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We study the solution of one-dimensional generalized backward stochastic differential
equation driven by Teugels martingales and an independent Brownian motion. We prove
existence and uniqueness of the solution when the coefficient verifies some conditions
of Lipschitz. If the coefficient is left continuous, increasing, and bounded, we prove the
existence of a solution.
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1. Introduction

A linear version of backward stochastic differential equations (BSDEs) was first studied by
Bismut [4] as the adjoint processes in the maximum principal of stochastic control. Par-
doux and Peng in [20] introduced the notion of nonlinear BSDE. Since then, the interest
in BSDEs has increased.

Indeed, BSDEs provide connection with mathematical finance [10], stochastic control
[11], and stochastic game [9]. On the other hand, this class of BSDEs is a powerful tool
to give probabilistic formulas for solution of partial differential equations (see [18, 19]).

Given a Brownian motion (W;)o<;<1, we denote by (F;)o<;<r its natural filtration.
Consider the nonlinear BSDE:

T T

Yt=€+L f(s,YS,Zs)ds—L ZdW,, (L.1)

where & is an %r-measurable random variable that will become certain only at the termi-
nal time T, and f is a progressively measurable process.

In [20], the authors showed that there exists a unique F;-adapted process (Y,Z) so-
lution of the BSDE (1.1), when the coefficient f is Lipschitz in y and z, & is square inte-
grable.
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2 Generalized BSDE driven by a Lévy process

Many existence and uniqueness results have been proved in relaxing the Lipschitz con-
dition of the coefficient. For instance, Peng introduced for the first time monotone coef-
ficient in [22], see also [2, 6, 8]. In the one-dimensional case, Lepeltier and San Martin
[13] described the BSDEs with a continuous coefficient, and Kobylanski [12] studied
those with a coefficient which is quadratic in z.

Further, other settings of BSDEs have been introduced. Pardoux and Zhang [21] in-
troduced a new class of BSDEs, which involves the integral with respect to a continuous
increasing process. This kind of equations is called generalized BSDEs.

In [20, 21], the main ingredient is the classical martingale representation theorem. In
[16], Nualart and Schoutens proved a martingale representation theorem for Lévy pro-
cesses, then in [17] they established the existence and uniqueness of solution for BSDEs
associated with Lévy process. Bahlali et al. [1] showed the same result for the BSDEs
driven by a Brownian motion and the martingales of Teugels associated with an indepen-
dent Lévy process, having a Lipschitz or a locally Lipschitz coefficient.

The aim of this paper is to study the one-dimensional generalized BSDE driven by a
Brownian motion and the martingales of Teugels associated to a pure jump-independent
Lévy process. We prove existence and uniqueness of the solution when the coefficient ver-
ifies some conditions of Lipschitz. In this setting, we deal with both constant and random
terminal times. If the coefficient is left continuous, increasing, and bounded, we prove
the existence of a solution. As an application, we give a probabilistic interpretation for
large class of partial differential integral equations (PDIEs) with Neumann (nonlinear)
boundary condition.

The rest of the paper is organized as follows. In Section 2, we introduce some nota-
tions. In Section 3, we prove the existence and uniqueness of the solution of the gener-
alized BSDE when the coefficient is monotone in y and uniformly Lipschitz in z and u.
Section 4 is devoted to study the case where the coefficient is left continuous in y, increas-
ing, and bounded. Finally, we give in Section 5 a probabilistic interpretation of PDIE with
Neumann boundary condition, and we introduce some examples of PDIE.

2. Preliminaries

Let (Q, %, (F¢)iclo,1), P) be a complete probability space. (%;):c[o,1] is a right-continuous
filtration (%F; = esg Frre = Fi+) generated by (Wy):e(o,r), @ standard Brownian motion
in R, and a Lévy process L, = bt +I;, where I, is a pure jumps process, corresponding to a
standard Lévy measure v defined in R \ {0} satisfying

(i) [r(1 Ax?)v(dx) < +o0,

(ii) for some A >0 and every € >0, [,_ . e'¥9(dx) < +co.
(Ft)ecro,r) is completed by N, the totality of P-null sets.

For every A € R, p = 0, every increasing process (A;); and every Hilbert space H, we

denote

(i) € = {x = (X)nzo € RV/[1x]12 = 31 4|2 < o0},

(ii) %iy(A,H ) is the set formed by H-valued progressively measurable processes

(X¢)s=0 such that

T
E ( J e/\s+;4As
0

T
Xlls+ | e fdas) < o (2.1)
0
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and %iy(H ) is the same space satisfying

X,|[2,ds < oo, (2.2)

T
E J e/\s+yAs
0
(iii) yiﬂ(ﬂ%) is the subspace of ?fiy([R) of the processes (Y}):-0 satisfying

E sup eM*4:]Y,|? < oo, (2.3)
0<t<T

(iv) %iy = ‘?/’fiy(A, R) x %iﬂ([R) X %iﬂ(fz) and #? = %5,

(V) %5 = 5 (R) X %3 o (R) X H5 (£2),

(vi) H3(R,€%) = %5 o(R) x I3 o (€2).
We put Ly = limg¢Ls and AL; = L; — Ly . We define the so-called power-jump processes
Lgl) =L;and Lgi) = o<t (AL, i = 2.

Let m; = EL; and m; = [*5 x'v(dx), i = 2.

For all i > 1, we put Y = L — myt, called Teugels martingales.

We associated with the Lévy process (L;); the family of processes (H");~; defined
by HY = Z;:l aij Yt(j ). The coefficients a;j correspond to the orthonormalization of the
polynomials 1,X,X?,... with respect to the measure 7 defined by 7(dx) = x?v(dx). We
setfori>1,

pilx) = a,',ix" +ai,,',1xi_1 +---4ax (2.4)

The martingales H" are strongly orthogonal (i.e., H?H/) is a martingale < [H?,H)]
is a martingale) and (H",H)), = &;;g;t, where g; = 2;-,,(:1 ajjaixm;y (for more details,
see [16]).
Let us give the data (&, f,g,A) defined by
(i) a terminal value £ € L.2(Q), Fr, P),
(i) amap f:OXRXRXRX ¢ - R,andg: QXRXR - R,
(iii) a continuous one-dimensional increasing %,-progressively measurable process
(Ap)ieo,) satisfying Ag = 0.

