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The Karlin-McGregor representation for the transition probabilities of a birth-death pro-
cess with an absorbing bottom state involves a sequence of orthogonal polynomials and
the corresponding measure. This representation can be generalized to a setting in which
a transition to the absorbing state (killing) is possible from any state rather than just one
state. The purpose of this paper is to investigate to what extent properties of birth-death
processes, in particular with regard to the existence of quasi-stationary distributions, re-
main valid in the generalized setting. It turns out that the elegant structure of the theory
of quasi-stationarity for birth-death processes remains largely intact as long as killing is
possible from only finitely many states. In particular, the existence of a quasi-stationary
distribution is ensured in this case if absorption is certain and the state probabilities tend
to zero exponentially fast.
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cle distributed under the Creative Commons Attribution License, which permits unre-
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1. Introduction

By a famous result of Karlin and McGregor [5], the transition probabilities of a birth-
death process on (a subset of) the integers can, under suitable conditions, be expressed in
terms of a sequence of orthogonal polynomials and their orthogonalizing measure. This
representation has led to detailed knowledge of many specific birth-death processes and
to considerable insight into the behaviour of birth-death processes in general.

Evidently, it is of interest to investigate to what extent properties of birth-death pro-
cesses retain their validity if one allows more general transition structures. Such investi-
gations are usually hampered by the fact that the orthogonal-polynomial representation
for the transition probabilities and the analytical tools that go with it are no longer avail-
able. The class of processes which is the subject of this article—and which comprises an
outwardly mild generalization of birth-death processes—does not have this drawback. At
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the same time, the class is interesting because it displays several of the phenomena that
occur beyond the setting of the pure birth-death process.

Concretely, we will consider birth-death processes on the set {−1,0,1, . . .}, with −1
being an absorbing bottom state, and the additional feature that absorption in one step
(killing) may occur from any state rather than just one state. In particular, the existence
and the shape of quasi-stationary distributions (initial distributions with the property
that the state distribution of the process, conditional on nonabsorption, is constant over
time) will be our main concern. It has recently been shown in [11] that an orthogonal-
polynomial representation for the transition probabilities remains valid in this setting, so
that the orthogonal-polynomial toolbox may be used to analyse the behaviour of such a
process. In fact, the existence of quasi-stationary distributions will be shown to depend
on the asymptotic behaviour of the orthogonal polynomials involved.

Quasi-stationarity for birth-death processes with killing has recently been studied in
[4] in a discrete-time setting. In this setting, the analysis is simpler because the asymptotic
behaviour of the pertinent orthogonal polynomials plays a less restrictive role. A recent
paper by Steinsaltz and Evans [8] addresses related problems in the setting of diffusions
with killing.

The remainder of the paper is organized as follows. In Section 2, we give precise def-
initions of the processes under study. In Section 3, we introduce the orthogonal poly-
nomials that are associated with these processes, and note some relevant properties. The
orthogonal-polynomial representation for the transition probabilities is described in
Section 4. In Section 5, we discuss absorption probabilities and conditions for certain ab-
sorption, in preparation for the analysis in Section 6, where we study the quasi-stationary
behaviour of the processes at hand. Our results comprise a characterization of quasi-
stationary distributions for birth-death processes with killing, and some sufficient condi-
tions for their existence. We conclude with some examples.

2. Birth-death processes with killing

We are concerned with a continuous-time Markov chain � := {X(t), t ≥ 0}, taking val-
ues in the set S := {−1}∪C, where C := {0,1,2, . . .} is an irreducible class and −1 is an
absorbing state. Besides, q−1, j = 0 for all j ∈ C, the transition rates qi j of � satisfy

qi j = 0, i, j ∈ C, |i− j| > 1, (2.1)

while

λi := qi,i+1 > 0, μi+1 := qi+1,i > 0, γi := qi,−1 ≥ 0, i∈ C. (2.2)

A process with these properties will be called a birth-death process with killing. The param-
eters λi and μi are the birth rate and death rate, respectively, in state i, while γi is the killing
rate in state i, that is, the rate of absorption from state i into state−1. It will be convenient
to define μ0 := 0, indicating again that a transition from state 0 to state −1 is designated
as “killing” rather than “death.” The transition rates are conveniently assembled in the
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q-matrix Q := (qi j , i, j ∈ S) of �, where

q−1,−1 = 0, qii =−
(
λi +μi + γi

)
, i∈ C. (2.3)

