalling the stochastic volatility models mentioned above, we may more reasonably
assume that the volatility process obeys a stochastic differential equation (SDE) under
regime-switching, for example, the hybrid mean-reverting θ-process

dV(t)= α(r(t))(λ(r(t))−V(t)
)
dt+β

(
r(t)

)
Vθ(t)dw2(t). (1.7)

Such stochastic models under regime-switching have recently been developed to model
various financial quantities, for example, option pricing [4, 10–13, 17], stock returns [6,
7, 23], and portfolio optimization [22, 25]. In particular, the mean-reverting square root
process under regime-switching or, more generally, (1.7) has found its considerable use
as a model for volatility and interest rate. In general, SDEs under regime-switching have
no explicit solutions so the Monte Carlo simulations have become one of the powerful
techniques in valuation of financial quantities, for example, option price (see [9, 15, 24]).
However, there is currently a lack of theory that guarantees the convergence of the Monte
Carlo simulations for SDEs under regime-switching in finance. This is due to the fact that
most of SDEs under regime-switching in finance are nonlinear and non-Lipschitzian so
we cannot appeal to the standard convergence theory for numerical simulations, as typ-
ified by [26], to deduce that the numerically computed paths are accurate for small step
sizes.

In this paper, we will concentrate on the Euler-Maruyama (EM) scheme for the typical
hybrid mean-reverting θ-process (1.7) but the theory established here can certainly be de-
veloped to cope with other SDEs under regime-switching in finance. In Section 2, we will
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introduce necessary notations and investigate the global positive or nonnegative solutions
to the mean-reverting θ-process under regime-switching. The EM numerical scheme will
be defined in Section 3, where we will explain how to simulate discrete Markov chains,
and hence the EM approximate solutions. In Section 4, we will show that the EM so-
lutions converge to the exact solution. The path-dependent option with the volatility
described by the hybrid mean-reverting θ-process will be discussed in Section 5, while
Section 6 contains applications to other financial quantities.

2. Nonnegative solutions

Throughout this paper, we let (Ω,�,{�t}t≥0,P) be a complete probability space with a
filtration {�t}t≥0 satisfying the usual conditions (i.e., it is increasing and right contin-
uous while �0 contains all P-null sets). Let w(t) be a scalar Brownian motion defined
on the probability space. Let | · | denote the Euclidean norm. Let r(t), t ≥ 0, be a right-
continuous Markov chain on the probability space taking values in a finite state space
� = {1,2, . . . ,N} with the generator Γ= (γi j)N×N given by

P
{
r(t+ δ)= j | r(t)= i}=

⎧
⎪⎨

⎪⎩

γi jδ + o(δ) if i �= j,

1 + γi jδ + o(δ) if i= j,
(2.1)

where δ > 0. Here γi j is the transition rate from i to j and γi j > 0 if i �= j while

γii =−
∑

j �=i
γi j . (2.2)

We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It
is well known that almost every sample path of r(·) is a right-continuous step function
with a finite number of sample jumps in any finite subinterval of R+ := [0,∞).

Let 1/2≤ θ ≤ 1. Consider the mean-reverting θ-process under regime-switching of the
form

dS(t)= λ(r(t))[μ(r(t))− S(t)
]
dt+ σ

(
r(t)

)
Sθ(t)dw(t), t ≥ 0, (2.3)

with initial data S(0)= S0 > 0 and r(0)= i0 ∈�. Here λ(i), μ(i), σ(i), i∈�, are positive
constants. The initial data S0 and i0 could be random, but the Markov property ensures
that it is sufficient to consider only the case when both S0 and i0 are constants. We note
that the case when θ = 1/2 and the state space of the Markov chain � = {1} corresponds
to the classical mean-reverting square root process (1.3) (without regime-switching).

Since (2.3) is mainly used to model stochastic volatility or interest rate or an asset
price, it is critical that the solution S(t) will never become negative. The following lemma
reveals this nonnegative property.
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Lemma 2.1. For given any initial data S(0)= S0 > 0 and r(0)= i0 ∈�, the solution S(t) of
(2.3) will never become negative with probability 1.

Proof. Clearly, the statement of the lemma is equivalent to that the solution of equation

dS(t)= λ(r(t))[μ(r(t))− S(t)
]
dt+ σ

(
r(t)

)∣∣S(t)
∣
∣θdw(t), t ≥ 0, (2.4)

will never become negative with probability 1 for any initial data S(0)= S0 > 0 and r(0)=
i0 ∈�. To show this, let a0 = 1, and for each integer k = 1,2, . . . ,

ak =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−k(k+1) if θ = 1
2

,
[

(2θ− 1)k(k+ 1)
2

]1/(1−2θ)

if
1
2
< θ ≤ 1,

(2.5)

so that
∫ ak−1

ak

du

u2θ
= k. (2.6)

For each k = 1,2, . . . , there clearly exists a continuous function ψk(u) with support in
(ak,ak−1) such that

0≤ ψk(u)≤ 2
ku2θ

for ak < u < ak−1 (2.7)

and
∫ ak−1

ak ψk(u)du= 1. Define ϕk(x)= 0 for x ≥ 0 and

ϕk(x)=
∫ −x

0
dy
∫ y

0
ψk(u)du for x < 0. (2.8)

Then ϕk ∈ C2(R,R) and has the following properties:
(i) −1≤ ϕ′k(x)≤ 0 for ak < x < ak−1, or otherwise ϕ′k(x)= 0;

(ii) |ϕ′′k (x)| ≤ 2/k|x|2θ for ak < x < ak−1, or otherwise ϕ′k(x)= 0;
(iii) |x|− ak−1 ≤ ϕk(x)≤ |x| for all x ∈R.