In the following, C denotes a generic constant, that may take different values from line to
line.

3. Generalized BSDEs driven by a Lévy process on a finite interval

In this section, we propose to show the existence and uniqueness of the solution of gen-
eralized BSDE driven by a Brownian motion and independent Lévy process (GBSDEL).
Given the data (¢, f,g,A), we introduce for all t € [0,T] the GBSDEL:

T T T +oo T
Yt:€+J f(s,Yy,zS,Us)de g(s,YS—)dAS—J stWS—ZJ U dHY.
t t t o
(.1)
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We assume that for some constant @ € R, f <0, 4 = 0, and K > 0, some adapted processes
{or,y1;0 <t < T} with values in [1,+00) for all t € [0,T] and (y,z,u),(y",z’,u’) € R X
R x 2 are
(3.1) E(e#A7]€]%) < +oo,
(3.ii) f(+,y,2,u)and g(-,y) are progressively measurable,
(3.il) (y =y ) (f(Ly,zu) = f(6 Y zu) <aly - I3
(3.iv) f is uniformly K-Lipschitz with respect to (z,v), that is,

P—as |f(ty,zv)— f(t,y,2, V)| <K(lz=Z' |+ llv="), (3.2)

(3.v
(3.vi
(3.vii
(3.viii

(y=y)glt,y)—glt,y")) <Bly—y'I%

[ f(t,y,z,u)l <@+ K(Iyl + |zl + llull) and Ig(t, y)| < yi +Klyl,
E(fy et |y |2 dt + f, ety |2 dA) < +oo,

y— (f(t,y,z,u),g(t,y)) is continuous for all (¢,z,u) a.s.

T — o —

Definition 3.1. A solution of GBSDEL is a triplet (Y,Z,U) of progressively measurable
processes satisfying (3.1) such that

T T

[E( sup |Yil*+ [ (12| + Ul Pyde+ | |Yt|2dAt) <reo.  (33)
0=t<T 0 0

The objective of this section is to prove the next results.

THEOREM 3.2. Under the assumptions (3.i)—(3.viii), the GBSDEL (3.1) has a unique solu-
tion.

We want next to state an analogous result in the case where the terminal time is re-
placed by a stopping time 7. More precisely, we consider the BSDE:

Tht TAT TAT
Y, = YT+I f(S; Yo, Zs, US)dS+J g(s,YS,)dAS_ Z.dW,
AT tAT AT
too ~TAT
—ZJ UPdH®, Y0<t<T<oo, (3.4)
i=1 tAT

Y, =& ontheset {t=>1}.

We assume that & is an %,-measurable, and that for some A > 2a +4K?, u > 2.
(3.i1)

[E(j: 1 (g0 |2+ | £(1,80Copr) |2)dt+Lw ([ + g (18) ) A, ) < o,
(3.5)

where & = E(E/F;), { and p = (p'?);2, are progressively measurable processes such that
Ef5 (1612 + llp:lI?)dt < o0, and

E=E©+ [ qawir Y [ plan) (3.6)
i-1
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The existence of ({;); and (p;); is insured by combining the results of Lokka [14] and
Nualart and Schoutens [16].

(3.viii)" E((1+ ert#Ar)[E]2) < co.

The result which we want to prove is the following.

THEOREM 3.3. Under the conditions (3.i), (3.ii)’, (3.iii)—(3.vii), (3.viii)’, there exists
a unique progressively measurable process (Y, Zs, Uy)o<t<r solution of (3.4), such that for
some A >2a+4K? and y > 23,

T T
[E( sup |Yt|2+J eM+ﬂAr|Yt|2dAt+J e“*”A‘(|Zt|2+||Ut||2)dt) < +00. (3.7)

0<t<t 0 0

Remark 3.4. By 1t0’s formula, we can write

T T
ey, = etATE +J et f (s, Y, Zs, Ug) ds + J et (g (s, Ys ) — uYs ) dA;
t

t

T oo T +00 . . T
—I et Z AW, — ZJ HAUDAHD + > U e“ASdAS,J U§f>dH§">] ,
t 19t 0

i=1 t

(3.8)

for all i > 1, the process ([; UPdH) g is a pure jumps process, then by [23, Theorem
26, page 75], the last term is equal to 0. So, if (Y, Z;, Uy) satisfies (3.1), then

(Y1,Z1,Uy) = (e Yy, e Zy, e Uy (3.9)
satisfies an analogous GBSDEL with f and g replaced by

f(t,y,z,u) = e f(t,e #Ary e iz, ety
(3.10)
gty) =ethig(tety) —uy.

Hence, if g satisfies (3.v) with a possibly nonnegative f, we can always choose y such that
g satisfies (3.v) with a strictly negative .

3.1. Preliminary estimates and uniqueness. We first establish a priori estimate on the
solution.

ProprosITION 3.5. Under the conditions (3.1)—(3.viii), if (Y,Z,U) is solution of (3.1), then
there exists a constant C > 0 only depending on o, 3, K, and T, such that

[E( sup |Yt|2+JT|Yt|2dAt+JT(|Zt|2+||Ut||2)dt>

0<t<T 0 0

(3.11)
T T
- 2 2 2
_C([EIE\ +[EJ0 | £(£,0,0,0) | dt+[EL 19(5,0)] dAt).
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Proof. From Itd’s formula,

T T T
€] = |Yr|2_2j stf(s,st,ZS,Us)ds—ZJ stg(s,YSf)dA5+j | Z,|*ds
t t

t

(3.12)
+2J Y. ZdW, +2ZJ Y,Uu?d +ZJ vOud d[HD, H D] .

i,j=1
Let us note '[hat(f0 Y Z,dW. )o<t<T,(f0 Y. UPdH )< o1 foralli>1and ( (Jo Us @ )d[H(i),

HW ] )o<ter for i # j are uniformly integrable martingales.
Taking the expectation, we get