We write Pi(·) for the probability measure of the process when X(0)= i, and let Pm(·) :=
∑

i miPi(·) for any initial distribution m := (mi, i∈ C).
Unless explicitly stated otherwise, we will assume that γi > 0 for at least one state i ∈

C, so that −1 is accessible from C. If the killing rates γi are all zero except γ0 > 0, then
we are dealing with a pure birth-death process with an absorbing bottom state. We will
sometimes refer to this case for comparison purposes.

Throughout the paper, we will assume that the process � is nonexplosive. A necessary
and sufficient condition for nonexplosiveness of � in terms of the transition rates of �
may be obtained from Chen et al. [2, Theorem 8], namely,

∞∑

n=0

1
λnπn

n∑

j=0

(
1 + γj

)
πj =∞, (2.4)

where

π0 := 1, πn := λ0λ1 ···λn−1

μ1μ2 ···μn , n > 0. (2.5)

As is to be expected, this condition can be given the interpretation that either absorption
at −1 is certain or the birth-death process obtained by setting γi = 0 for all i∈ C is non-
explosive (see [12]). We will return to condition (2.4) later. At this point, it is important
to note that, as a consequence of nonexplosiveness, the transition probability functions

pi j(t) := Pi
{
X(t)= j

}
, i, j ∈ S, t ≥ 0, (2.6)

constitute the unique solution of the system of backward equations

P′(t)=QP(t), t ≥ 0, (2.7)

and satisfy the forward equations

P′(t)= P(t)Q, t ≥ 0, (2.8)

with initial condition P(0)= I , where P(t) := (pi j(t), i, j ∈ S), and I is the identity matrix.

3. Orthogonal polynomials

The transition rates of � determine a sequence of polynomials {Rn(x)} through the re-
currence relation

λnRn+1(x)= (λn +μn + γn− x
)
Rn(x)−μnRn−1(x), n > 0,

λ0R1(x)= λ0 + γ0− x, R0(x)= 1.
(3.1)



4 Quasi-stationary distributions for birth-death processes with killing

By letting

P0(x) := 1, Pn(x) := (−1)nλ0λ1 ···λn−1Rn(x), n > 0, (3.2)

we obtain the corresponding sequence of monic polynomials, which satisfy the recurrence
relation

Pn+1(x)= (x− λn−μn− γn
)
Pn(x)− λn−1μnPn−1(x), n > 0,

P1(x)= x− λ0− γ0, P0(x)= 1.
(3.3)

Since λn−1μn > 0 for n > 0, it follows (see, e.g., Chihara [3, Theorems I.4.4 and II.3.1])
that {Pn(x)}, and hence {Rn(x)}, constitutes a sequence of orthogonal polynomials with
respect to a bounded, positive Borel measure on R.

If γn = 0 for all n except γ0 ≥ 0, then � is a pure birth-death process and we know
(from, e.g., [5], or the corollary to [3, Theorem I.9.1]) that the sequence {Pn(x)} is or-
thogonal with respect to a measure on [0,∞). But it is not difficult to verify (see [11])

that there exist unique positive numbers λ̃n and μ̃n+1, n≥ 0, such that

λn +μn + γn = λ̃n + μ̃n, λnμn+1 = λ̃nμ̃n+1, n≥ 0, (3.4)

where μ̃0 := 0. Substitution of (3.4) into (3.3) shows that also in the present, more gen-
eral setting, the sequence {Pn(x)}, and hence the sequence {Rn(x)}, is orthogonal with
respect to a bounded, positive Borel measure on [0,∞). It is of course no restriction of
generality to assume that the measure has total mass 1, so that it is a probability measure.
Summarizing, there exists a probability measure ψ on [0,∞), and positive constants kj
such that

kj

∫∞

0
Ri(x)Rj(x)ψ(dx)= δi j , i, j ≥ 0, (3.5)

where δi j is Kronecker’s delta. Moreover, on applying [3, Theorem I.4.2(b)] to the se-
quence {Pn(x)}, it follows from (3.2) that kj = πj , the constants defined in (2.5).