Let λ̄ =maxi∈� λ(i), let μ̄ =maxi∈� μ(i), and let σ̄ =maxi∈� σ(i). Now for any t ≥ 0,
by the well-known Itô formula (see [19, 21]), we can derive that

Eϕk
(
S(t)

)= ϕk
(
S0
)

+E
∫ t

0

[
λ
(
r(u)

)(
μ
(
r(u)

)−S(u)
)
ϕ′k
(
S(u)

)
+
σ2
(
r(u)

)

2

∣
∣S(u)

∣
∣2θ

ϕ′′k
(
S
(
r(u)

))]
du

≤ σ̄2t

k
.

(2.9)

Hence

−ak−1 ≤ ES−(t)− ak−1 ≤ σ̄2t

k
, (2.10)
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where S−(t)=−S(t) if S(t) < 0, or otherwise S−(t)= 0. Letting k→∞, we get that ES−(t)
= 0 for all t ≥ 0. This implies that S(t)≥ 0 for all t ≥ 0 with probability 1 as required. �

Furthermore, the following lemma reveals the (strictly) positive property of the solu-
tion.

Lemma 2.2. For given any initial data S(0)= S0 > 0 and r(0)= i0 ∈�, the solution S(t) of
(2.3) will remain positive with probability 1, namely S(t) > 0 for all t ≥ 0 almost surely, if
one of the following two conditions holds:

(i) 1/2 < θ ≤ 1;
(ii) θ = 1/2 and σ2(i)≤ 2λ(i)μ(i) for all i∈�.

To show this lemma, let us first invoke the standard results, for example, results of
Gı̄hman and Skorohod [8], to establish the following result.

Lemma 2.3. Consider the mean-reverting θ-process

dX(t)= λ(μ−X(t)
)
dt+ σXθ(t)dw(t) (2.11)

on t ≥ 0 with initial value X(0) = x0 > 0, where 1/2 ≤ θ ≤ 1 and λ, μ, σ are all positive
constants. Then

(i) with probability 1, the solution X(t) takes an infinite time to reach origin 0 if either
1/2 < θ ≤ 1 or θ = 1/2 with σ2 ≤ 2λμ;

(ii) with positive probability, the solution X(t) reaches the origin in finite time if θ = 1/2
and σ2 > 2λμ.

Proof. The coefficients of (2.11)

a(z)= λ(μ− z), b(z)= σzθ (2.12)

obey the linear growth condition on z ∈R+, so the solution will never explode to infinity
in any finite time with probability 1. We therefore need only to consider if it reaches the
origin in finite time or not.

Consider

L1 =
∫ 1

0
exp

{
−
∫ x

1

2a(z)
b2(z)

dz
}
dx. (2.13)

When 1/2 < θ ≤ 1, this gives

L1 = C1

∫ 1

0
exp

(
− 2λμx1−2θ

σ2(1− 2θ)
+

2λx2−2θ

σ2(2− 2θ)

)
dx, (2.14)

where C1 is a positive constant. A simple inspection shows that L1 diverges. Hence, the
required result when 1/2 < θ ≤ 1 follows from Gı̄hman and Skorohod [8, Chapter 21].
Similarly, when θ = 1/2,

L1 = C2

∫ 1

0
exp

(
− 2λμ

σ2
log(x)

)
dx = C2

∫ 1

0
x−2λμ/σ2

dx, (2.15)
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where C2 is another positive constant. It is then easy to see that L1 =∞ if 2λμ≥ σ2 while
L1 <∞ if 2λμ < σ2. The required results corresponding to 2λμ ≥ σ2 or 2λμ < σ2 when
θ = 1/2 follow from Gı̄hman and Skorohod [8, Chapter 21] again. �

Using Lemma 2.3, we can now prove Lemma 2.2.

Proof of Lemma 2.2. It is well known (see, e.g., [1]) that there is a sequence of stopping
times 0= τ0 < τ1 < ··· < τk →∞ such that the Markov chain r(t) has the representation

r(t)=
∞∑

k=0

r
(
τk
)
I[τk ,τk+1)(t), t ≥ 0, (2.16)

where IA is the indicator function of set A. Hence, for t ∈ [0,τ1], (2.3) becomes

dS(t)= λ(r0
)[
μ
(
r0
)− S(t)

]
dt+ σ

(
r0
)
Sθ(t)dw(t) (2.17)

with S(0) > 0. This is a mean-reverting θ-process of type (2.11). Applying Lemma 2.3,
we observe that S(t) > 0 for all t ∈ [0,τ1] with probability 1 under the conditions of
Lemma 2.2. Now, for t ∈ [τ1,τ2], (2.3) becomes

dS(t)= λ(r(τ1
))[

μ
(
r
(
τ1
))− S(t)

]
dt+ σ

(
r
(
τ1
))
Sθ(t)dw(t) (2.18)

with initial value S(τ1) > 0 a.s. Again, this is a mean-reverting θ-process of type (2.11).
By Lemma 2.3, we see that S(t) > 0 for all t ∈ [τ1,τ2] with probability 1. Repeating this
procedure, we see that S(t) > 0 for all t ≥ 0 with probability 1 as required. �

It is still remaining open whether the solution S(t) will reach the origin in finite time
with positive probability in the case when θ = 1/2 while σ2(i) ≤ 2λ(i)μ(i) does not hold
for all i∈�.