1 e[ (120 Ul

(3.13)
T T
= I 2F | Yf (5 Y2 Uds+ 26 | Yig(s, Y)dA.
t t
On the other hand, by (3.iii)—(3.v), we can write
Yif (s, Y5, Z, Us) < ‘X|Y5|2+ |YS|(|f(SaO’O’O)| +K (1 Z| +[|Ud))
2
< Qar DY "+ | £50,00)*+ (12 + U,
) (3.14)
Yig(s,Ys) <B|Ys|"+|Ys] |g(s,0)]
Bl
Bvr+ Zlgol”
Consequently, for a > 2K?, we can write
2 T 2 T 2 2
E|Y|"+E| |Ys|"dAHE| (|Z|" +]||U]|")ds
t t
. 2 . 2 r (3.15)
sCE(|f|2+J | £(5,0,0,0)] ds+J 14(5,0)| dA5+J Y| ds).
0 0 t
By the Gronwall lemma, we conclude that
2 T 2 2 T 2
sup E| Y |"+E| (|Z|"+]||U|| )ds+E | |Ys| dAs
0<t<T 0 0
(3.16)
T 2 T 2
sC([E|£|2+[EJ | £(5,0,0,0) | d5+[EJ 19(5,0)| dAS).
0 0
The result follows from this and from Burkhélder-Davis-Gundy inequality. O

ProposITION 3.6. Under the assumption (3.i)—(3.viii), there exists at most one progressively
measurable process (Y, Zs, Up)o<t<T solution of (3.1).
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Proof. Let (Y',Z',U") and (Y?,Z2,U?) be two solutions of (3.1).
We denote by

Y, =Y! - Y2 87y =271 - 72, U, = Ul - U2,

3.17
of = f(sYLZLUY - f(sYAZEUY),  og—glev)) —g(sv?). O

From Itd’s formula,
, T , , T T
E| oY, | +[EJ (162, +|6U.|])ds = zmj 8Y58fsds+2EI SY.0g.dA,.  (3.18)
t t t
However, by (3.iii)—(3.v), we have

2
0Y,0f, < 2a| 0%, + 2 (102,] + 16U ),

(3.19)
8Y.dg. < B|oY:|°.
Substituting these inequalities, we obtain
T 2 T
Eov.|*+2IB1E | oV dact (1- ) [0zl + iouil)ds
L o (3.20)
< 40c[EJ 187, | 2ds.
t
For a > 4K?2, we conclude by the Gronwall lemma that (8Y,8Z,8U) = (0,0,0). a

3.2. Existence result of GBSDEL on fixed finite time interval. We first prove existence
and uniqueness result under an additional assumption.

We suppose that for all y,y",z € R and u € €2, dt X dP a.e.

(3.ix)

| f(t,y,zu)— f(t,y z,u)| + |gt,y) —g(t,y)| <Kly—y'l. (3.21)

THEOREM 3.7. Under the assumptions (3.1), (3.ii), (3.iv)—(3.ix), there exists a unique pro-
gressively measurable process (Y, Zs, Up)o<t<T solution of (3.1).

Proof. First let us assume that the map f does not depend on (y,z,v). Using the martin-
gale representation theorem, we can prove that the following GBSDE:

T T T Y
Vo=g+| fods+ | g@aa- [ zaw,-3 [ voand G
t t t ot

has a unique solution that verifies (3.3).
Now, define the sequence (Y",Z",U") as follows.
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(Y°,2°,U% = (0,0,0), and (Y"1, Z"+1 U™1) is the unique solution of the BSDE:

T
Y;‘“=£+J Fs, Y, 20, U7) ds+J (s, Y )dA, - I Zmdw,
t

© T (3.23)
—ZJ Um0 g ).
= s s
We will prove that (Y",Z",U") is a Cauchy sequence in the Banach space ‘?ﬂfiy.
Note that for some (A, i), we can show that
sup <[E sup M| YT | +[EJ A Y |2 de + EJ A yn |2 da,
n=0 0<t<T
(3.24)
+Ej (| 702+ o dt) <c
To simplify, we putforn=2m=1land0<s<T
neyey, Zez-zy, UT-U-Un
. (3.25)
fi = fl Y200 - f(s, Y], 2 U"), g = g(s,Y) —g(s,Y").
If we apply 1td’s formula and if we take the expectation, we have
T T
[Ee/\H”At |?;1+1,m+1 |2 +/1[EJ‘ e)LSJrHAS st+l,m+1 |2d5+[1|EI 6/15+HA$ ?;t+l,m+l |2dAs
t t
T
4 [EJ eAS+#AS(|Zn+1,m+1 |z . ||Un+1’m+l||2)ds
t
_ 2[]’:J AsﬁuA;Y”*l m+lfn Wld +2[EJ )LSJrHAS Yn+1 m+1§n’mdAs
T
< 6K2[EJ As+;4A |—n+1m+1| d5+2K2[EJ e/\s+p¢AS |Yn+1,m+1 |2dA5
t
1 T As+uA —n,m 2 =Sn,m | 2 —n,m /\ﬁ A nm 2
+5E| e A" 2 | Z0" 4+ [T Y ds + - [E ks | “dAs.
t
(3.26)
Choosing A = 1+ 6K? and p = 1+ 2K?, we deduce that
—n+lm+l sn+lm+l —n+l,m+1 2 —nm Shn,m —nm
(@ g e < L 2T B
1 m+1 5
<(3) lmmzemuem G, G27)
o#

C m— oo
_

<
— om+l

0.
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Consequently, the sequence (Y",Z",U") converges in the Banach space %i# to a process
(Y,Z,U), that is not difficult to show that verifies (3.1). O

We now establish existence and uniqueness for (3.1) under the conditions (3.1)—(3.viii).
First, we need the following proposition.