It is well known that the polynomials Rn(x) have real, positive zeros xn1 < xn2 < ··· <
xnn, n≥ 1, which are closely related to supp(ψ), the support of the measure ψ. In partic-
ular, we have

inf supp(ψ)= lim
n→∞xn1, (3.6)

which exists, since the sequence {xn1} is (strictly) decreasing (see, e.g., [3, Theorem
II.4.5]). Considering that

λ0λ1 ···λn−1Rn(x)= (xn1− x
)(
xn2− x

)···(xnn− x
)
, (3.7)

it now follows that

x ≤ y ≤ inf supp(ψ)⇐⇒ Rn(x)≥ Rn(y) > 0 ∀n > 0, (3.8)

a result that we will use in Section 6.
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We conclude with some useful relations involving the polynomials {Rn(x)}, n ≥ 0.
Since λn−1πn−1 = μnπn, we can rewrite (3.1) as

λnπn
(
Rn+1(x)−Rn(x)

)= λn−1πn−1
(
Rn(x)−Rn−1(x)

)
+
(
γn− x

)
πnRn(x), n≥ 1,

λ0π0
(
R1(x)−R0(x)

)= (γ0− x
)
π0R0(x),

(3.9)

so that

λnπn
(
Rn+1(x)−Rn(x)

)=
n∑

j=0

(
γj − x

)
πjRj(x), n≥ 0. (3.10)

Hence we can write

Rn(x)= 1 +
n−1∑

k=0

1
λkπk

k∑

j=0

(
γj − x

)
πjRj(x), n > 0. (3.11)

It follows in particular that

R0(0)= 1, Rn(0)= 1 +
n−1∑

k=0

1
λkπk

k∑

j=0

γjπjRj(0), n > 0, (3.12)

so that Rn(0) is increasing in n. From [12, Lemma 1], we know that

lim
n→∞Rn(0)=∞⇐⇒

∞∑

n=0

1
λnπn

n∑

j=0

γjπj =∞, (3.13)

which will be used in Section 5.

4. Representation

It has recently been shown in [11] that the transition probabilities of the process �, inso-
far as they do not involve the absorbing state −1, may be represented in the form

pi j(t)= πj
∫∞

0
e−xtRi(x)Rj(x)ψ(dx), i, j ∈ C, t ≥ 0, (4.1)

where πn, n≥ 0, are the constants defined in (2.5), Rn(x), n≥ 0, are the polynomials de-
fined in (3.1), and ψ is an orthogonalizing probability measure on [0,∞) for the polyno-
mial sequence {Rn(x)}. This result generalizes Karlin’s and McGregor’s [5] classic repre-
sentation theorem for the pure birth-death process. Note that by setting t = 0, we regain
(3.5), though it is not clear yet that the measure ψ is unique. However, the transition
probabilities pi j(t) constitute the unique solution to the backward equations (2.7) be-
cause of our nonexplosiveness assumption (2.4). Since the representation (4.1) reduces
to

p00(t)=
∫∞

0
e−xtψ(dx), t ≥ 0, (4.2)
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if i = j = 0, the uniqueness theorem for Laplace transforms therefore implies that the
probability measure ψ must be unique as well.

We note that our assumption γi > 0 for at least one state i ∈ C implies that the tran-
sition probabilities pi j(t), i, j ∈ C, tend to zero as t→∞. Hence the representation (4.1)
tells us that the measure ψ cannot have a point mass at zero, so that ψ is in fact a measure
on (0,∞).

It is well known (see, e.g., [1]) that the transition probabilities pi j(t), i, j ∈ C, have a
common rate of convergence α, satisfying

α=− lim
t→∞

1
t

log pi j(t), i, j ∈ C, (4.3)

and known as the decay parameter of � in C. It is obvious from (4.2) that

α= inf supp(ψ), (4.4)

so, in view of (3.8), α may also be characterised as

α=max
{
x ∈R | Rn(x) > 0∀n≥ 0

}
, (4.5)

which will prove useful in what follows.
As an aside, we note that in the setting of the pure birth-death process, α equals α−1,

the rate of convergence of the transition probabilities pi,−1(t), i∈ C, to their limits (see,
e.g., [10]). In the present, more general setting, this is not necessarily true, but we do have
α−1 ≤ α. The latter result is implied by the inequality pi j(t)≤ 1− pi,−1(t) if absorption is
certain, and may be proven by considering a suitable transformation of the process if
absorption is not certain (see, e.g., [12]).

