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We consider the problem of controlling a general one-dimensional Itô diffusion by means
of a finite-variation process. The objective is to minimise a long-term average expected
criterion as well as a long-term pathwise criterion that penalise deviations of the underly-
ing state process from a given nominal point as well as the expenditure of control effort.
We solve the resulting singular stochastic control problems under general assumptions by
identifying an optimal strategy that is explicitly characterised.
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1. Introduction

We consider a stochastic system, the state of which is modelled by the controlled, one-
dimensional Itô diffusion

dXt = b
(
Xt
)
dt+dξt + σ

(
Xt
)
dWt, X0 = x ∈R, (1.1)

where W is a standard, one-dimensional Brownian motion, and the controlled process
ξ is a càglàd finite-variation process. The objective of the optimisation problem is to
minimise the long-term average expected performance criterion

limsup
T→∞

1
T
E

[∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

]

, (1.2)

as well as the long-term average pathwise performance criterion

limsup
T→∞

1
T

[∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

]

, (1.3)
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2 Ergodic singular control

over all admissible choices of ξ. Here, h is a given positive function that is strictly de-
creasing in ]−∞,0[ and strictly increasing in ]0,∞[. Thus, these performance indices
penalise deviations of the state process X from the nominal operating point 0. Given a
finite-variation process ξ, we denote by ξ+ and ξ− the unique processes that provide the
minimal decomposition of ξ into the difference of two increasing processes, and

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s :=
∫ T

0
k+
(
Xs
)
d
(
ξ+)c

s +
∑

0≤s≤T

∫ Δ(ξ+)s

0
k+
(
Xs + r

)
dr,

∫

[0,T]
k−
(
Xs
)� dξ−s :=

∫ T

0
k−
(
Xs
)
d
(
ξ−
)c
s +

∑

0≤s≤T

∫ Δ(ξ−)s

0
k−
(
Xs− r

)
dr,

(1.4)

where (ξ±)c are the continuous parts of ξ±. The functions k+ and k− represent the pro-
portional costs associated with the use of the control process ξ to push the left-continuous
state process X in the positive and negative directions, respectively.

Singular stochastic control with an expected discounted criterion was introduced by
Bather and Chernoff [1] who considered a simplified model of spaceship control. In their
seminal paper, Beneš et al. [2] were the first to solve rigorously an example of a finite-fuel
singular control problem. Since then, the area has attracted considerable interest in the
literature. Karatzas [9], Harrison and Taksar [8], Shreve et al. [17], Chow et al. [3], Sun
[19], Soner and Shreve [18], Ma [11], Zhu [21], and Fleming and Soner [7, Chapter VIII]
provide an incomplete list, in chronological order, of further important contributions.

The first singular control problem with an ergodic expected criterion was solved by
Karatzas [9], who considered the control of a standard Brownian motion. Menaldi and
Robin [12] later established the existence of an optimal control to the problem that we
consider when b and σ are Lipshitz continuous with σ bounded, k+ ≡ k− ≡ 0, and under
other technical conditions. Also, Weerasinghe [20] solved the version of the problem that
arises when the drift is controllable in a bang-bang sense and the functions k+ and k− are
both equal to the same constant K .

At this point, we should note that, to the best of our knowledge, our analysis provides
the first model of singular control with an ergodic pathwise criterion to be considered in
the literature. Other stochastic control problems with an ergodic pathwise criterion have
recently attracted significant interest. Notable contributions in this area include Rotar
[15], Presman et al. [13], Dai Pra et al. [4], Dai Pra et al. [5], and a number of references
therein.

We solve the problems that we consider and we derive an explicit characterisation
of an optimal strategy by finding an appropriate solution to the associated Hamilton-
Jacobi-Bellman (HJB) equation under general assumptions. When the cost functions k+

and k− are both equal to a constant K , our assumptions regarding the rest of the problem
data are similar to those imposed by Weerasinghe [20]. However, we should note that,
in this special case, the problem with the expected performance criterion that we solve is
fundamentally different from the one solved by Weerasinghe [20], which is evidenced by
the fact that the two problems are associated with different HJB equations.

With regard to the structure of the performance criteria that we consider, penalising
the expenditure of control effort by means of integrals as in (1.4) was introduced by
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Zhu [21] and was later adopted by Davis and Zervos [6]. An apparently more natural
choice for penalising control effort expenditure would arise if we replaced these integrals
by

∫

[0,T]
k+
(
Xs
)
dξ+

s ,
∫

[0,T]
k−
(
Xs
)
dξ−s , (1.5)

respectively. However, such a choice would lead to a less “pleasant” HJB equation that we
cannot solve. Also, it is worth noting that the two types of integrals are identical when the
functions k+ and k− are both constant. At this point, we should note that our assumptions
allow for the possibility that the uncontrolled diffusion associated with (1.1) explodes in
finite time. In such a case, it turns out that an optimal control is a stabilising one.

2. The singular stochastic control problem

We consider a stochastic system, the state process X of which is driven by a Brownian
motion W and a controlled process ξ. In particular, we consider the controlled, one-
dimensional SDE

dXt = b
(
Xt
)
dt+dξt + σ

(
Xt
)
dWt, X0 = x ∈R, (2.1)

where b,σ :R→R are given functions, and W is a standard, one-dimensional Brownian
motion. Here, the singular control process ξ is a càglàd finite-variation process, the time
evolution of which is determined by the system’s controller. Given such a process, we
denote by ξ = ξ+− ξ− the unique decomposition of ξ into the difference of two increasing
processes ξ+ and ξ− such that the total variation process ξ̌ of ξ is given by ξ̌ = ξ+ + ξ−.