PrOPOSITION 3.8. Given (ZN, lNJ) € H3 (R, €%), there exists a unique progressively measurable
process (Yi,Zi, Up)o<i<t solution of

T T T too T
Yt=£+J f(s,st,Zs,Us)ds+I g(s,st)dAs—J’ ZSdWS—ZJ UDdHD.  (3.28)
t t t . t

Proof. The proof is very similar to that of [21, Proposition 1.8].
To simplify, we put f s, y = f(s, y,ZS, U,). Notice that f (s, y) satisfies the following.
(B4i))’ (y =y )(F(s3) = Flsy) < aly =y 12
(3.vi)’ |f ty | <@ +Klyl.
(3.vii) EJf, 1§11 |2dt < co.
(3.viil)" y— f (t, y) is continuous dP X dt a.e.
We approximate f and g by f,, and g, such that
(i) for each n, fn and g, are uniformly Lipschitz in y,
(ii) f, satisfies (3.iii)" and (3.vi)’, and g, satisfies (3.v) and (3.vi) with fixed constants
a, B, K and fixed process {(@¢)s, (W¢):}o<e< satisfying (3.vii)" and (3.vii).
For each n, there exists a unique progressively measurable process (Y", 2", U") solution
of (3.1), such that

T T
sup[E( sup ¥+ [ 1771+ [ (\Z?|2+|IUZ‘||2)dt)<oo. (3.29)

n=0 0<t<T

Defining Vr= ﬁ(t, ¥") and W} = g(t, Y1), we deduce from the above and from our as-
sumptions that

T T
sup[E(L |V;‘|2dt+L |Wt”|2dAt) < . (3.30)

n=0

From weak convergence along a subsequence, we conclude that there exists a progressively
measurable process (Y, Zs, Us, Vi, Wi)o<i<1 verifying

T ~ T — T too T ) )
Y, = £+J Vsds+J W.dA, — J ZdW, — zj UDdHD, (3.31)
t t t -1Vt

Finally, we can show that \N/t = f(t, Y;) and VNVt =g(t,Yy).
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Let X and X’ be two progressively measurable processes such that

EJOT|Xt|2dt<w, [EJOT|X[|2dAt<oo,
fEJTe (Y- X)) (Fu(6T0) - Fu(6X) — a(Y) - X)) dt (3.32)

+[EJ X!) (ga (5, 77) = g (£,X!))dA; < 0.

Since [EfOT Ifn(t,Xt) - f(t,Xt)Ide- [EJOT lgn(t,X!) — g(£,X{)1?dA; — 0 as n — +o0, we can
write

lim sup[EJTe“t(iN/ - X)) (ﬁ,(t, Y7 —f(t,Xt) —a(Y, - X,))dt

n—oo

(3.33)
+[EJ X)) (g (6, 77) — g(6,X]))dA, <0.
On the other hand, if we apply It6’s formula, we obtain
T L N T N
[EI 2091 (Fo (1, ¥1) —ocY[’)dt+2[EJ e Frg. (1, ¥7)dA,
0 0
. (3.34)
=TI - TR [ e (1217 1|07 e
Using the fact that Y — Y; in R, and that the mapping
T 2 2
Z0)—E | e(1z |+ |UIP)de (3.35)
0
is convex and continuous in #2(R,£?), we get
T L N T N
iim infE [ 2e®Y/(fu(t,Y]") —aY])dt+ 2[EI e Y/, (t,Y/]")dA;
= 1Yol —eTEIER v [ e (12,1 + Vi) (3.36)
T N T -
= [EI 2€ath(Vt - OCYt)dt‘f‘ZﬂEJ e“thWtdAt.
0 0
Combining this inequality and (3.33), we obtain
T ~ ~
[EL e (Y, - X:) (Vi = F(6.X:) — a(Ys - X)) dt
(3.37)

T
; [EJ e (Y, - X!) (W, — g(£,X!))dA; <0.
0
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We choose X; = Y; — s(\N/, —f(t,Y)), X{ =Y, — S(W, —g(t,Y:)), divide them by € and let
& — 0 to conclude. O

Proof of Theorem 3.2. We construct a mapping ® from #? into itself, which to (}N’,ZN, [N])

associates (Y,Z,U) = CD(}N’,ZN, 17) solution of (3.28). Our aim is to show that ® admits a
unique fixed point.

Let (Y,Z,0) and (Y’,2",0") € %2 such that
(Y,z,U0)=0(Y,2,0), (Y,z,U)=0,2,0). (3.38)

Denote by 6X; = X; — X for X =Y, }N’, Z, Z U, and U.
It follows from Itd’s formula and the conditions (3.iii)—(3.v) that

T T
ew‘[E|5n|2+[EJ eV5|6Y5|2(yds+2|/3|dAs)+[EJ (162 +||U|) ds
t t
T ) T N N
sZoc[EJ e’ |8Y;]| ds+2K[EJ e |8Ys| (18Z| +1|6Us||)ds (3.39)
t t
2 ’ s 2 1 r s 512 112
< Qa+4K*)E | ”]8Y,| ds+ SE e”(16Zs|"+||6U||")ds.
t t

Choosing y = 1+ 2a+4K?, we deduce that

167,02,80)13; = 311(67,62,50)]%. (3.40)

It follows that ® has a unique fixed point solution of the GBSDEL (3.1). O

3.3. Existence and uniqueness results for the GBSDEL on a random time interval

Proof of Theorem 3.3 (uniqueness). Let (Y',Z',U') and (Y?,Z2,U?) be two solutions of
(3.4) and satisfy (3.7). We keep the same notations as in the proof of Proposition 3.6.
From Itd’s formula and passing to the expectation,

EeMTATIuATer | §Y | 2 _ EMEAT AL

8Y|* (A ds+udA,)

) TAT
oY | "+ [EJ eMsthAs
tAT

8Z, > +||6U|[*) ds

Trt
+F J e/\s+yAS (
tAT

TAT Tat

—2F eMHASY S fods — 2F A SY 8g.dA;.
tAT tAT

(3.41)
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By the assumptions (3.iii)—(3.v), we can write

EeMAD)HHA A |5Yt | 2

TAT 2
+AE eMtuAs 8Y,|“dA,

AT

2 Thrt
OY,|“ds+uk J ersths
tAT
T
AT tAT

TAT AT
+ [EJ A | 57 |2 ds + [EJ R [P YOATRER (3.42)
t

< [Ee/\(T/\T)erATM dY, | szs

2 Thrt
8Yr|” +2BE J eherrAs
tAT

TAT
#2E [ a0V, | K|0Y: | (102 + (10U ).
t

AT

Letv= (A —2a — 4K?) A (u — 23), then

[Ee)t(tm)mAm SY; \ 2
TAT ) TAT )
+ v([EJ A Y | ds+ [EJ M| §Y | dAs>
tAT tAT
(3.43)
1 TAT 2 P
n —[EJ (152,17 + ||6UL[2) ds
2 tAT
< [Ee/\(TAT)'*'HA'rm | SYr | 2.
First, §Y; = 0 on the set {# > 7}. On the other hand, we could prove similarly that
[[_:e)u’(t‘/\‘r)+‘uAtAT 8Yt | 2 < u_:e)\’(T/\T)+yATM 6YT | 2 (344)
forA>A >2a+4K2 Thenfort<T <1,
Ee¥ 4 [§Y,|* < eW NTE 4T | 8y |* < CeV T, (3.45)

The right-hand side goes to 0 as T tend to +oo.
It follows that (6Y,8Z,0U) = (0,0,0).