5. Absorption

By T we denote the absorption time, that is, the (possibly defective) random variable rep-
resenting the time at which absorption in state −1 occurs. We let

τi := lim
t→∞Pi{T ≤ t}, i∈ C, (5.1)

and refer to τi as the (eventual) absorption probability when the initial state is i. It is shown
in [12] that if

R∞(0) := lim
n→∞Rn(0)=∞, (5.2)

then τi = 1 for all i∈ C (so that absorption is certain for any initial distribution), whereas
otherwise the eventual absorption probabilities satisfy

τi = 1− Ri(0)
R∞(0)

< 1, i∈ C. (5.3)
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In view of (3.13), a necessary and sufficient condition for certain absorption is therefore
given by

∞∑

n=0

1
λnπn

n∑

j=0

γjπj =∞. (5.4)

In the remainder of this paper, we will assume that (5.4) is satisfied so that absorption
is certain. Note that this assumption is stronger than the nonexplosiveness assumption
(2.4), maintained from the beginning.

6. Quasi-stationarity

6.1. Definitions and general results. A quasi-stationary distribution for � is a proper
probability distribution m := (mj , j ∈ C), such that for all t ≥ 0,

Pm
{
X(t)= j | T > t}=mj , j ∈ C. (6.1)

That is, m is a quasi-stationary distribution if the state probabilities of � at time t, con-
ditional on the chain being in C at time t, do not vary with t when m is chosen as initial
distribution. We note that

Pm
{
X(t)= j | T > t}= Pm

{
X(t)= j

}

Pm{T > t} , (6.2)

while Pm{X(t)= j} → 0 as t→∞ for all j ∈ C and any initial distribution m. So, m can
be a quasi-stationary distribution only if Pm{T > t} → 0 as t→∞, that is, if absorption is
certain, our assumption throughout this section.

It will be convenient to introduce another concept. Namely, a proper probability distri-
bution (mj , j ∈ C) over the nonabsorbing states is called x-invariant for Q (the q-matrix
of �) for some real x if

∑

i∈C
miqi j =−xmj , j ∈ C. (6.3)

The notions of x-invariant distribution and quasi-stationary distribution are intimately
related. Indeed, combining Proposition 3.1 of Nair and Pollett [6] and Theorem 1 and
Corollary 1 of Pollett and Vere-Jones [7], and recalling that, in our setting, the transition
probabilities satisfy the forward equations (2.8), we can state the following.

Theorem 6.1 (see [6, 7]). Let � be a birth-death process with killing such that absorption at
−1 is certain. If m := (mj , j ∈ C) is a quasi-stationary distribution, then m is x-invariant
for Q for some x > 0. Conversely, if m is x-invariant for Q, then m is a quasi-stationary
distribution if and only if

x =
∑

j∈C
mjγj . (6.4)

We note that summing (6.3) over all j ∈ C results in (6.4) if the interchange of sum-
mation would be justified, which, however, is not the case in general.
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Vere-Jones [13] showed that if (mj , j ∈ C) is a quasi-stationary distribution, and hence
x-invariant for Q for some x, then x must be in the interval 0 < x ≤ α, where α is the decay
parameter of � in C defined in (4.3). It follows that, besides certain absorption, α > 0 is
necessary for the existence of a quasi-stationary distribution.

In summary, if α>0 and absorption is certain, then, in order to find all quasi-stationary
distributions for �, we have to find all proper distributions (mj , j ∈ C) which constitute
a solution of (6.3) for some x, 0 < x ≤ α, and satisfy (6.4).

6.2. Quasi-stationary distributions. Considering the recurrence relation (3.1) for the
polynomial sequence {Rn(x)}, the solution of the system of (6.3) is readily seen to be
given by

mj =m0πjRj(x), j ∈ C, (6.5)

where m0 is some constant. To obtain all quasi-stationary distributions, we thus have to
find out for which values of x, 0 < x ≤ α, the quantities mj of (6.5) constitute a proper
distribution with an appropriate choice of m0, and satisfy (6.4). So the following three
conditions have to be satisfied.