We adopt a weak formulation of the control problem that we study.

Definition 2.1. Given an initial condition x ∈R a control of a stochastic system governed
by dynamics as in (2.1) is an octuple Cx = (Ω,�,�t,P,W ,ξ,X ,τ), where (Ω,�,�t,P) is a
filtered probability space satisfying the usual conditions,W is a standard one-dimensional
(�t)-Brownian motion, ξ is a finite-variation (�t)-adapted càglàd process, and X is an
(�t)-adapted càglàd process that satisfies (2.1) up to its possible explosion time τ.

Define �x to be the family of all such controls Cx.

With each control Cx ∈�x, we associate the long-term average expected performance
criterion JE(Cx) defined by

JE(Cx
)= limsup

T→∞

1
T
E

[∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

]

, (2.2)

if P(τ =∞)= 1, and by

JE(Cx
)=∞, if P(τ =∞) < 1, (2.3)
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as well as the long-term average pathwise criterion

JP(Cx
)=∞1{τ<∞} + limsup

T→∞

1
T

[∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

]

,

(2.4)

which is a random variable with values in [0,∞]. Here, h :R→R is a given function that
models the running cost resulting from the system’s operation, while k+, k− are given
functions penalising the expenditure of control effort. The integrals with respect to ξ+

and ξ− are defined by (1.4) in the introduction, respectively.
The objective is to minimise the performance criteria defined by (2.2)-(2.3) and (2.4)

over all admissible controls Cx ∈�x. We impose the following assumption on the prob-
lem data.

Assumption 2.2. The following conditions hold.
(a) The functions b, σ :R→R are continuous, and there exists a constant C1 > 0 such

that

0 < σ2(x)≤ C1
(
1 + |x|), ∀x ∈R. (2.5)

(b) The function h is continuous, strictly decreasing on ]−∞,0[ and strictly increasing
on ]0,∞[. Also, h(0)= 0 and there exists a constant C2 > 0 such that

h(x)≥ C2
(|x|− 1

)
, ∀x ∈R. (2.6)

(c) Given any constant γ > 0,

lim
x→±∞

1
σ2(x)

[
h(x)− γ

∣
∣b(x)

∣
∣]=∞. (2.7)

(d) The functions k+ and k− are C1 and there exists a constant C3 > 0 such that

k+(x),k−(x)∈ ]0,C3
]
, ∀x ∈R. (2.8)

(e) There exist α− ≤ α+ such that the function

−1
2
σ2k′+− bk+ +h

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

is strictly decreasing and positive in
]−∞,α−

[
,

is strictly negative inside
]
α−,α+

[
, if α− < α+,

is strictly increasing and positive in
]
α+,∞[.

(2.9)

(f) There exist a− ≤ a+ such that the function

1
2
σ2k′− + bk− +h

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

is strictly decreasing and positive in
]−∞,a−

[
,

is strictly negative inside
]
a−,a+

[
, if a− < a+,

is strictly increasing and positive in
]
a+,∞[.

(2.10)
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Note that Assumption 2.2(a) implies the nondegeneracy condition (ND)′ and the local
integrability condition (LI)′ in [10, Section 5.5 of Karatzas and Shreve]. It follows that,
given an initial condition x ∈R, the uncontrolled diffusion

dXt = b
(
Xt
)
dt+ σ

(
Xt
)
dWt, X0 = x, (2.11)

has a unique weak solution up to a possible explosion time. Moreover, the scale function
and the speed measure that characterise a one-dimensional diffusion such as the one in
(2.11), which are given by

px0

(
x0
)= 0, p′x0

(x)= exp

(

− 2
∫ x

x0

b(s)
σ2(s)

ds

)

, for x ∈R, (2.12)

mx0 (dx)= 2
p′x0

(x)σ2(x)
dx, (2.13)

respectively, for any given choice of x0 ∈R, are well defined.
At this point it is worth noting that the conditions in our assumptions do not involve

a convexity assumption on h, often imposed in the stochastic control literature. Also,
although they appear to be involved, it is straightforward to check whether a given choice
of the problem data satisfies the conditions of Assumption 2.2.

Example 2.3. If we choose

b(x)= ax, σ(x)= c, h(x)= ζ|x|p, k+(x)= K+, k−(x)= K−, (2.14)

for some constants a∈R, c �= 0, ζ ,K+,K− > 0, and p > 1, then Assumption 2.2 holds.

3. The solution of the control problem

With regard to the general theory of stochastic control, the solution of the control prob-
lem formulated in Section 2 can be obtained by finding a, sufficiently smooth for an ap-
plication of Itô’s formula, function w and a constant λ satisfying the following Hamilton-
Jacobi-Bellman (HJB) equation:

min
{

1
2
σ2(x)w′′(x) + b(x)w′(x) +h(x)− λ, k+(x) +w′(x), k−(x)−w′(x)

}
= 0. (3.1)

If such a pair (w,λ) exists, then, subject to suitable technical conditions, we expect the
following statements to be true. Given any initial condition x ∈R,