3. The Euler-Maruyama method

To define the Euler-Maruyama approximate solution, we will need the following lemma
(see [1]).

Lemma 3.1. Given Δ > 0, let rΔk = r(kΔ) for k = 0,1,2, . . . . Then {rΔk , k = 0,1,2, . . .} is a
discrete-time Markov chain with the one-step transition probability matrix

P(Δ)= (Pi j(Δ)
)
N×N = eΔΓ. (3.1)

Given a step size Δ > 0, the discrete-time Markov chain {rΔk , k = 0,1,2, . . .} can be
simulated as follows: compute the one-step transition-probability matrix

P(Δ)= (Pi j(Δ)
)
N×N = eΔΓ. (3.2)
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Let rΔ0 = i0 and generate a random number ξ1 which is uniformly distributed in [0,1].
Define

rΔ1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i1 if i1 ∈�−{N} is such that
i1−1∑

j=1

Pi0, j(Δ)≤ ξ1 <
i1∑

j=1

Pi0, j(Δ),

N if
N−1∑

j=1

Pi0, j(Δ)≤ ξ1,

(3.3)

where we set
∑0

i=1Pi0, j(Δ) = 0 as usual. Generate independently a new random number
ξ2 which is again uniformly distributed in [0,1] and then define

rΔ2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i2 if i2 ∈�−{N} is such that
i2−1∑

j=1

PrΔ1 , j(Δ)≤ ξ2 <
i2∑

j=1

PrΔ1 , j(Δ),

N if
N−1∑

j=1

PrΔ1 , j(Δ)≤ ξ2.

(3.4)

Repeating this procedure, a trajectory of {rΔk , k = 0,1,2, . . .} can be generated. This pro-
cedure can be carried out independently to obtain more trajectories.

After explaining how to simulate the discrete-time Markov chain {rΔk , k = 0,1, . . .}, we
can now define the EM approximate solution for (2.3). Given a step size Δ > 0, let tk = kΔ
for k = 0,1,2, . . .. Compute the discrete approximations sk ≈ S(tk) by setting s0 = S0, rΔ0 =
i0 and forming

sk+1 = sk + λ
(
rΔk
)(
μ
(
rΔk
)− sk

)
Δ+ σ

(
rΔk
)∣∣sk

∣
∣θΔwk, k = 0,1,2, . . . , (3.5)

where Δwk =w(tk+1)−w(tk). Let

s̄(t)= sk, r̄(t)= rΔk for t ∈ [tk, tk+1
)
, k = 0,1,2, . . . , (3.6)

and define the continuous EM approximate solution by

s(t)= s0 +
∫ t

0
λ
(
r̄(u)

)[
μ
(
r̄(u)

)− s̄(u)
]
du+

∫ t

0
σ
(
r̄(u)

)∣∣s̄(u)
∣
∣θdw(u). (3.7)

Note that s(tk) = s̄(tk) = sk, that is, s(t) and s̄(t) coincide with the discrete approximate
solution at the grid points.

4. Convergence of the EM approximate solution

Since the coefficients of (2.3) satisfy the linear growth condition, by [26], we have the
following lemma.

Lemma 4.1. Let S(t) be the solution of (2.3). Then for any p ≥ 1, there is a constantK , which
is dependent on only p, T , S0 but independent of Δ, such that the exact solution and the EM
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approximate solution to (2.3) have the property that

E
[

sup
0≤t≤T

∣
∣S(t)

∣
∣p
]
∨E

[
sup

0≤t≤T

∣
∣s(t)

∣
∣p
]
≤ K. (4.1)

From this follows easily the following useful result.

Lemma 4.2. There is a constant C, which is independent of Δ, such that

E
∣
∣s(t)− s̄(t)∣∣2θ ≤ CΔθ , ∀t ∈ [0,T]. (4.2)

Proof. From now on, C used in the proofs below will be a generic positive number inde-
pendent of Δ but may have different values where it appears.

For any t ∈ [0,T], let kt = [t/Δ], the integer part of t/Δ. By Lemma 4.1, we then derive
that

E
∣
∣s̄(t)− s(t)∣∣2 ≤ 4(λ̄∨ λ̄μ̄∨ σ̄)E

[(
1 +

∣
∣skt

∣
∣2
)(

Δ2 +
∣
∣w(t)−w(ktΔ

)∣∣2
)]
≤ CΔ. (4.3)

So, since 1/2≤ θ ≤ 1, by the Lyapunov inequality, we get

E
∣
∣s̄(t)− s(t)∣∣2θ ≤

[
E
∣
∣s̄(t)− s(t)∣∣2

]θ ≤ CΔθ (4.4)

as required. �

We can now state one of our main results.

Theorem 4.3. For each integer k = 1,2, . . . ,

sup
0≤t≤T

E
∣
∣S(t)− s(t)∣∣≤ eλ̄T

[

e−k(k−1)/2 +
4σ̄2T

k
+

(
1

ka2θ
k

+ 1

)
(
CΔθ + o(Δ)

)
]

, (4.5)

where C is a constant which is independent of the step size Δ and λ̄, σ̄ have been defined in
the proof of Lemma 2.1.