(i) We must have mj ≥ 0 for all j, and hence Rj(x) ≥ 0 for all j. But this is a
consequence of our assumption x ≤ α, which, by (4.5), implies that Rj(x) > 0
for all j.

(ii) The sum
∑

j∈C πjRj(x) must be finite, so that (mj , j ∈ C) becomes a proper
distribution by choosing m−1

0 =∑ j∈C πjRj(x).
(iii) Condition (6.4) must be satisfied, that is, if the previous requirements are met,

we must have

x
∑

j∈C
πjRj(x)=

∑

j∈C
γjπjRj(x). (6.6)

Summarizing the preceding, we can state the following theorem.

Theorem 6.2. Let � be a birth-death process with killing such that absorption at −1 is
certain. If α= 0, there is no quasi-stationary distribution for �. If α > 0, then (mj , j ∈ C) is
a quasi-stationary distribution for � if and only if there is a real number x, 0 < x ≤ α, such
that

x
∑

j∈C
πjRj(x)=

∑

j∈C
γjπjRj(x) <∞, (6.7)

and mj =mj(x), j ∈ C, where

mj(x) :=m0(x)πjRj(x), j ∈ C, m0(x)−1 :=
∑

j∈C
πjRj(x). (6.8)

To verify whether (6.7) holds, the next lemma, which follows immediately from (3.10)
and the fact that Rj(x) > 0 for x ≤ α, is helpful.
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Lemma 6.3. Let 0 < x ≤ α. Then (6.7) is satisfied if and only if both

∑

j∈C
πjRj(x) <∞ or

∑

j∈C
γjπjRj(x) <∞ (6.9)

and

lim
j→∞

λjπj
(
Rj+1(x)−Rj(x)

)= 0. (6.10)

Unfortunately, it does not seem possible to give a general condition in terms of the
rates of the process for (6.9) and (6.10) to be valid. However, more can be said by impos-
ing some additional restrictions on the rates. In the following subsections, some special
cases will be therefore discussed.

6.3. Special case: finitely many positive killing rates. Let us first consider the situation
in which γi > 0 for only finitely many states i ∈ C. In this case, (6.9) is trivially satisfied.
Actually, both sums in (6.9) converge, as appears from the next lemma.

Lemma 6.4. Let � be a birth-death process with killing for which absorption at−1 is certain
and γi > 0 for only finitely many states i∈ C. Then

∑
j∈C πjRj(x) <∞ for all x in the interval

0 < x ≤ α.

Proof. When γi > 0 for only finitely many states i∈ C, our assumption (5.4) reduces to

∞∑

k=0

1
λkπk

=∞. (6.11)

Now let 0 < x ≤ α and suppose
∑

j∈C πjRj(x) diverges. Since
∑

j∈C γjπjRj(x) converges,
we then have

k∑

j=0

(
γj − x

)
πjRj(x)−→−∞ as k −→∞, (6.12)

so that, by (3.11) and (6.11), Rj(x) must be negative for j sufficiently large. But this is a
contradiction, since, by (4.5), Rj(x) > 0 for all j if x ≤ α. So the sum

∑
j∈C πjRj(x) must

be finite. �

We conclude that (mj(x), j ∈ C), where mj(x) denotes the quantity defined in (6.8),
constitutes a proper distribution for all x in the interval 0 < x ≤ α. However, it is not
necessarily true that (6.10), and hence (6.7), is satisfied. In the special case of a pure
birth-death process (γi = 0 for all i > 0 and γ0 > 0), a necessary and sufficient condition
for (6.7) to be valid for all x in the interval 0 < x ≤ α is that the sum

∞∑

n=0

1
λnπn

∞∑

j=n+1

πj (6.13)
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should be divergent (see [9, Theorem 3.2]). The proof of this result relies on the fact that
the polynomials

λnπn
(
Rn+1(x)−Rn(x)

)
, n≥ 0, (6.14)

are themselves orthogonal with respect to a probability measure on [0,∞). This property
is lost as soon as one leaves the setting of the pure birth-death process, but if γi > 0 for
only finitely many states i∈ C, we can get around this problem.