λ= inf
Cx∈�x

JE(Cx
)= inf

Cx∈�x

JP(Cx
)
, (3.2)

which reflects the fact that the optimal values of the performance criteria considered are
independent of the system’s initial condition. The set of all x ∈R such that

k+(x) +w′(x)= 0 (3.3)
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defines the part of the state space in which the controller should exert minimal effort by
increasing the process ξ+ so as to position and then reflect the state process at the closest
boundary point of the set in the positive direction. Similarly, the set of all x ∈R such that

k−(x)−w′(x)= 0 (3.4)

defines the part of the state space where the controller should exert minimal effort by
increasing the process ξ− so as to position and then reflect the state process at the closest
boundary point of the set in the negative direction. The interior of the set of all x ∈ R
such that

1
2
σ2(x)w′′(x) + b(x)w′(x) +h(x)− λ= 0 (3.5)

defines the part of the state space in which the controller should take no action.
With regard to the control problems considered, we conjecture that an optimal strat-

egy is characterised by two points, x− < x+, and takes a form that can be described as fol-
lows. The controller exerts minimal effort so as to keep the state process within [x−,x+].
Accordingly, with the exception of a possible jump at time 0, the process ξ+ is continuous
and increases on the set of times when Xt = x− in order to reflect the state process back
into the no action region ]x−,x+[. Similarly, the process ξ− can have a jump the size of
x− x+ at time 0 so as to reposition the state process from its initial value x to the boundary
point x+, if x > x+, and then increases on the set of times when Xt = x+.

Assuming that this strategy is indeed optimal, we need a system of appropriate equa-
tions to determine the free-boundary points x−, x+ and the constant λ. To this end we
conjecture that the so-called “smooth-pasting condition” holds, which, in the case of the
singular control problem that we consider here, suggests that the function w should be
C2, in particular, at the free boundary points x− and x+. We therefore look for a solution
(w,λ) to the HJB equation (3.1) such that

w′(x)=−k+(x), w′′(x)=−k′+(x), ∀x ≤ x−, (3.6)

1
2
σ2(x)w′′(x) + b(x)w′(x) +h(x)− λ= 0, for x ∈ ]x−,x+

[
, (3.7)

w′(x)= k−(x), w′′(x)= k′−(x), ∀x ≥ x+. (3.8)

The four equations resulting from (3.6) and (3.8) for x = x− and for x = x+, respectively,
suggest that we should consider a fourth parameter. To determine such a parameter, we
observe that the strict positivity of k+, k− and the fact that w′ is continuous imply that w
should have a local minimum inside ]x−,x+[, denoted by x0, so that w′(x0)= 0. With re-
gard to this observation, we note that the solution to the ODE (3.5) with initial condition
w′(x0)= 0 is given by

w′(x)= p′x0
(x)

∫ x

x0

[
λ−h(s)

]
mx0 (ds), x ∈R, (3.9)

where px0 and mx0 are the scale function and the speed measure of the uncontrolled diffu-
sion (2.11), defined by (2.12) and (2.13), respectively. It follows that we need to determine
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the four parameters x− < x0 < x+ and λ that solve the nonlinear system of equations

g
(
x+,λ,x0

)= k−
(
x+
)
,

∂g

∂x

(
x+,λ,x0

)= k′−
(
x+
)
,

g
(
x−,λ,x0

)=−k+
(
x−
)
,

∂g

∂x

(
x−,λ,x0

)=−k′+
(
x−
)
,

(3.10)

where g is defined by

g
(
x,λ,x0

)= p′x0
(x)

∫ x

x0

[
λ−h(s)

]
mx0 (ds), for x,λ,x0 ∈R. (3.11)

The following result, the proof of which is developed in the Appendix, is concerned
with showing that the heuristic considerations above indeed provide a solution to the
HJB equation (3.1).

Lemma 3.1. Suppose that Assumption 2.2 holds. The system of (3.10), where g is defined by
(3.11), has a solution (x−,x0,x+,λ) such that x− < x0 < x+, and, if w is a function satisfy-
ing (3.9) inside the interval ]x−,x+[ and is given by (3.6) and (3.8) in the complement of
]x−,x+[, then w is C2 and the pair (w,λ) is a solution to the HJB equation (3.1).

We can now prove the main result of the paper that concerns the optimisation of the
ergodic expected criterion.

theorem 3.2. Consider the stochastic control problem formulated in Section 2 that aims at
the minimisation of the long-term average expected criterion defined by (2.2)-(2.3). Suppose
that Assumption 2.2 holds, and let the constants x−,x0,x+,λ be as in Lemma 3.1. Then, given
any initial condition x ∈R,

λ= inf
Cx∈�x

JE(Cx
)
, (3.12)

and the points x−, x+ determine the optimal strategy that has been discussed qualitatively
above.

Proof. Throughout the proof, we fix the solution (w,λ) to the HJB equation (3.1) that is
constructed in Lemma 3.1. We also fix an initial condition x ∈R.

Consider any admissible control Cx ∈ �x such that JE(Cx) <∞. Using Itô’s formula
for general semimartingales, we obtain

w
(
XT+

)=w(x) +
∫ T

0

[
1
2
σ2(Xs

)
w′′
(
Xs
)

+ b
(
Xs
)
w′
(
Xs
)
]

ds+
∫

[0,T]
w′
(
Xs
)
dξs

+
∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs +

∑

s∈[0,T]

[
w
(
Xs+

)−w
(
Xs
)−w′

(
Xs
)
ΔXs

]

=w(x) +
∫ T

0

[
1
2
σ2(Xs

)
w′′
(
Xs
)

+ b
(
Xs
)
w′
(
Xs
)
]

ds+
∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs

+
∫

[0,T]
w′
(
Xs
)
d
(
ξ+)c

s −
∫

[0,T]
w′
(
Xs
)
d
(
ξ−
)c
s +

∑

s∈[0,T]