Proof. Note that

S(t)− s(t)=
∫ t

0

[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)− λ(r(u)
)
S(u) + λ

(
r̄(u)

)
s̄(u)

]
du

+
∫ t

0

[
σ
(
r(u)

)∣∣S(u)
∣
∣θ − σ(r̄(u)

)∣∣s̄(u)
∣
∣θ
]
dw(u).

(4.6)
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Let ϕk be the same as defined in the proof of Lemma 2.1. Applying the Itô formula gives

Eϕk
(
S(t)− s(t))

= E
∫ t

0
ϕ′k
(
S(u)− s(u)

)[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)

− λ(r(u)
)
S(u) + λ

(
r̄(u)

)
s̄(u)

]
du

+
1
2
E
∫ t

0
ϕ′′k
(
S(u)− s(u)

)[
σ
(
r(u)

)∣∣S(u)
∣
∣θ − σ(r̄(u)

)∣∣s̄(u)
∣
∣θ
]2
du=: I(t) +

1
2
J(t).

(4.7)

By property (i) of ϕk,

∣
∣I(t)

∣
∣≤ E

∫ t

0

∣
∣ϕ′k

(
S(u)− s(u)

)[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)

− λ(r(u)
)
S(u) + λ

(
r̄(u)

)
s̄(u)

]∣∣du

≤ E
∫ t

0

∣
∣λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)∣∣du

+E
∫ t

0

∣
∣λ
(
r(u)

)
S(u)− λ(r̄(u)

)
s̄(u)

∣
∣du.

(4.8)

Let n= [T/Δ], the integer part of T/Δ. Then

E
∫ T

0

∣
∣λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)∣∣du

=
n∑

k=0

E
∫ tk+1

tk

∣
∣λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)∣∣du

(4.9)

with tn+1 being now set to be T . Let IG be the indicator function of set G and compute

E
∫ tk+1

tk

∣
∣λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)∣∣du≤ 2λ̄μ̄E
∫ tk+1

tk
I{r(u) �=r(tk)}du

≤ 2λ̄μ̄
∫ tk+1

tk
P
(
r(u) �= r(tk

))
du= 2λ̄μ̄

∫ tk+1

tk

∑

i∈�

P
(
r
(
tk
)= i)P(r(u) �= i | r(tk

)= i)du

= 2λ̄μ̄
∫ tk+1

tk

∑

i∈�

P
(
r
(
tk
)= i)

∑

j �=i

(
γi j
(
u− tk

)
+ o
(
u−Tk

))

≤ 2λ̄μ̄
[

max
1≤i≤N

(− γii
)
Δ+ o(Δ)

]
Δ.

(4.10)
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Therefore,

E
∫ T

0

∣
∣λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)∣∣du≤ 2λ̄μ̄
[

max
1≤i≤N

(− γii
)
Δ+ o(Δ)

]
. (4.11)

On the other hand,

E
∫ t

0

∣
∣λ
(
r(u)

)
S(u)− λ(r̄(u)

)
s̄(u)

∣
∣du

≤ E
∫ t

0

∣
∣λ
(
r(u)

)− λ(r̄(u)
)∣∣
∣
∣s̄(u)

∣
∣du+E

∫ t

0
λ
(
r(u)

)∣∣S(u)− s̄(u)
∣
∣du.

(4.12)

But

E
∫ t

0

∣
∣λ
(
r(u)

)− λ(r̄(u)
)∣∣
∣
∣s̄(u)

∣
∣du

=
n∑

k=0

∫ tk+1

tk
E
[
E
[∣∣λ

(
r(u)

)− λ(r(tk
))∣∣

∣
∣sk
∣
∣ | I{r(u) �=r(tk)}

]]
du

=
n∑

k=0

∫ tk+1

tk
E
[
E
[∣∣λ

(
r(u)

)− λ(r(tk
))∣∣ | I{r(u) �=r(tk)}

]
E
[∣∣sk

∣
∣ | I{r(u) �=r(tk)}

]]
,

(4.13)

where in the last step we use the fact that sk and I{r(u) �=r(tk)} are conditionally independent
with respect to the σ-algebra generated by r(tk). In the same way as in (4.10), we have

E
∫ t

0

∣
∣λ
(
r(u)

)− λ(r̄(u)
)∣∣
∣
∣s̄(u)

∣
∣du

≤ 2λ̄μ̄
[

max
1≤i≤N

(− γii
)
Δ+ o(Δ)

]∫ T

0
E
∣
∣s̄(u)

∣
∣du.

(4.14)

So, by Lemma 4.1,

E
∫ t

0

∣
∣λ
(
r(u)

)− λ(r̄(u)
)
s̄(u)

∣
∣du≤ 2(1 +K)λ̄μ̄

[
max

1≤i≤N
(− γii

)
Δ+ o(Δ)

]
. (4.15)

Substituting (4.15) into (4.12) and using Lemma 4.2, we obtain

E
∫ t

0

∣
∣λ
(
r(u)

)
S(u)− λ(r̄(u)

)
s̄(u)

∣
∣du

≤ CΔ+ o(Δ) + λ̄E
∫ t

0

∣
∣S(u)− s̄(u)

∣
∣du

≤ CΔ+ o(Δ) + λ̄E
∫ t

0

∣
∣S(u)− s(u)

∣
∣du,

(4.16)
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where C is a positive constant independent of Δ and it may change line by line. This,
together with (4.11), yields

∣
∣I(t)

∣
∣≤ CΔ+ o(Δ) + λ̄E

∫ t

0

∣
∣S(u)− s(u)

∣
∣du. (4.17)

In the following, we will estimate J(t):

∣
∣J(t)

∣
∣≤ 2σ̄2E

∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣
(∣
∣S(u)

∣
∣θ −∣∣s̄(u)

∣
∣θ
)2
du

+ 2E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣[σ
(
r(u)

)− σ(r̄(u)
)]2∣∣S(u)

∣
∣2θ

du.