Theorem 6.5. Let � be a birth-death process with killing for which absorption at −1 is
certain and γi > 0 for only finitely many states i ∈ C. If α > 0 and the sum (6.13) diverges,
then (mj(x), j ∈ C), with mj(x) given by (6.8), constitutes a quasi-stationary distribution
for all x in the interval 0 < x ≤ α.

We have relegated the proof of this theorem to the appendix, since it requires tech-
niques which are not related to the central issues of this section.

Let us now assume that the sum (6.13) is convergent. In a pure birth-death process,
we must then have α > 0, and there is precisely one quasi-stationary distribution, namely,
(mj(α), j ∈ C) (see [9, Theorem 3.2] again). In the present, more general setting, we
cannot exclude the possibilities that α= 0 and, if α > 0, that there are several values of x in
the interval 0 < x ≤ α such that (mj(x), j ∈ C) constitutes a quasi-stationary distribution
(these values of x would correspond to zeros of an entire function), but in any case, we
can show the following.

Theorem 6.6. Let � be a birth-death process with killing for which absorption at −1 is
certain and γi > 0 for only finitely many states i∈ C. If α > 0 and the sum (6.13) converges,
then (mj(α), j ∈ C), with mj(α) given by (6.8), constitutes a quasi-stationary distribution.

Proof. From [12, Theorem 2], we know that (6.6) is satisfied for x = α, although both
sums may be infinite. However, Lemma 6.4 tells us that under the prevailing conditions,
the sums must be finite. The result follows by Theorem 6.2. �

6.4. Special case: bounded birth and death rates. We will next consider the setting in
which

λi +μi ≤M <∞, i∈ C, (6.15)

for someM ∈R+. As usual,mj(x) denotes the quantity defined in (6.8) and we will tacitly
assume that 0 < x ≤ α.

Since λjπj = μj+1πj+1, we have

λjπj
(
Rj+1(x)−Rj(x)

)= μj+1πj+1Rj+1(x)− λjπjRj(x) (6.16)

which tends to zero if λj and μj are bounded and
∑

j∈C πjRj(x) converges. So, by Lemma
6.3, the condition (6.7) for (mj(x), j ∈ C) to be a quasi-stationary distribution is fulfilled
if
∑

j∈C πjRj(x) <∞. But we can do somewhat better as follows.
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Theorem 6.7. Let � be a birth-death process with killing satisfying (6.15), for which ab-
sorption at −1 is certain. If 0 < x ≤ α and

∑
j∈C πjRj(x) <∞, then (mj(y), j ∈ C) is a

quasi-stationary distribution for all y in the interval x ≤ y ≤ α.

Proof. We observe from (3.8) that 0 <
∑

j∈C πjRj(y) ≤ ∑ j∈C πjRj(x) if x ≤ y ≤ α, so
(mj(y), j ∈ C) is a quasi-stationary distribution for all y in the interval x ≤ y ≤ α if
∑

j∈C πjRj(x) <∞. �

We conclude that if absorption is certain, α > 0, and the birth and death rates are
bounded, then either there is no quasi-stationary distribution (if

∑
j∈C πjRj(x) diverges)

or (mj(x), j ∈ C) constitutes a quasi-stationary distribution for all x in an interval of
the type 0 < a≤ x ≤ α (allowing for a= α), or of the type 0≤ a < x ≤ α. If there are infin-
itely many quasi-stationary distributions, that is, a < α, then (mj(x), j ∈ C) need not be a
quasi-stationary distribution for all x in the interval 0 < x ≤ α, so a can be strictly positive.
An example of the latter type of behaviour is given in the next subsection. Specific set-
tings in which there is precisely one quasi-stationary distribution, or no quasi-stationary
distribution at all, occur in the second example of the next subsection.