[
w
(
Xs+

)−w
(
Xs
)]

,

(3.13)
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the second equality following because ξs = ξ+
s − ξ−s and the jumps of X coincide with

those of ξ. Here (ξ+)c and (ξ−)c are the continuous parts of the processes ξ+ and ξ−,
respectively. Now, given any time s≥ 0,

w
(
Xs+

)−w
(
Xs
)=

∫ Δ(ξ+)s

0
w′
(
Xs + r

)
dr−

∫ Δ(ξ−)s

0
w′
(
Xs− r

)
dr. (3.14)

Using this observation and the definitions (1.4), we can see that (3.13) implies

IT
(
Cx
)

:=
∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

= λT +w(x)−w
(
XT
)

+
∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs

+
∫ T

0

[
1
2
σ2(Xs

)
w′′
(
Xs
)

+ b
(
Xs
)
w′
(
Xs
)

+h
(
Xs
)− λ

]

ds

+
∫ T

0

[
k+
(
Xs
)

+w′
(
Xs
)]
d
(
ξ+)c

s +
∫ T

0

[
k−
(
Xs
)−w′

(
Xs
)]
d
(
ξ−
)c
s

+
∑

s∈[0,T]

∫ Δ(ξ+)s

0

[
k+
(
Xs + r

)
+w′

(
Xs + r

)]
dr

+
∑

s∈[0,T]

∫ Δ(ξ−)s

0

[
k−
(
Xs− r

)−w′
(
Xs− r

)]
dr.

(3.15)

Since the pair (w,λ) satisfies the HJB equation (3.1), it follows that

IT
(
Cx
)≥ λT +w(x)−w

(
XT
)

+
∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs. (3.16)

By construction, w is C2, w′(x)= k−(x), for all x ≥ x+, and w′(x)=−k+(x), for all x ≤ x−.
Therefore, in view of (2.8) in Assumption 2.2, there exists a constant C4 > 0 such that

w(x)≤ C4
(
1 + |x|), ∣

∣w′(x)
∣
∣≤ C4, ∀x ∈R. (3.17)

For such a choice of C4, (3.16) yields

IT
(
Cx
)≥ λT +w(x)−C4−C4

∣
∣XT

∣
∣+

∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs. (3.18)

Now, with respect to the positivity of k+ and k−, and Assumption 2.2(b),

∞ > JE(Cx
)≥ limsup

T→∞

1
T
E

[∫ T

0
h
(
Xs
)
ds

]

≥−C2 +C2 limsup
T→∞

1
T
E

[∫ T

0

∣
∣Xs

∣
∣ds

]

.

(3.19)
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These inequalities imply

E

[∫ T

0

∣
∣Xs

∣
∣ds

]

<∞, ∀T > 0, (3.20)

liminf
T→∞

1
T
E
[∣∣XT

∣
∣]= 0. (3.21)

To see (3.21), suppose that liminfT→∞T−1E[|XT |] > ε > 0. This implies that there exists
T1 ≥ 0 such that E[|Xs|] > εs/2, for all s≥ T1. It follows that

limsup
T→∞

1
T
E

[∫ T

0

∣
∣Xs

∣
∣ds

]

≥ limsup
T→∞

1
T

∫ T

T1

εs

2
ds=∞, (3.22)

which contradicts (3.19).
With regard to (2.5) in Assumption 2.2(a), the second inequality in (3.17) and (3.20),

we calculate

E

[∫ T

0

[
σ
(
Xs
)
w′
(
Xs
)]2

ds

]

≤ C2
4C1

(

T +E

[∫ T

0

∣
∣Xs

∣
∣ds

])

<∞, ∀T > 0, (3.23)

which proves that the stochastic integral in (3.18) is a square integrable martingale, and
therefore has zero expectation. In view of this observation, we can take expectations in
(3.18) and divide by T to obtain

1
T
E
[
IT
(
Cx
)]≥ λ+

w(x)
T

− C4

T
− C4

T
E
[∣∣XT

∣
∣]. (3.24)

In view of (3.21) and the definition of IT(Cx) in (3.15), we can pass to the limit T →∞ to
obtain JE(Cx)≥ λ.

To prove the reverse inequality, suppose that we can find a control

Ĉx =
(
Ω̂,�̂,�̂t, P̂,Ŵ , ξ̂, X̂ , τ̂

)∈�x (3.25)

such that

X̂t ∈
[
x−,x+

]
, ∀t > 0, P̂-a.s., (3.26)

Δξ̂0 =
(
x− − x

)+− (x− x+
)+

, P̂-a.s., (3.27)
∫

]0,∞[
1]x−,x+]

(
X̂s
)
dξ̂+

s = 0,
∫

]0,∞[
1[x−,x+[

(
X̂s
)
dξ̂−s = 0, P̂-a.s. (3.28)

Plainly, (3.26) implies that X̂ is nonexplosive, so that τ̂ =∞, P̂-a.s. Also, with regard to



10 Ergodic singular control

the construction of w, we can see that, for such a choice of a control, (3.15) implies

IT
(
Ĉx
)= λT +w(x)−w

(
X̂T
)

+
∫ T

0
σ
(
X̂s
)
w′
(
X̂s
)
dŴs. (3.29)

Now, (2.5) in Assumption 2.2, (3.17) and (3.26) imply

Ê

[∫ T

0

[
σ
(
X̂s
)
w′
(
X̂s
)]2

ds

]