Existence. In view of Theorem 3.3, by using the BSDE with data (&,,0[0.11 f> 00,118, A),
for each n > 0, we construct the sequence (Y/',Z/",U/")o<i<r solution of the following
GBSDEL:

NnAT nAT nAT
Y =&+ f(s, Y2, Z UM ds+ g(s, Y1)dA, - ZrdW;
tAT tAT tAT
+to naT ) )
-S| urdHY vos<tsn, (3.46)
i=1VINT

Y'=§ Z'=¢ Ul=p Vtzn.
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We suppose that Z' =0, U/’ =0 forall t > 7.
In fact, (3.46) is equivalent to

Y= 5+J u[o,ﬂf(s,ygz,zg,ug)dﬁj u[o,ﬂg(s,ygz)dAs—J Zndw,
t t t

+0 .y (3.47)
- ZJ UrdHY  Vt<n.
=171
In the same way of Proposition 3.5, we can show that
T
supE (sup MDA |y | Ty J Ay sz,
n=0 s>t AT
T
g e“*“r(|¥f|2+|zr|2+||Uf||2)dr> o
AT
T
< cm(e“*f“‘f 117 +j et (| £(r,0,0,0) |*dr + |g(r,0) Iszr))-
0
We now prove that (Y”,2",U") is a Cauchy sequence in the Banach space %ﬁ,y'
We adopt the notations which are in the proof of Theorem 3.7.
(i) Form<t<n,
AT T cnnt )
Vb= E@F) - | aw-3 | pans
tAT i=1 VAT
(3.49)
nAT T cnat . )
— E(&/F) - J zraw, -3 [ uroano),
tAT i JiaT
Then we have
—m nAT nAT nAT
Y, = f(s, Y2, Z2 UM ds + g(s, Y1) dA, - Z, dW;
tAT tAT tAT
e (3.50)
> TMMaH.
i=1VINT
If we apply Itd’s formula, we obtain
~mm |2 naT ~mm 2 At <M |2
Eetted | Y, | +/\[EJ A YT s+ y[EJ A YT T dA,
AT AT
nAT
+mj s (| 70 12 4 ([T ) ds (3.51)
AT

nAT

=2E | MHAYY(f(s, YO, Z8, UM ds+g(s, Y dAS).

AT



14  Generalized BSDE driven by a Lévy process

Since
YU f (Y280 = Y (f (s Y28 08) = (5,628, U7))
+?:’m (f(s,f,ZSn, ur) - f(S, fsa(s:ps)) (3.52)
+st’mf (s, fs:(s»Ps)

and in view of (3.iii) and (3.iv), we get

2V (s V2,20, U7) = (1+20+4K2) [ V2" P42 (|20 +[T))

(3.53)
2
+ | f(s,&:Cops) | .
In the same way, by (3.v), we can write
< m n MM 2
Vgl ) = BITI e gl (3.54)

We plug (3.53) and (3.54) in (3.51) to obtain

T

nA
EeMtd | Y™ |2 4 (A — (1+2a+4K?))E eNTHAs

tAT

YO 2 ds

_ 1 nAT _ -
VI A E [ e (120 [0 ds

nAT
+(u- ﬂ)EJ et
AT

T 2 T
< [EI eAH‘MAS f(s’ fS)(S)PS) |2d5+ — | E eMﬂAAS |g(5a£s) |2dAs-
MAT |ﬁ| MAT
(3.55)
We conclude that there exists C > 0 such that
sup Eertwde| 71" |2
m<t<n
nAT —nm 2
N [EJ A [T 2 (ds 4 dA,)
MAT
e (3.56)
v [ (|7 [0 s
MAT
T T
<C(E] e flobdop) PdstE[ v g(s8) | da,).
MAT MAT
The last time of this inequality tends to 0 as m goes to infinity.
(ii) For t < m < n, since
—am NAT nAT nAT
Y, = (s YS’E,ZS”,US”)ds—J g(s, Y )dAs — ZrdW;
MAT MAT mMAT
R (3.57)

_ z Usﬂ(i) st(i))

i—1 ) mAT



Mohamed El Otmani 15

we have
—nm  —nm MAT mAT —m MAT L m
R e +j 7 ds+J gmdA— | Zaw,
AT AT AT
+00 maT__ m(i) ) (3'58)
—ZJ U™ dH®,
iJiar
An argument analogous to that used in the proof of Proposition 3.6 yields
mm 2 mAT < mm 2 mAT <M 2
Eettdr | Y™ | +[E{ et | Y| ds+[Ef A | Y dA,
AT AT
MAT
FE[ (2 [T s (3.59)
AT
< CEeM#4n |7, |2

In view of (3.56), the right-hand side tends to 0 as m goes to infinity, and one concludes
that (Y”,Z",U") is a Cauchy sequence for the %iy norm. Its limit is the solution of (3.4)
and it satisfies (3.7). O

4. GBSDEL with a left-continuous coefficient

In this section, we study the GBSDEL with continuous coefficient. We present a com-
parison theorem when the coefficient is uniformly Lipschitz and we prove existence of a
solution when the coefficient is left continuous, increasing, and bounded.