6.5. Examples. We will first construct a process such that a quasi-stationary distribution
which is x-invariant exists if and only if a < x ≤ α for some a > 0. Indeed, let � be a
birth-death process with killing with birth, death, and killing rates λi, μi+1, and γi, i∈ C,

respectively, q-matrixQ and decay parameter α. Next, choose γ > 0 and let �̃ be the birth-

death process with killing with transition rates λ̃i := λi, μ̃i+1 := μi+1, i∈ C, and

γ̃i := γ+ γi, i∈ C, (6.17)

and q-matrix Q̃. One might interpret �̃ as the superposition of � and an independent

Poisson killing process of rate γ. Obviously, the transition probabilities of �̃ and � are
related as

P̃i j(t)= e−γtPi j(t), i, j ∈ C, t ≥ 0, (6.18)

whence the decay parameter α̃ of �̃ satisfies α̃=γ+α. It is evident from (6.3) and Theorem
6.1 that an x-invariant quasi-stationary distribution for � is a (γ + x)-invariant quasi-

stationary distribution for �̃, and vice versa. Now, if we choose � such that for each x in
the interval 0 < x ≤ α there exists a quasi-stationary distribution (e.g., by letting � be a
suitable pure birth-death process, cf. [9]), then for each x̃ in the interval γ < x̃ ≤ α̃ there

exists an x̃-invariant quasi-stationary distribution for �̃, but there are no x̃-invariant

quasi-stationary distributions for �̃ with x̃ ≤ γ, since an x-invariant quasi-stationary dis-

tribution for � must have x > 0. Thus �̃ has the required property, with a= γ.
Our final example is the process � with birth, death, and killing rates

λi = λ, μi = μI{i>0}, γi = γI{i>0}, i∈ C, (6.19)

for some constants λ > 0, μ > 0, and γ > 0, where IE denotes the indicator function of an
event E. So killing may occur from any state except state 0. From [12, Section 6], we find
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that the decay parameter for this process is given by

α=

⎧
⎪⎪⎨

⎪⎪⎩

λγ

μ+ γ
if μ+ γ ≥

√
λμ,

γ+
(√
λ−√μ)2

if μ+ γ <
√
λμ,

(6.20)

while

πjRj(x)= (−1) j
(
λ

μ

) j/2(
Uj(y) +ηUj−1(y)

)
, j ≥ 0, (6.21)

where

y := x− λ−μ− γ
2
√
λμ

, η := μ+ γ
√
λμ

, (6.22)

and Uj(·) denotes the jth Chebyshev polynomial of the second kind, that is,

Uj(y)= z j+1− z−( j+1)

z− z−1
, j ≥ 0, (6.23)

with z such that y = (1/2)(z + z−1). Evidently, absorption is certain. Moreover, since λi
and μi are bounded, we can employ Theorem 6.7 and conclude that we must determine
all x such that 0 < x ≤ α and

∑
j∈C πjRj(x) <∞, in order to find all quasi-stationary dis-

tributions.
So let 0 < x ≤ α. Considering that

λγ

μ+ γ
= λ+μ+ γ−

√
λμ
(
η+η−1)≤ γ+

(√
λ−√μ)2

, (6.24)

we have 0 < x ≤ λ+ μ+ γ− 2
√
λμ, and hence y = (1/2)(z + z−1) ≤ −1. It is therefore no

restriction of generality to assume z ≤ −1 (and hence −1 ≤ z−1 < 0). Moreover, we can
write

πjRj(x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
λ

μ

) j/2{ (−z) j(z+η)− (−z)− j
(
η+ z−1

)

z− z−1

}
if z <−1,

(
λ

μ

) j/2{
1 + (1−η) j

}
if z =−1,

(6.25)

so that
∑

j∈C πjRj(x) diverges unless either z 
= −η and −z
√
λ/μ < 1, or z = −η and

η−1
√
λ/μ= λ/(μ+ γ) < 1. We now discern the following three cases.

(i) If λ≥ μ+ γ, then −z
√
λ/μ > 1 and η−1

√
λ/μ≥ 1. Hence

∑
j∈C πjRj(x) diverges.

(ii) If λ < μ+ γ (and hence η > 1) and x < α, then y <−(1/2)(η+ η−1) and hence z <

−η, so that z 
= −η and −z
√
λ/μ > 1. Again it follows that

∑
j∈C πjRj(x) diverges.