≤ C2
4C1

(
1 +

∣
∣x−

∣
∣∨∣∣x+

∣
∣)T <∞, ∀T > 0, (3.30)

which proves that the stochastic integral in (3.29) is a square integrable martingale, and

lim
T→∞

1
T
Ê
[∣∣w

(
X̂T
)∣∣]≤ lim

T→∞
1
T
C4
(
1 +

∣
∣x−

∣
∣∨∣∣x+

∣
∣)= 0. (3.31)

It follows that

lim
T→∞

1
T
Ê
[
IT
(
Ĉx
)]= λ, (3.32)

which proves that JE(Ĉx)= λ, and establishes (3.12).
Finally, we note that a control Ĉx satisfying (3.26)–(3.28), which is optimal, can be

constructed as in [16]. �

The following result is concerned with the solution to the optimisation problem con-
sidered with the ergodic pathwise criterion.

theorem 3.3. Consider the stochastic control problem formulated in Section 2 that aims at
the minimisation of the long-term average pathwise criterion defined by (2.4). Suppose that
Assumption 2.2 holds, and let the constants x−, x0, x+, λ be as in Lemma 3.1. Then, given
any initial condition x ∈R,

λ= inf
Cx∈�x

JP(Cx
)
, (3.33)

and the points x−, x+ determine the optimal strategy.

Proof. Throughout the proof, we fix the solution (w,λ) to the HJB equation (3.1) that is
constructed in Lemma 3.1. We also fix an initial condition x ∈R.

Consider any admissible control Cx ∈�x. Using the same arguments as the ones that
established (3.18) in the proof of Theorem 3.2 above, we can show that

IT
(
Cx
)

1{T<τ} :=
(∫ T

0
h
(
Xs
)
ds+

∫

[0,T]
k+
(
Xs
)⊕ dξ+

s +
∫

[0,T]
k−
(
Xs
)� dξ−s

)

1{T<τ}

≥ (λT +w(x)−C4−C4
∣
∣XT

∣
∣+MT

)
1{T<τ},

(3.34)

where

MT =
∫ T

0
σ
(
Xs
)
w′
(
Xs
)
dWs. (3.35)
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With regard to the positivity of k+ and k−, and Assumption 2.2(b), we can see that

∞ > JP(Cx
)

1{JP(Cx)<∞} ≥
(

limsup
T→∞

1
T

∫ T

0
h
(
Xs
)
ds

)

1{JP(Cx)<∞}

≥ C2

(

− 1 + limsup
T→∞

1
T

∫ T

0

∣
∣Xs

∣
∣ds

)

1{JP(Cx)<∞}.

(3.36)

By appealing to arguments similar to the ones that established (3.21), we can see that
these inequalities imply

liminf
T→∞

1
T

∣
∣XT

∣
∣1{JP(Cx)<∞} = 0. (3.37)

Also, they imply that there exists a real-valued random variable Z and a random time τZ
such that

(
1
T

∫ T

0

∣
∣Xs

∣
∣ds

)

1{JP(Cx)<∞} ≤ Z1{JP(Cx)<∞}, ∀T ≥ τZ. (3.38)

In view of (2.5) in Assumption 2.2(a) and the second estimate in (3.17), it follows that

〈M〉T1{JP(Cx)<∞} ≤ C2
4C1

(

1 +
1
T

∫ T

0

∣
∣Xs

∣
∣ds

)

T1{JP(Cx)<∞}

≤ C2
4C1(1 +Z)T1{JP(Cx)<∞}, ∀T ≥ τZ ,

(3.39)

where 〈M〉 is the quadratic variation process of the local martingale M defined in (3.35).
Now, with regard to the Dambis, Dubins, and Schwarz theorem (e.g., see Revuz and

Yor [14, Theorem V.1.7]), there exists a standard, one-dimensional Brownian motion B
defined on a possible extension of (Ω,�,P) such that

〈M〉T1{T≤τ} = B〈M〉T 1{T≤τ}. (3.40)

In view of this representation, the observation that
{
JP(Cx

)
<∞}⊆ {τ =∞}, (3.41)

(3.39), and the fact that limT→∞BT/T = 0, we can see that

lim
T→∞

1
T

∣
∣MT

∣
∣1{JP(Cx)<∞}∩{〈M〉∞=∞}

= lim
T→∞

1
T

∣
∣B〈M〉T

∣
∣1{JP(Cx)<∞}∩{〈M〉∞=∞}

≤ C2
4C1(1 +Z) lim

T→∞
1

〈M〉T
∣
∣B〈M〉T

∣
∣1{JP(Cx)<∞}∩{〈M〉∞=∞} = 0.

(3.42)

Furthermore, since a continuous local martingale M converges in R, P-a.s., on the event
{〈M〉∞ <∞} (e.g., see Revuz and Yor [14, Proposition IV.1.26]),

lim
T→∞

1
T

∣
∣MT

∣
∣1{JP(Cx)<∞}∩{〈M〉∞<∞} = 0. (3.43)
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However, combining (3.42) and (3.43) with (3.34), (3.37), and (3.41), we can see that

JP(Cx
)≡ limsup

T→∞

1
T
IT
(
Cx
)≥ λ. (3.44)

To prove the reverse inequality, consider the control Ĉx ∈�x satisfying (3.26)–(3.28),
which is associated with τ̂ =∞ and

IT
(
Ĉx
)= λT +w(x)−w

(
X̂T
)

+ M̂T , (3.45)

where IT and M̂ are defined as in (3.34) and (3.35), respectively, (see also (3.29)). Since
X̂t ∈ [x−,x+], for all t ≥ 0, P̂-a.s., (2.5) in Assumption 2.2(a) and (3.17) imply

∣
∣w
(
XT
)∣∣≤ C4

(
1 +

∣
∣x−

∣
∣∨∣∣x+

∣
∣), 〈M〉T ≤ C2

4C1
(
1 +

∣
∣x−

∣
∣∨∣∣x+

∣
∣)T , ∀T ≥ 0.