To begin with, let us consider the GBSDEL:

T

T T +oo T
Yt:£+J f(s,st,ZS)ds+j g(s,st)dAs—J' stWS—ZJ UOdHD . (41)
t t t ot

We suppose that there exist M,K >0, and f < 0, such that
(4.1) E[&]* < +oo,
(4.ii) f(-,y,2) and g(-, y) are progressively measurable for all (t, y,z),
(4.ii1) y — f(t,y,2) is left continuous and increasing such that

| f(ty,2)| <M V(t,y,2), (4.2)

(44v) 1 f(t,y,2) — f(t,,2")| <Kl|z—Z']| for all (t,y),
(4v) (y =yt y) —gt,y)) < Bly = y'I%
(4.vi) y — g(t,y) is continuous such that [g(t, y)| < K(1+|y[).
Let (&, f,g",A) for i = 1,2 be two sets of data, each satisfying the assumptions (4.1), (4.i),
(4.iv)—(4.vi), and
(4.vii)

| f(t,y,2)— f(t,y',2)| <Kly—y'l. (4.3)
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Fori=1,2,let (Y/,Z!,U’) denote a solution of the GBSDEL (4.1) with data (¢, f’,g%,A).
The comparison theorem is not true in general case (see [3] for a counter-example).

THEOREM 4.1. Suppose that £' < &2, fl(t,y,z) < f*(t,y,2), and g'(t,y) < g*(t,y) for all
(t,,2) € [0, T] x RX R, dP x dt a.s. Then Y} < Y} forall0<t < T a.s.

Proof. Define

(Y2-YH) '(f{ (Y22 - fL(nYhZh) Y+ Y2
o =
"o ifY) = Y2,

(22 =2z (f1 (6 Y2 20) - fL (YR, Z)) ifZ + 22, (4.4)
"o if7) = 72, '
(2 =) (¢ (6Y7) ~g" (1Y) ifY! 4 Y7,
Ve = .
O lf Ytl = Yt2
three progressively measurable processes such that |a;| v |3¢] < K and y; < 8.
For0<s<t<T,the SDE:
t t t
[i=1+ J [sra.dr+ J L5, BrdW, + J L5 prdA, (4.5)
N N N
has a unique solution, and we can write that
t /32 t t
To; = exp (I (oc, - j)dHJ ﬁrdWr+J yrdA,). (4.6)
N N N
We denote by
E=8-&, oY, =Y2-Y!, 8z =z2-2Zl, SU=U2-U,
(4.7)
6.f5 = fZ(S’ Yszlzsz) - fl (S’ Ysz)Zsz)’ 6g3 = g2 (S’ Ys2) _gl (5) Ysz)
In view of the above notations, we get
T
8Y, =8¢+ | (ardy.+ oz, +3f)dr
t
T T © T . ‘ (48)
+J (1,0Y, +8g,)dA, — j 57, dW, - ZJ SUDAHY.
t t iJt
By the integration-by-part formula, we have
t ® T 4 '
SY,I,, =08Y + J Lo, (8Y,B, +6Z.)dW, + > J I,,0UdHY
s i=1 t
(4.9)

t t
- [rspr - [ v,65da,
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In particular for t = T,

T
5Y. = F (afrsj ; J T, (8 fdr+ 5g,dA,)/OJ5) - 0. (4.10)

The result is as follows. O

THEOREM 4.2. Under the assumptions (4.i)—(4.vi), there exists a unique process (Y, Zy,
Ut)o<t<1 solution of (4.1).

We construct the sequence ( f,),=1 such that

fals,y,2) =n Lyl/nf(s,x,z)dx, (4.11)

which verifies the following properties (see [5]).
(4.1) Forall n, f,(t,-,y,2) is progressively measurable.

(4.i1)" For all n, 3K,, > 0, Ifn(t 9,2) — fu(t, ¥, 2) | < Kyly = y'l.
(4.ii1)" | fu(t, y,2) — fu(t,y,2")| < Klz—Z'|.
(4 iv)" 3M >0 such that sup,,., supo .7 SUP(,, ;) crxr | fu($y,2) | < M.
4v) (fu(t,y,2)) =1 is 1ncreas1ng for all (t,y,2).
(4 V1) Forall n,y — f,(s,y,2) is increasing.
(4.vii)" If y, 1 y, then lim,— 1o fu(s, ¥, 2) = (s, 9,2).

For all n > 1, there exists (Y/',Z]', U}') solution of the GBSDEL:

T
:§+I Fuls, Y1, 20) ds+J (s, Y1) dA — f ZMdW, — ZI U dHo
t
(4.12)

PrOPOSITION 4.3. There exists C > 0, a constant only depending on &, T, and M such that
sup[E( sup |Y{1|2+J 1y 2 dA, +j (12212 +]|um)P) ) <c (4.13)
n=1 0<t<T

Proof. From It6’s formula, we have
2 T 2 2
Bl e | (2 uzif)ds
T T
:[E|£|2+2[EJ YS"fn(s,YS”,Zf)ds+2[EJ Yig(s, YI')dAs
t t

T
< E|&|? +2E sup |fn(s,Ys”,Zs”)|J |YS"|d5+2[EJ <E|Y”| +—
0<s<T

gle0)] 7)da,

<E|¢?+TE sup |fn(s,YS",ZS")| |m[EJ |g(s,0) | dA

0=<s<T

T 2 T 2
+[EJ b ds+ﬁ[EI v | %dA..
t t
(4.14)
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By the condition (4.v)’, we get forall0 <t < T,

T T
By BIE [ 1veaacvE | (12217 +|uzi)ds

. (4.15)
A
< [E|€|2+M2<T+ 4[E|(/37|T)) + [EJ | Y| ds.
t
The result follows from this inequality, the Gronwall formula, and the Burkholder-Davis-
Gundy inequality. O

Proof of Theorem 4.2. The sequence (f,)>1 is increasing, the comparison theorem im-
plies that for all £, (Y/")»1 is increasing. Moreover, Esup,_,_; | Y/ |2<C,then Y"1 Y. Us-
ing Fatou’s lemma, we obtain Esup,_,. |Y¢|* < C. On the other hand, E IOT |Y/"12dt < C,
then, by Lebesgue’s dominated convergence theorem, we deduce that