(iii) If λ<μ+γ, x=α, then z=−η and η−1
√
λ/μ<1. So now we have

∑
j∈C πjRj(x)<∞.
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Concluding, there is no quasi-stationary distribution if λ ≥ μ+ γ, and there is precisely
one quasi-stationary distribution (mj , j ∈ C), where

mj =mj(α)=
(

1− λ

μ+ γ

)(
λ

μ+ γ

) j
, j ≥ 0, (6.26)

if λ < μ + γ, that is, α < γ. The existence of a quasi-stationary distribution under these
circumstances is predicted by the discrete-state-space analogue of [8, Theorem 3.4].

Appendix

A. Proof of Theorem 6.5

We start off with collecting some preliminary results. Given the polynomials Rn(x), n≥ 0,
of (3.1), we define the associated polynomials of orderm,m> 0, by the recurrence relation

λ(m)
n R(m)

n+1(x)= (λ(m)
n +μ(m)

n + γ(m)
n − x)R(m)

n (x)−μ(m)
n R(m)

n−1(x), n > 0,

λ(m)
0 R(m)

1 (x)= λ(m)
0 +μ(m)

0 + γ(m)
0 − x, R(m)

0 (x)= 1,
(A.1)

where

λ(m)
n := λm+n, μ(m)

n := μm+n, γ(m)
n := γm+n, n≥ 0. (A.2)

Evidently, the polynomialsR(m)
n (x), n≥ 0, correspond to a birth-death process with killing

�(m) (with killing rate μ(m)
0 + γ(m)

0 in state 0), and are therefore orthogonal with respect to
a positive measure ψ(m) on [0,∞). We define ξ(m) := inf supp(ψ(m)), and note from (e.g.,
[3, Theorem III.4.2]) that

ξ(m) ≤ ξ(m+1), m≥ 0, (A.3)

where ξ(0) := inf supp(ψ), and so, by (4.4), ξ(0) = α.
Next, it follows readily by induction on n that for all m> 0, we have

Rm+n(x)= Rm(x)R(m)
n (x)− μm

λm
Rm−1(x)R(m+1)

n−1 (x), n > 0. (A.4)

Defining π(m)
n by analogy with (2.5), we have πm+n = πmπ

(m)
n , and hence the previous

equation implies that for all m> 0 and n > 0,

λm+nπm+n
(
Rm+n+1(x)−Rm+n(x)

)

= a(x)
[
λ(m)
n π(m)

n

(
R(m)
n+1(x)−R(m)

n (x)
)]− b(x)

[
λ(m+1)
n−1 π(m+1)

n−1

(
R(m+1)
n (x)−R(m+1)

n−1 (x)
)]

,
(A.5)

where

a(x) := πmRm(x), b(x) := λm−1

μm+1
πm−1Rm−1(x). (A.6)
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Finally, considering that

∞∑

n=m

1
λnπn

∞∑

j=n+1

πj =
∞∑

n=0

1

λ(m)
n π(m)

n

∞∑

j=n+1

π(m)
j , (A.7)

we see that divergence of (6.13) is equivalent to

∞∑

n=0

1

λ(m)
n π(m)

n

∞∑

j=n+1

π(m)
j =∞ (A.8)

for any m> 0.
Now suppose γi = 0 for i≥N . Then, for m≥N , the orthogonal-polynomial sequence

{R(m)
n (x)} corresponds to a pure birth-death process. Therefore, if the sum (6.13) di-

verges, and hence (A.8) is satisfied, then, by [9, Theorem 3.2], we have, for all m≥N and
0 < x ≤ ξ(m),

x
∞∑

j=0

π(m)
j R(m)

j (x)= μ(m)
0 , (A.9)

which is (6.7) in terms of �(m). (Recall that the killing rate of �(m) in state 0 is μ(m)
0 + γ(m)

0 .)
Lemma 6.3 subsequently implies that, for all m≥N and 0 < x ≤ ξ(m),

λ(m)
n π(m)

n

(
R(m)
n+1(x)−R(m)

n (x)
)−→ 0 as n−→∞. (A.10)

Choosing m= N in (A.5), and applying (A.10) and (A.3), we see that (6.10), and hence
by Lemma 6.3, (6.7), is satisfied for all x in the interval 0 < x ≤ ξ(0) = α. The statement of
Theorem 6.5 now follows from Theorem 6.2.
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