(4.18)

Using property (ii) of ϕk and Lemma 4.2, we have

E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣
(∣
∣S(u)

∣
∣θ −∣∣s̄(u)

∣
∣θ
)2
du

≤ E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣
∣
∣S(u)− s̄(u)

∣
∣2θ

du

≤ 22θ−1E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣
∣
∣S(u)− s(u)

∣
∣2θ

du

+ 22θ−1E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣
∣
∣s(u)− s̄(u)

∣
∣2θ

du

≤ 2E
∫ t

0

2
k
I{ak<|S(u)−s(u)|<ak−1}du+ 2

∫ t

0

2

ka2θ
k

E
∣
∣s(u)− s̄(u)

∣
∣2θ

du≤ 4T
k

+
CΔθ

ka2θ
k

.

(4.19)

In the same way as (4.15) was proved, we can show that

E
∫ t

0

∣
∣ϕ′′k

(
S(u)− s(u)

)∣∣[σ
(
r(u)

)− σ(r̄(u)
)]2∣∣S(u)

∣
∣2θ

du

≤ E
∫ t

0

2

ka2θ
k

[
σ
(
r(u)

)− σ(r̄(u)
)]2∣∣S(u)

∣
∣2θ

du≤ CΔ+ o(Δ)

ka2θ
k

.

(4.20)

Substituting (4.20) and (4.19) into (4.18), we have

∣
∣J(t)

∣
∣≤ 8σ̄2T

k
+
CΔθ + o(Δ)

ka2θ
k

. (4.21)

Therefore,

Eϕk
(
S(t)− s(t))≤ 4σ̄2T

k
+
CΔθ + o(Δ)

ka2θ
k

+CΔ+ o(Δ) + 2λ̄E
∫ t

0

∣
∣S(u)− s(u)

∣
∣du. (4.22)
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Noting that

Eϕk
(
S(t)− s(t))≥ E∣∣S(t)− s(t)∣∣− ak−1 (4.23)

gives

E
∣
∣S(t)− s(t)∣∣≤ ak−1 +

4σ̄2T

k
+
[

1

ka2θ
k

+ 1
]
(
CΔθ + o(Δ)

)
+ λ̄

∫ t

0
E
∣
∣S(u)− s(u)

∣
∣du.

(4.24)

The required assertion follows finally from the Gronwall inequality. �

Next, we derive a bound for a stronger form of the error. This version uses an L2-
distance and places the supremum over time inside the expectation operation. The result
below involves the L1-error which is explicitly bounded in Theorem 4.3, and hence is also
computable.

Theorem 4.4. One has

E
[

sup
0≤t≤T

(
S(t)− s(t))2

]
≤ e(8σ̄2+2λ̄2)T2

(
CΔ+ o(Δ) + 8σ̄2T sup

0≤u≤T
E
∣
∣S(u)− s(u)

∣
∣
)
.

(4.25)

Proof. For any 0≤ t ≤ T , using the Cauchy-Schwarz inequality, we have

(
S(t)− s(t))2

≤ T
∫ t

0

[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)− λ(r(u)
)
S(u) + λ

(
r̄(u)

)
s̄(u)

]2
du

+
(∫ t

0

[
σ
(
r(u)

)∣∣S(u)
∣
∣θ − σ(r̄(u)

)∣∣s̄(u)
∣
∣θ
]
dw(u)

)2

.

(4.26)

In the same way as (4.11) and (4.16) were proved, we derive

E
∫ t

0

[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)− λ(r(u)
)
S(u) + λ

(
r̄(u)

)
s̄(u)

]2
du

≤ 2E
∫ t

0

[
λ
(
r(u)

)
μ
(
r(u)

)− λ(r̄(u)
)
μ
(
r̄(u)

)]2
du

+E
∫ t

0

[
λ
(
r(u)

)
S(u)− λ(r̄(u)

)
s̄(u)

]2
du

≤ CΔ+ o(Δ) + 2λ̄2E
∫ t

0

(
S(u)− s(u)

)2
du.

(4.27)
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Using the Doob martingale inequality (see [19]), we find that for any t1 ∈ [0,T],

E

[

sup
0≤t≤t1

(∫ t

0

[
σ
(
r(u)

)∣∣S(u)
∣
∣θ − σ(r̄(u)

)∣∣s̄(u)
∣
∣θ
]
dw(u)

)2
]

≤ 4E
∫ t1

0

[
σ
(
r(u)

)∣∣S(u)
∣
∣θ − σ(r̄(u)

)∣∣s̄(u)
∣
∣θ
]2
du

≤ CΔ+ o(Δ) + 8σ̄2E
∫ t1

0

∣
∣S(u)− s(u)

∣
∣2θ

du

≤ CΔ+ o(Δ) + 8σ̄2E
∫ t1

0

∣
∣S(u)− s(u)

∣
∣du+ 8σ̄2E

∫ t1

0

∣
∣S(u)− s(u)

∣
∣2
du.