(3.46)

However, in light of these inequalities and an argument such as the one establishing (3.42)
and (3.43) above, we can see that JP(Ĉx) ≡ limT→∞ IT(Ĉx)/T = λ, and the proof is com-
plete. �

Appendix

To prepare the grounds for proving Lemma 3.1, we note that the calculation

d

dx

k±(x)
p′x0

(x)
= 2

σ2(x)p′x0
(x)

[
1
2
σ2(x)k′±(x) + b(x)k±(x)

]

, (A.1)

the definition (3.11) of g, and the definition (2.13) of the speed measure mx0 imply

g
(
x,λ,x0

)− k±(x)= p′x0
(x)

[∫ x

x0

[

λ− 1
2
σ2(s)k′±(s)− b(s)k±(s)−h(s)

]

mx0 (ds)− k±
(
x0
)
]

.

(A.2)

Also, we calculate

∂g

∂x

(
x,λ,x0

)=− 2
σ2(x)

[
b(x)g

(
x,λ,x0

)
+h(x)− λ

]
, (A.3)

∂g

∂λ

(
x,λ,x0

)= sgn
(
x− x0

)
p′x0

(x)mx0

([
x0∧ x,x0∨ x

])
, (A.4)

∂g

∂x0

(
x,λ,x0

)=−2
[
λ−h

(
x0
)]

σ2
(
x0
) p′x0

(x), (A.5)

and we observe that (A.4) implies

lim
λ→∞

g
(
x,λ,x0

)=
⎧
⎨

⎩
∞, for x > x0,

−∞, for x < x0.
(A.6)
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In view of the structure and the continuity of g, the positivity of h, and the continuity
and strict positivity of k− and k+, this observation implies

Λ+
(
x0
)

:= inf
{
λ∈R | sup

x≥x0

[
g
(
x,λ,x0

)− k−(x)
]≥ 0

}
∈]0,∞[, ∀x0 ∈R, (A.7)

Λ−
(
x0
)

:= inf
{
λ∈R | inf

x≤x0

[
g(x,λ,x0

)
+ k+(x)

]≤ 0
}
∈]0,∞[, ∀x0 ∈R. (A.8)

Given these definitions we can prove the following result.

Lemma A.1. Given x0 ∈ R, let Λ+(x0) and Λ−(x0) be defined by (A.7) and (A.8), respec-
tively. The equations g(x,Λ±(x0),x0) = ±k∓(x) determine uniquely two continuous func-
tions χ± such that

−∞ < χ−
(
x0
)
< x0 <χ+

(
x0
)
<∞, (A.9)

g
(
χ+
(
x0
)
,Λ+

(
x0
)
,x0
)= k−

(
χ+
(
x0
))

, (A.10)

∂g

∂x

(
χ+
(
x0
)
,Λ+

(
x0
)
,x0
)= k′−

(
χ+
(
x0
))

, (A.11)

g
(
χ−
(
x0
)
,Λ−

(
x0
)
,x0
)=−k+

(
χ−
(
x0
))

, (A.12)

∂g

∂x

(
χ−
(
x0
)
,Λ−

(
x0
)
,x0
)=−k′+

(
χ−
(
x0
))

, (A.13)

for all x0 ∈R. These functions satisfy

g
(
x,Λ+

(
x0
)
,x0
)
< k−(x), ∀x ∈ [x0,χ+

(
x0
)[

, (A.14)

g
(
x,Λ−

(
x0
)
,x0
)
>−k+(x), ∀x ∈ ]χ−

(
x0
)
,x0
]
, (A.15)

χ−
(
x0
)
< α−, a+ < χ+

(
x0
)
, (A.16)

for all x0 ∈ R, where α− and a+ are as in Assumptions 2.2(e) and 2.2(f), respectively. Mo-
rover, there exists a unique point x̃0 ∈R such that

λ̃ :=Λ+
(
x̃0
)=Λ−

(
x̃0
)
, h

(
x̃0
)
< λ̃. (A.17)

Proof. Fix any x0 ∈R. With regard to the definition (A.7) of Λ+(x0), we define

χ+(x0)= inf
{
x > x0 | g

(
x,Λ+

(
x0
)
,x0
)= k−(x)

}
> x0, (A.18)

with the usual convention inf∅ =∞. Here, the strict inequality follows thanks to the
strict positivity of k− and the fact that g(x0,λ,x0) = 0, for all λ ∈ R. If we assume that
χ+(x0) =∞, then the continuity of the functions g, k−, the boundedness of k− and the
definition (A.7) of Λ+(x0) imply

∣
∣g
(
x,Λ+

(
x0
)
,x0
)∣∣≤ C5, ∀x ≥ x0, (A.19)
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for some constant C5 > 0, and

lim
x→∞

[
g
(
x,Λ+

(
x0
)
,x0
)− k−(x)

]= 0. (A.20)

With regard to (A.3) and (A.19), it follows that

lim
x→∞

∂g

∂x

(
x,Λ+

(
x0
)
,x0
)≤ lim

x→∞
2

σ2(x)

[
C5
∣
∣b(x)

∣
∣−h(x) +Λ+

(
x0
)]=−∞, (A.21)

the last equality following thanks to Assumptions 2.2(b) and 2.2(c). This calculation and
the boundedness of k− contradict (A.20), which proves that χ+(x0) is finite. However, this
conclusion and the fact that

χ+
(
x0
)

is a local maximum of the C1 function x �−→ g
(
x,Λ+

(
x0
)
,x0
)− k−(x), (A.22)

which follows from the definitions (A.7) and (A.18), imply that (A.10), (A.11), and (A.14)
are satisfied.