T
[EJ |Y" = Y,|’dt — 0 asn— oo. (4.16)
0

Let n > m = 1, we denote by

—n,m T h,m

?_’:’m = st - Ysm) Z = an _Zsm) US = USn - Usm' (4'17)

N

Using [t6’s formula, we get
T
EIT" P [ (1Z0" 4 [T s
t

T
<2 [V fulo Y2 - fuls Y2 | ds
' . (4.18)
+2[EJ T2 (g (s, Y1) — g (s, Y") ) dA.
t

N
< 4Mﬁ([EJ 17" | ds) .
0
The right-hand side goes to 0 as m and » tend to infinity.
Now, we can show that Esup,_,_ |Y,""|2 - 0.
If we apply It&’s formula, we obtain
~nm 2 T Zn,m |2 —n,m |2
Tz s
T—i’l m
= 2| T2 ~ fols Y2 ds

T (4.19)
2] VI (glo ¥E) —gls ¥I))dA,
t

T too T .
) j YW, 2 S j 7T gy,
t it



Mohamed El Otmani 19

By Burkholder-Davis-Gundy inequality, we can write

E sup |7} |+[EJ (1Z2" 12+ [T |12 ds

0=<t<T

T 12
< zzwﬁ(mj 7 |2ds) N ;[E sup |y’””|2+4[5j (12" |2 + ([T d
0 0<t<T
(4.20)
Then Esup,_,_; |Y; "2 < C(E [} 17" |2 ds)"2. The right-hand side goes to 0 as m and n
tend to infinity.
In conclusion, (Y",Z",U") is a Cauchy sequence for the #? norm.
It remains to show that (Y;, Z,, U;) = lim,,_ (Y}, Z/', U}") is a solution of (4.1).

First, there exists a subsequence (Y",Z") — (Y,Z)dt x dP a.s. Using (4.vi)’, for almost
all w, we have

fn(t, Y[’,Z[) — f(t, Yt,Z[)dt a.c. (4.21)
So,
| (&, YLZ0) = f(6Y0Z) | <K|ZP=Ze| + | fu(t, Y] Ze) — f(1, Y, Z) | (4.22)

n—oo

Then, for almost all w, f,(t, Y], Z]') — f(t,Y,Z;)dt a.s.
Since sup,,. | fu(t, Y], Z")| < M, by Lebesgue’s dominate convergence theorem for al-
most all w, we get

T T
J Jfa(s, Y, Z0)ds — J f(s, Y, Zs)ds asn — oo, (4.23)
0 0

In the same way, combining Fatou’s lemma and Lebesgue’s dominate convergence theo-
rem shows that

T T
J g(s, Y dA; — J g(s,Y,)dA; asn— oo. (4.24)
0 0

We note by the Burkhélder-Davis-Gundy inequality that

T T 2 T
E sup j ZS”dWS—J Z.dW, sC[EJ 71— 7, |%ds,
0=<t<T t t 0
(4.25)
T 2 T
E sup J U gyl J Ud dg® sC[EJ |U" = Uy||ds.
0=<t<T | j=1 —1 t 0
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Then for a subsequence

n—oo O

T T
J zgdws—J Z.dW,
t t

sup >
0=t<T
(4.26)
® T © T
sup J Ug“)st(f)—zJ UfDdH® | =2 0.
0<t<T i=1 t i=1 t

To finish with, we write

T T T © T
’Y,—E—J f(s,st,Zs)ds—I g(s,st)dA5+I stWS+ZJ U®dHY
t t t -1/t

T
< sup |Y!'-Y,|+ ‘ Jo fa(s, Y, Z) — f(s,Ys, Zs)ds
0<t<T

T
v| | gl v - gl v )da,
0

+ sup
0<t<T

+ sup

T T
J zgdws—J Z.dW,
t t 0<t<T

L T i T
> [ vmoano -3 | Uﬁ”dH@'.
-1t i=17!

(4.27)

The right-hand side goes to 0 as # tends to infinity.
We conclude that for all t € [0, T],

T T T to T
Yt=£+J f(s,Yr,Zs)ds+J’ g(s,st)dAs—J’ ZSdWS—ZJ UDdHOP  as.
t t t i=1 t
(4.28)

This completes the proof of the theorem. O

Remark 4.4. We obtain the same result if we suppose that
(i) f is right continuous, decreasing, and bounded,
(ii) f is continuous with linear growth in y independent of z (see [13] for approxi-
mation).

5. Application to PDIE

In this section, we study the link between generalized BSDE driven by Lévy process and
a class of partial differential integral equations with Neumann boundary condition. We
suppose that the process L has bounded jump (without lost of generality, we suppose that
sup, |AL;| < 1). Then, for all p = 1,2,3,..., E|L|? < co (see [23, Theorem 34, page 25]),
and by Lévy decomposition theorem (see [23, page 31]),

L= bt+J 2(Ni(+,d2) — tv(d2)), (5.1)

(lz1<1)
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where N;(w,dz) denotes the random measure such that [, N(-,dz) is a Poisson process

with parameter v(A) for all set A(0 & A).
Let ® = (=L 1),and n: [-],]] — R such that n(—[) = 1 and n(l) = —1.

Let us consider the two bounded coefficients ¢,0 : R — R, satisfying for some K, x > 0,

the following properties:
(5.4) |c(x)| +|o(x)| <k forall x € ®,
(5.ii) le(x) —c(x)| +]o(x) —0o(x')| < K|x — x'| for every x,x’ € O,
(5.iii) x +zc(x)](z1<1) € O for every x € @ and z € R,
(5.iv) c(x) = c(pr(x)) for all x € R,
where pr(-) denotes the orthogonal projection on the closure ©.
Consider the reflected SDE:

t

t
X = x+J o(XS)dWS+J c(Xs-)dLs+ 4y,
0

0

t t
"t = J-O f’l(Xs)d|7']|s with |77|t = JO I](XSEBG)d|7’]|5.