(4.28)

Therefore,

E
[

sup
0≤t≤t1

(
S(t)− s(t))2

]

≤ CΔ+ o(Δ) +
(
8σ̄2 + 2λ̄2)E

∫ t1

0

(
S(u)− s(u)

)2
du+ 8σ̄2E

∫ t1

0

∣
∣S(u)− s(u)

∣
∣du

≤ CΔ+ o(Δ) +
(
8σ̄2 + 2λ̄2)

∫ t1

0
E
[

sup
0≤u≤v

(
S(u)− s(u)

)2
]
dv

+ 8σ̄2T sup
0≤u≤T

E
∣
∣S(u)− s(u)

∣
∣.

(4.29)

An application of the Gronwall inequality completes the proof. �

5. Options under stochastic volatility and regime-switching

In this section, we study the Heston stochastic volatility model under regime-switching,
namely

dX(t)= λ1
(
r(t)

)[
μ1
(
r(t)

)−X(t)
]
dt+ σ1

(
r(t)

)
X(t)

√
V(t)dw1(t), (5.1)

dV(t)= λ2
(
r(t)

)[
μ2
(
r(t)

)−V(t)
]
dt+ σ2

(
r(t)

)
Vθ(t)dw2(t), 0≤ t ≤ T. (5.2)

Here V(t) is the volatility that feeds into the asset price X(t). The Brownian motions
w1(t) and w2(t) may be correlated. Naturally, we assume that the initial values X(0) and
V(0) are both positive constants. Moreover, λ1, σ1, and so forth are all mappings from �
to R+.

We begin with a lemma showing that the positivity in the initial data leads to the
positive solution X(t).

Lemma 5.1. If V(t), t ∈ [0,T], is given by (5.2), then

P
(
X(t) > 0∀0≤ t ≤ T)= 1. (5.3)
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Proof. By the well-known variation-of-constants formula (see, e.g., [19, Theorem 3.1,
page 96]), X(t) can be expressed explicitly as

X(t)=Ψ(t)
(
X(0) +

∫ t

0

λ1
(
r(s)

)
μ1
(
r(s)

)

Ψ(s)
ds
)

, (5.4)

where

Ψ(t)= exp
(∫ t

0

[
− λ1

(
r(s)

)− 1
2
σ2

1

(
r(s)

)
V(s)

]
ds+

∫ t

0
σ1
(
r(s)

)√
V(s)dw1(s)

)
. (5.5)

The assertion follows clearly. �

Applying the EM method to (5.2) gives

vk+1 = vk + λ1
(
rΔk
)(
μ1
(
rΔk
)− vk

)
Δ+ σ1

(
rΔk
)∣∣vk

∣
∣θΔw2,k, (5.6)

where Δw2,k =w2(tk+1)−w2(tk), while applying the EM method to (5.1) gives

xk+1 = xk + λ2
(
rΔk
)(
μ2
(
rΔk
)− xk

)
Δ+ σ2

(
rΔk
)
xk
√∣
∣vk

∣
∣Δw1,k, (5.7)

where Δw1,k =w1(tk+1)−w1(tk).
Let

x̄(t)= xk, v̄(t)= vk r̄(t)= rΔk for t ∈ [tk, tk+1
)
, k = 0,1,2, . . . , (5.8)

and define the continuous EM approximate solution by

x(t)= x0 +
∫ t

0
λ1
(
r̄(u)

)[
μ1
(
r̄(u)

)− x̄(u)
]
du+

∫ t

0
σ1
(
r̄(u)

)
x̄(u)

√∣
∣v̄(u)

∣
∣dw1(u), (5.9)

v(t)= v0 +
∫ t

0
λ2
(
r̄(u)

)[
μ2
(
r̄(u)

)− v̄(u)
]
du+

∫ t

0
σ2
(
r̄(u)

)∣∣v̄(u)
∣
∣θdw2(u). (5.10)

In the following, we will prove the result of strong convergence of the asset price X(t).

Lemma 5.2. For any given pair of positive numbers p and q, define the stopping time

τpq = inf
{
t ≥ 0 : X(t) > p or

∣
∣v(t)

∣
∣ > q

}
. (5.11)

Then

lim
Δ→0

E
(

sup
0≤t≤T

∣
∣X
(
t∧ τpq

)− x(t∧ τpq
)∣∣2

)
= 0. (5.12)
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Proof. Fix p and q arbitrarily and write τpq = τ. For any 0≤ t1 ≤ T ,

X
(
t1∧ τ

)− x(t1∧ τ
)

=
∫ t1∧τ

0

[
λ1
(
r(u)

)
μ1
(
r(u)

)− λ1
(
r̄(u)

)
μ1
(
r̄(u)

)]
du

−
∫ t1∧τ

0

[
λ1
(
r(u)

)
X(u)− λ1

(
r̄(u)

)
x̄(u)

]
du

+
∫ t1∧τ

0

[
σ1
(
r(u)

)
X(u)

√
V(u)− σ1

(
r̄(u)

)
x̄(u)

√∣
∣v̄(u)

∣
∣
]
dw1(u)

=
∫ t1∧τ

0

[
λ1
(
r(u)