With regard to Assumption 2.2(f) and the strict positivity of Λ+(x0), there exist two
points y− and y+ such that

y− < a− ≤ a+ < y+, (A.23)

− 2
σ2(x)

[
1
2
σ2(x)k′−(x) + b(x)k−(x) +h(x)−Λ+

(
x0
)
]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0, for x < y−,

> 0, for x ∈ ]y−, y+
[
,

< 0, for x > y+.
(A.24)

Combining this observation with the identity

1
2
σ2(χ+

(
x0
))
k′−
(
χ+
(
x0
))

+ b
(
χ+
(
x0
))
k−
(
χ+
(
x0
))

+h
(
χ+
(
x0
))−Λ+

(
x0
)= 0, (A.25)

which follows from (A.3) and (A.10)-(A.11), we can see that either χ+(x0) = y− or
χ+(x0) = y+. Now, suppose that χ+(x0) = y−. In view of (A.4), (A.22), and the continu-
ity of g and k−, such an assumption implies that there exist ε > 0, sufficiently small, and
points z1,z2 such that

x0 < z1 < y− < z2 < y+, (A.26)

g
(
z1,Λ+

(
x0
)

+ ε,x0
)= k−

(
z1
)
, g

(
z2,Λ+

(
x0
)

+ ε,x0
)= k−

(
z2
)
, (A.27)

∂

∂x

[
g
(
x,Λ+

(
x0
)

+ ε,x0
)− k−(x)

]
⎧
⎨

⎩
> 0, for x = z1,

< 0, for x = z2.
(A.28)
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Combining (A.27) and (A.28) with (A.3), we can see that

− 2
σ2
(
z2
)

[
1
2
σ2(z2

)
k′−
(
z2
)

+ b
(
z2
)
k−
(
z2
)

+h
(
z2
)−Λ+

(
x0
)
]

<− 2
σ2
(
z2
)

[
1
2
σ2(z2

)∂g

∂x

(
z2,Λ+

(
x0
)

+ ε,x0
)

+ b
(
z2
)
g
(
z2,Λ+

(
x0
)

+ ε,x0
)

+h
(
z2
)−Λ+

(
x0
)
]

=− 2
σ2
(
z2
) ε < 0,

(A.29)

which contradicts (A.24) because z2 ∈]y−, y+[ (see (A.26)). However, this proves that
χ+(x0) = y+, which, in view of (A.23), implies the corresponding claim in (A.16). Also,
arguing by contradiction, we can use similar methods to show that χ+(x0) is unique.

To proceed further, we note that Assumption 2.2(b), the strict positivity of k−, and the
definition (3.11) of g imply that Λ+(x0) > h(x0), for all x0 ≥ 0. In particular,

A− := inf
{
x0 ∈R |Λ+

(
x0
)
> h

(
x0
)}∈ [−∞,0[. (A.30)

In view of this observation, (A.5) and (A.14), we can see that, given any x0 ≥A−,

g
(
x,Λ+

(
x0
)
, x̄0
)
< k−(x), ∀x ∈ [x̄0,χ+

(
x0
)]

, x̄0 ∈
]
x0,χ+

(
x0
)[
. (A.31)

Also, we note that (A.25), (A.16), and Assumption 2.2(f) imply that, if Λ+ is increasing
(resp., decreasing) at some point x0 ∈ R, then χ+ is increasing (resp., decreasing) at x0.
However, combining this observation with (A.31), the definition (3.11) of g and the strict
positivity of k−, we can see that

Λ+
(
x0
)
<Λ+

(
x̄0
)
, χ+

(
x0
)
< χ+

(
x̄0
)
, ∀A− ≤ x0 < x̄0, (A.32)

that is, Λ+ and χ+ both are strictly increasing in ]A−,∞[.
Now, we argue by contradiction and we assume that Λ+ is discontinuous at some point

x∗0 > A−, so that

Λ+

(
x∗0
)

:= lim
x0↑x∗0

Λ+
(
x0
)
< lim

x0↓x∗0
Λ+
(
x0
)=: Λ+

(
x∗0
)
,

χ
+

(
x∗0
)

:= lim
x0↑x∗0

χ+
(
x0
)≤ lim

x0↓x∗0
χ+
(
x0
)=: χ+

(
x∗0
)
.

(A.33)

Since the rest of the associated functions are continuous, (A.2) and (A.10) imply

0=
∫ χ

+

(
x∗0
)

x∗0

[

Λ+

(
x∗0
)− 1

2
σ2(s)k′−(s)− b(s)k−(s)−h(s)

]

mx∗0 (ds)− k−
(
x∗0
)

=
∫ χ+

(
x∗0
)

x∗0

[

Λ+
(
x∗0
)− 1

2
σ2(s)k′−(s)− b(s)k−(s)−h(s)

]

mx∗0 (ds)− k−
(
x∗0
)
.