(5.2)

In [15], Menaldi and Robin prove that under the assumptions (5.i)—(5.iv), there exists a
unique pair of progressively measurable processes (X,#) that verifies (5.2), and for every
progressively measurable process V which is right continuous having left-hand limits and

taking values in ®, we have

T
JO (X, = Vi)dlnl; = 0.
Let u = u(t,x) be the solution of the following PDIE:

At x) +(x)dats(t, x) + %az(x)a,zcxu(t,x) ; J{R Wl (¢, %, 2)v(dz)

+ f (b2 u(t,2),0(0)d,u(t,x), (u? (1,2)) ) =0 ¥(£x) € [0,T) x 6,
n(x)oxu(t,x) +g(t,x,u(t,x)) =0 V(t,x) € [0,T) x {11},
u(T,x) =h(x) Vx€0O,

where
(i) c(x) = myc(x),
(i) ul(t,x,2) = u(t,x + c(x)z) — u(t,x) — Axu(t,x)c(x)z,

(5.3)

(5.4)

(iii) uM(t,x) = (m2)2c(x)0u(t, x) + [z u' (t,x,2) p1(2)v(dz) and for i > 2, u)(t,x) =

Jg 4 (t,%,2) pi(2)v(dz).
Consider the GBSDEL:

T

T T
Yt=h(XT)+J f(s,XSf,YSf,ZS,US)ds+J g(s,Xsf,YSf)dlnls—J 7AW,
t t t

®© T
—zj UPdH®.
=171

(5.5)
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Suppose that the function u € €2([0,T] X R), and is such that d,u and 92, u are bounded
by polynomial function of x. Then we have the following theorem.

THEOREM 5.1. The process (Y,Z,U = (UD)2,) given by
Y[ = H(t,Xt),
Zt = O'(Xt)axu(t,Xt),

U = JR u! (6, X, ,2) pr(@)v(dz) + (m) " (X )ou(t, X, ), 50
u =J W (6Xe,2) pi(2)W(dz) fori=2
R
is solution of (5.5).
Proof. Applying Itd’s formula to u(s,X;) froms=ttos=T,
T T
u(T,Xr) = u(t,X,) +J asu(s,Xs)ds+J n(X,) 9t (s, Xs)d I,
t
T
zj (s X)ds+ | o(6)auu (s X,)dW,
' (5.7)
+J c(Xe )9eu(s, X, )dLs
¢
+ > u (5,Xs ) — Oxta (5, Xs ) AX,.
t<s<T
If we apply [17, Lemma 5] to
h(s,;z) = u(s,Xs +c(Xs-)2) — u(s,Xs-) — Oxu(s, Xs- ) (X )z, (5.8)
we have
z u(s,Xs) —u(s,Xs-) — deta (5, Xs- ) AX
t<s<T
(5.9)

© T T
= g L LR u (s, Xs-,2) pi(2)v(dz)dHY + L JR u' (s, X, 2)v(dz)ds.

Since H" = (m3)"V2(Ls — mys) and AX; = c(Xs- )AL a.s for all t < s < T (see [23, Theo-
rem 12, page 60]). Substituting (5.9) into (5.7) to obtain

u(t,X,) = h(Xy) — LT (asu(s,xs) (X0 (5, X:) + %02 (Xs)agxu(s,xs))ds

T
J J (5,Xs,2)v dz)ds—f n(Xs) 951 (s, Xs) lx.co0)d 7 s
t
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T © T '
—j G(Xs)axu(s,Xs)dWS—ZJ J ! (5, Xs-,2) pi(2)W(d2)dHL
t S Jr

‘[t (JR“ (S s )p (Z)v(dz) (112)1/2C(X5 )axlfl(S);(S )> S( )’

from which we get the result of the theorem. O
We next consider some examples of PDIEs.

Example 5.2. Assume that v(dx) = >.°, «;8p,(dx), where a; >0 and Jp,(dx) denotes the
positive point mass measure at f8; € R of size one. Assume that >;”; &;|fi|? < . Then

the process L can be writing L, = bt + >~ Bi(N, N - a;t), where (N® 2, s a sequence of
independent Porsson processes with parameters ((x ), s
Recall that H, = > 2 (Bl Jai)( N,' —a;t) and Ht' 0 foralli> 2 (see[17]).

Let (Y,Z,U) be the unique solution of the following GBSDEL:

T T T
Ytzh(XT)+J f(s,Xsf,st,Zs)dsﬁ-J g(s,XSf,st)dInls—J’ Z.dW,
t t t
(5.11)

—ZI UDA(ND — as).

Then
Y =u(t,Xy),
Zy = 0(X¢)oxu(t,Xy),
172 (5.12)
Ut( =ou' (t,X,51) pr(B1) + (Z(x,|ﬁ, ) c(Xs- ) Oxu(t, Xs- ),
U(’) oul (X, B:) p1(Bi)  fori=>2,
where the function u supposed in 6"2([0, T] X R) is such that d,u and 92,u are bounded

by polynomial function of x, and it verifies the following PDIE:

atu(t,x)+f(x)8xu(t,x)+%az(x)a (6x)+ S ad (1,5,5)

i=1
+ f (tx,u(t,x),0(x)dcu(t,x)) =0 V(t,x) €[0,T) x O, (5.13)
n(x)oxu(t,x) +g(t,x,u(t,x)) =0 V(t,x) € [0,T) x {11},

u(T,x) =h(x) Vxc0.
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Example 5.3. We suppose that Ly = Ny — At, then the GBSDEL:

T T
Y, = h(X7) +J f(s,Xsf,YSf,Zs)ds+J g(s,Xe, Y, )dlnle
t t

(5.14)
T T
- J Z.dW, — J U.d(N, - 1s)
t t
has a unique solution
(Ytha Ut) = (u(taxt)>U(Xt)axu(t)Xt)>u(taxt’ +C(Xt’)) - u(t’Xt’))’ (515)
where u is solution of the PDIE:
osu(t, x) — Ac(x)0xu(t, x) + %02 (x)0%, u(t,x) +u(t,x+c(x)) — u(t,x)
+ f(t,xu(t,x),0(x)oxu(t,x)) =0 V(t,x) €[0,T) X0, (5.16)

n(x)0xu(t,x) +g(t,x,u(t,x)) =0 V(t,x) € [0,T)x {-LI},
u(T,x) =h(x) Vxe0O.
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