)
μ1
(
r(u)

)− λ1
(
r̄(u)

)
μ1
(
r̄(u)

)]
du

−
∫ t1∧τ

0
X(u)

[
λ1
(
r(u)

)− λ1
(
r̄(u)

)]
du−

∫ t1∧T

0
λ1
(
r̄(u)

)[
X(u)− x̄(u)

]
du

+
∫ t1∧τ

0
X(u)

√
V(u)

[
σ1
(
r(u)

)− σ1
(
r̄(u)

)]
dw1(u)

+
∫ t1∧τ

0
σ1
(
r̄(u)

)√
v̄(u)

[
X(u)− x̄(u)

]
dw1(u)

+
∫ t1∧τ

0
σ1
(
r̄(u)

)
X(u)

[√
V(u)−

√∣
∣v̄(u)

∣
∣
]
dw1(u).

(5.13)

By the Hölder inequality and the Doob martingale inequality, we have

E
(

sup
0≤t1≤t

∣
∣X(t∧ τ)− x(t∧ τ)

∣
∣2
)

≤ 32tE
∫ t∧τ

0

[
λ1
(
r(u)

)
μ1
(
r(u)

)− λ1
(
r̄(u)

)
μ1
(
r̄(u)

)]2
du

+ 32tE
∫ t∧τ

0
X2(u)

[
λ1
(
r(u)

)− λ1
(
r̄(u)

)]2
du

+ 32tE
∫ t∧τ

0
λ2

1

(
r̄(u)

)[
X(u)− x̄(u)

]2
du

+ 128E
∫ t∧τ

0

(
X(u)

√
V(u)

)2[
σ1
(
r(u)

)− σ1
(
r̄(u)

)]2
du

+ 128E
∫ t∧τ

0

(
σ1
(
r̄(u)

)√
v̄(u)

)2[
X(u)− x̄(u)

]2
du

+ 128E
∫ t∧τ

0

(
σ1
(
r̄(u)

)
X(u)

)2
[√
V(u)−

√∣
∣v̄(u)

∣
∣
]2
du.

(5.14)
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Using Lemmas 4.1 and 4.2, the definition of τ, and the techniques of the proof of (4.15),
we derive that

E
(

sup
0≤t1≤t

∣
∣X
(
t1∧ τ

)− x(t1∧ τ
)∣∣2

)

≤32
[
t+ p2t+ 4p2K2 + 4σ̄2

1 p
2](CΔ+ o(Δ)

)
+ 32

[
tλ̄2

1 + 4s̄1q
]
E
∫ t∧τ

0

[
X(u)− x̄(u)

]2
du

≤ C1Δ+ o(Δ) +C2E
∫ t∧τ

0

[
X(u)− x̄(u)

]2
du

≤ C1Δ+ o(Δ) +C2E
∫ t∧τ

0

[
X(u)− x(u)

]2
du+C2E

∫ t∧τ

0

[
x(u)− x̄(u)

]2
du,

(5.15)

where C1, C2, and the following C3, and so forth are positive constants which may change
line by line. For 0≤ u≤ t∧ τ, let [u/Δ] be the integer part of u/Δ. Then

x(u)− x̄(u)=
∫ u

[u/Δ]Δ
λ1
(
r̄(u)

)[
μ1
(
r̄(u)

)− x̄(u)
]
du+

∫ u

[u/Δ]Δ
σ1
(
r̄(u)

)
x̄(u)

√∣
∣v̄(u)

∣
∣dw1(u),

(5.16)

which yields

∣
∣x(u)− x̄(u)

∣
∣2 ≤ 4λ̄2

1

(
μ̄2

1 + p2)Δ2 + 2σ̄2
1 p

2q
(
w1(u)−w1

([
u

Δ

]
Δ
))2

. (5.17)

Therefore

E
∫ t∧τ

0

[
x(u)− x̄(u)

]2
du≤ C3Δ. (5.18)

By (5.15) and (5.18), we have

E
(

sup
0≤t1≤t

∣
∣X
(
t1∧ τ

)− x(t1∧ τ
)∣∣2

)

≤ C4Δ+ o(Δ) +C5

∫ t∧τ

0
E
(

sup
0≤t1≤u

∣
∣X
(
t1
)− x(t1

)∣∣2
)
du.

(5.19)

By the well-known Gronwall inequality,

E
(

sup
0≤t1≤t

∣
∣X
(
t1∧ τ

)− x(t1∧ τ
)∣∣2

)
≤ [C4Δ+ o(Δ)

]
eC5T . (5.20)

The required assertion (5.12) follows by letting Δ→ 0. �

Lemma 5.3. The continuous EM approximate solution (5.10) obeys

E
(

sup
0≤t≤T

∣
∣v(t)

∣
∣
)
≤ (1 + 2v0 + 2λ̄2μ̄2T

)
e(2λ̄2+9σ̄2

2 )T ∀T > 0, (5.21)

where λ̄2 =maxi∈� λ2(i) and μ̄2 and σ̄2 are defined similarly.
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Proof. By the well-known Burkholder-Davis-Gunday inequality, we derive from (5.10)
that for 0≤ t ≤ T ,

E
(

sup
0≤t1≤t

∣
∣v
(
t1
)∣∣
)
≤ v0 +

∫ t1

0

∣
∣λ2

(
r̄(u)

)[
μ2
(
r̄(u)