(A.34)
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These identities imply

0=[Λ+
(
x∗0
)−Λ+

(
x∗0
)]
mx∗0

((
x∗0 ,χ

+

(
x∗0
)))

+
∫ χ+

(
x∗0
)

χ
+

(
x∗0
)

[

Λ+
(
x∗0
)− 1

2
σ2(s)k′−(s)− b(s)k−(s)−h(s)

]

mx∗0 (ds).
(A.35)

Also, combining (A.25) with Assumption 2.2(f), we can see that

Λ+
(
x∗0
)− 1

2
σ2(x)k′−(x)− b(x)k−(x)−h(x) > 0, ∀x ∈ [a+,χ+

(
x∗0
)[
. (A.36)

However, this inequality, (A.33), and the fact that χ
+

(x∗0 ) > a+ imply that the right-hand
side of (A.35) is strictly positive, which is a contradiction.

The analysis above establishes that the functions Λ+ and χ+ both are continuous and
strictly increasing in ]A−,∞[. Also, this conclusion and the definition (A.30) of A− imply
that

h
(
x0
)
<Λ+

(
x0
)
<Λ+(0), ∀x0 ∈

]
A−,0

]
, (A.37)

which, combined with the fact that limx→−∞h(x) =∞ (see Assumption 2.2(b)), implies
that A− >−∞.

We can prove all of the claims regarding the function χ− using similar reasoning. In
particular, we can show that Λ− and χ− both are continuous and strictly decreasing in the
interval ]−∞,A+[, where

A+ := sup
{
x0 ∈R |Λ−

(
x0
)
> h

(
x0
)}∈]0,∞[. (A.38)

Finally, the definitions of A− and A+ in (A.30) and (A.38), respectively, the fact that A+

and A− both are real numbers, and the continuity of the functions Λ+, Λ−, and h imply
that

Λ+
(
A+
)
> h

(
A+
)=Λ−

(
A+
)
,

Λ+
(
A−
)= h

(
A−
)
<Λ−

(
A−
)
.

(A.39)

However, these inequalities and the fact that the function Λ+ −Λ− is continuous and
strictly increasing imply that there exists a unique x0 ∈]A−,A+[ such that (A.17) holds
true. �

Proof of Lemma 3.1. Let x̃0 and λ̃ be as in the statement of Lemma A.1. Since λ̃ > h(x̃0),

Assumption 2.2(b) implies that there exists exactly one point x > x̃0 such that h(x) = λ̃.
This fact, the observation that

∂g

∂x

(
x, λ̃, x̃0

)=− 2
σ2(x)

[
h(x)− λ̃

]
, ∀x > x̃0 such that g

(
x, λ̃, x̃0

)= 0, (A.40)
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the boundary condition g(x̃0, λ̃, x̃0)= 0, and Assumption 2.2(b) imply that the equation

g(x, λ̃, x̃0)= 0 can have at most one solution x̂(λ̃, x̃0)∈]x̃0,∞[, and, if this solution exists,
then either

g
(
x, λ̃, x̃0

)

⎧
⎪⎨

⎪⎩

≥ 0, for x ∈ [x̃0, x̂
(
λ̃, x̃0

)]
,

< 0, for x > x̂
(
λ̃, x̃0

)
,

(A.41)

or g(x, λ̃, x̃0)≥ 0, for all x ≥ x̃0. However, these inequalities, (A.14), and the strict positiv-

ity of k− imply that χ+(x̃0) < x̂(λ̃, x̃0) and

g
(
x, λ̃, x̃0

)∈ [0,k−(x)
]
, ∀x ∈ [x̃0,χ+

(
x̃0
)]
. (A.42)

Similarly, we can show that

g
(
x, λ̃, x̃0

)∈ [− k+(x),0
]
, ∀x ∈ [χ−

(
x̃0
)
, x̃0
]
. (A.43)

Now, let w be the unique, modulo an additive constant, function defined by

w′(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−k+(x), for x < χ−
(
x̃0
)
,

g
(
x, λ̃, x̃0

)
, for x ∈ [χ−

(
x̃0
)
,χ+
(
x̃0
)]

,

k−(x), for x > χ+
(
x̃0
)
.

(A.44)

With regard to its construction, w is C2, is decreasing in ]−∞, x̃0[, and is increasing in
]x̃0,∞[. Furthermore, w satisfies the HJB (3.1) provided

1
2
σ2(x)w′′(x) + b(x)w′(x) +h(x)− λ≥ 0, ∀x < χ−

(
x̃0
)
, (A.45)

1
2
σ2(x)w′′(x) + b(x)w′(x) +h(x)− λ≥ 0, ∀x > χ+

(
x̃0
)
, (A.46)

−k+(x)≤w′(x)≤ k−(x), ∀x ∈ [χ−
(
x̃0
)
,χ+
(
x̃0
)]

, (A.47)

w′(x)≤ k−(x), ∀x < χ−
(
x̃0
)
, (A.48)

w′(x)≥−k+(x), ∀x > χ+
(
x̃0
)
, (A.49)

are all true. In view of (A.42), (A.43), and the definition of w in (A.44), inequality (A.47)
is plainly true, while (A.48) and (A.49) follow trivially from the fact that k+ and k− both
are positive functions. Finally, we can easily see that (A.45) and (A.46) are true once we
combine Assumptions 2.2(e, f) with (A.16) in Lemma A.1. �
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