)− v̄(u)
]∣∣du

+ 3E
[∫ t

0

(
σ2
(
r̄(u)

)∣∣v̄(u)
∣
∣θ
)2
du
]1/2

≤ v0 + λ̄2μ̄2T + λ̄2

∫ t

0
E
∣
∣v̄(u)

∣
∣du

+ 3σ̄2E
[(

sup
0≤t1≤t

∣
∣v
(
t1
)∣∣2θ−1

)∫ t

0

∣
∣v̄(u)

∣
∣du

]1/2

≤ v0 + λ̄2μ̄2T + λ̄2

∫ t

0
E
∣
∣v̄(u)

∣
∣du

+
1
2
E
(

sup
0≤t1≤t

∣
∣v
(
t1
)∣∣2θ−1

)
+

9
2
σ̄2

2E
∫ t

0

∣
∣v̄(u)

∣
∣du

≤ v0 + λ̄2μ̄2T +
1
2

[
1 +E

(
sup

0≤t1≤t

∣
∣v
(
t1
)∣∣
)]

+
(
λ̄2 +

9
2
σ̄2

2

)∫ t

0
E
(

sup
0≤t1≤u

∣
∣v
(
t1
)∣∣
)
du.

(5.22)

This yields

E
(

sup
0≤t1≤t

∣
∣v
(
t1
)∣∣
)
≤ 1 + 2v0 + 2λ̄2μ̄2T +

(
2λ̄2 + 9σ̄2

2

)
∫ t

0
E
(

sup
0≤t1≤u

∣
∣v
(
t1
)∣∣
)
du. (5.23)

An application of the Gronwall inequality implies assertion (5.21). �

Broadie and Kaya [3] have recently shown how to simulate exactly the solution to the
Heston model without regime-switching when the volatility process is described by the
mean-reverting square root process (1.3). This is due to the closed form of the solution
to the mean-reverting square root process (1.3). However, there is so far no closed form
for the solution of the mean-reverting θ-process (1.5) if 1/2 < θ ≤ 1, not mentioning the
hybrid mean-reverting θ-process (2.3). However, the EM method established above pro-
vides us with a numerical scheme to carry out the Monte Carlo simulation for the option
price if the underlying asset price follows the Heston model under regime-switching (5.1)
and (5.2).

Let K be the exercise price. Define the payoff for the European put option

�= E[(K −X(T)
)+]

. (5.24)

Accordingly, the payoff based on the numerical method (5.8) is

�Δ = E
[(
K − x̄(T)

)+]
. (5.25)
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Theorem 5.4. In the notation above,

lim
Δ→0

∣
∣�Δ−�

∣
∣= 0. (5.26)

Furthermore, let us consider the more complicated barrier option which is a path-
dependent option. Let K be the exercise price and let b be a barrier. For the Heston model
under regime-switching (5.1) and (5.2), the payoff for the barrier European put option is
given by

U = E[(X(T)−K)+
I{0≤X(t)≤b,0≤t≤T}

]
, (5.27)

while the payoff based on the numerical method (5.8) is

UΔ = E
[(
x̄(T)−K)+

I{0≤x̄(t)≤b,0≤t≤T}
]
. (5.28)

Theorem 5.5. In the notation above,

lim
Δ→0

∣
∣UΔ−U

∣
∣= 0. (5.29)

Theorem 5.4 and Theorem 5.5 can be proved in the same way as in [15] using Lemmas
5.1–5.3 as well as the strong convergence results established in the previous sections since
the proofs presented in [15] depend only on the strong convergence properties and the
conclusions of Lemmas 5.1–5.3 rather than the specified form of the underlying equa-
tions. It is in this spirit that we see that our results can be applied to compute other
financial quantities numerically as described in the following sections.

6. Further applications to finance

In this section, we assume that the underlying asset price obeys the mean-reverting θ-
process under regime-switching, namely (2.3). We will omit the proofs, since they are
similar to the proofs without regime-switching presented by [15].

6.1. Bonds. In the case where S(t) in (2.3) models the short-term interest rate dynamics,
the price of a bond is given by

B(0,T)= E
[

exp(−∫ T0 S(t)dt)
]
. (6.1)

Using the step function s̄(t) in (3.6), a natural approximation to B(0,T) is

B(0,T)= E
[

exp(−∫ T0 |s̄(t)|dt)
]
. (6.2)

For this approximation, we have the following result.

Theorem 6.1. One has

lim
Δ→0

∣
∣B(0,T)−B(0,T)

∣
∣= 0. (6.3)
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6.2. Single barrier option. We now consider a single barrier option, which, at expiry
time T , pays the European value if S(t) never exceeded the fixed barrier b, and pays zero
otherwise. We suppose that the expected payoff is computed from a Monte Carlo sim-
ulation based on (3.5). The following theorem shows that the expected payoff from the
numerical method will converge to the exact expected payoff as Δ→ 0.

Theorem 6.2. Let S(t) and s̄(t) be defined by (2.3) and (3.6), respectively. Let K be the
exercise price and let b be a barrier. Define

V = E[(S(T)−K)+
I{0≤S(t)≤b,0≤t≤T}

]
,

VΔ = E
[(
s̄(T)−K)+

I{0≤s̄(t)≤b,0≤t≤T}
]
.

(6.4)

Then

lim
Δ→0

∣
∣VΔ−V

∣
∣= 0. (6.5)
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