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We study a stock market model, consisting in a large number of agents, going even-
tually to infinity, and evaluate the stock price under the influence of opinions of dif-
ferent agents. Next we study the behavior of prices when the market is very nervous;
there appear discontinuities (phase transitions) which can be interpreted as stock market
crashes.
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1. Introduction

Since the work of Samuelson [4], in which he used the geometric Brownian motion to
explain the evolution of stock prices, and starting from the model of Black and Scholes
[1], which was based on the preceding result to give the formula of evaluation of options,
many were interested to develop new models without losing sight of the original work.
We will refer to these two results to develop this work.

In an open market, a price is the result of a balance between offer and demand, that
is, a stable compromise between the wishes of several people, called agents. The dynamic
evolution of a price, as a stock exchange curve represents it, shows phenomena which are
explicable only by incorporating the formation of such a balance. The agents react in a
way rather independent with respect to received information of outside, but interact be-
tween them in the decision-making (the interaction is here of mean-type field, because
the agents do not form a geometrical structure in a natural way). Such a market is in-
evitably incomplete.

A first question arises naturally: what will occur if the number of agents becomes very
large? In the direction of the law of the large numbers, we can see that we have a conver-
gence of the incomplete markets towards a complete market, of which the dynamic curve
of price is independent of the individual decision of each agent, but which always reflects
the global structures of the decision-making.
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A second aspect is essential. The individual perception of the market by an agent and
its corresponding reaction is a microeconomic quantity. On the other hand, the stock
exchange curves and especially the curves of the indices are macroeconomic quantities.
Thus, at the same moment, we are interested to study in this model the transition from
the microeconomic structures to macroeconomic quantities.

A number of questions may be asked; for example, which phenomena are explained by
the transition from the microeconomic structures and which are purely macroeconomic?
In particular, which part of volatility is the result of the microeconomic fluctuations and
which part is purely macroeconomic volatility? Or also, generally the microeconomic or
macroeconomic reactions have very different scales speed. Which is the influence of the
quotient of these two speeds on the market?

A third aspect has a more mathematical interest: the external information, based on
the economic situation, of the national or international events, is represented by a ran-
dom process. This information influences the decisions of the agents. We are in the pres-
ence of a dynamic system evolving in a random environment. This has consequences for
the fluctuations and the principles of great deviations.

For all these reasons, we will be brought to develop a model taking into account all the
influences on the market in order to better interpret certain situations and try to answer
some of the questions above.

We begin our paper in Section 2 by describing the model. Then in Section 3, we study
the convergence of the empirical measure and the price process when n goes to infinity.
Finally, in Section 4, we study the evolution of the price process when the market is very
nervous and give some examples.

2. Construction of the model

We suppose the model composed from agents, noted i with i= 1, . . . ,n; (n going eventu-
ally to infinity). Each agent has his personal opinion about the future evolution of the
stock price on the market. The opinion is built individually from information about
the enterprise whose stock is regarded. It depends also on external events, general cir-
cumstances, economic indicators, inflation, budget deficit, money supply, raw materials’
prices, and behavior of other stock markets. This opinion is expressed by an individual
drift depending on time, which will be noted by

μi(t). (2.1)

This means that the agent i perceives the future evolution of the stock price given by

Si,t = S0�
(
Xt
)

exp
{
μi(t) · t

}
, (2.2)

with

�
(
Xt
)= exp

{
Xt − 1

2
[X ,X]ct

} ∏

0<s≤t

(
1 +ΔXs

)
exp

{−ΔXs
}

, (2.3)
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the stochastic exponential of the semimartingale Xt, which is solution of the following
stochastic differential equation:

�
(
Xt
)= 1 +

∫ t

0
�
(
Xs−

)
dXs, (2.4)

where [X ,X]ct is the continuous part of the bracket [X ,X]t and we suppose that ΔXs >−1
for all t ∈ [0,T]. S0 is the actual price of the stock, μi(t) the subjective opinion of the agent
i on the future evolution of the stock price, and Xt the external stochastic perturbation. Xt
represents all external stock market data that have direct influence on prices, it will be for
example economists’ and politicians’ opinions. We suppose X0 = 0. Then the sequence of
price processes (Si,t)i=1,...,n is a family of processes in a random environment.

At time t the price Snt of the stock is the result of the estimations of the n agents; more
precisely, it should be the median of the agents’ estimations Si,t of agents i, weighted by
the quantities of stocks offered or required by agent i. Agent i buys stocks if the official
price Snt on the market is less than the individual price Si,t and he sells if Snt ≥ Si,t. Then
the market is in equilibrium if Snt is the weighted median of the Si,t.

Moreover, we suppose that in the case Snt ≤ Si,t the offered quantities are equal to
ψ(Si,t)−ψ(Snt ), and in the case Snt ≥ Si,t, the required quantities by the agent i are equal
to ψ(Snt )−ψ(Si,t), where ψ is an increasing function in �2(R+). Then the equilibrium of
the market is given by

ψ
(
Snt
)= 1

n

n∑

i=1

ψ
(
Si,t
)
. (2.5)

In order to make the proofs easy, we will only study the case where ψ(x)= x, general case
is easy to check.

We consider now how the subjective price of a stock is estimated by an agent i. Under
the influence of the opinions of the other agents and external news, the agent will change
his opinion from time to time; this is done by a change of his individual drift μi(t). The
motivations of this change will be explained by interaction between the agents and also by
the influence of the circumstances, this means that each agent will interpret the decision
of the other agent like a new information, which can be known by publications, bank
consultants, and in particular, by the stock price itself.

For our model, let us consider the vector

μ(n)(t)= (μ1(t), . . . ,μn(t)
)
, (2.6)

which is a pure jump process and will represent the configuration of the opinions. We set
μ(n)(t)∈ Bn, where B is a finite, closed interval of R.

The external perturbation process Xt is supposed to be an adapted process satisfying

E

[

sup
t≤T

exp
{
λXt

}
]

≤ Cλ < +∞ ∀λ∈R, (2.7)

ΔXt >−1 ∀t ∈ [0,T]. (2.8)
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Conditionally to X[0,T], the pure jump process (μ(n)(t))0≤t≤T has the conditional infin-
itesimal generator A = A(Xt) defined on product functions f (b1, . . . ,bn) =∏n

i=1 fi(bi),
fi ∈�b(B), by

(A f )
(
μ(n)(t)

)=
n∑

i=1

(
∏

j �=i
f j
(
μj(t)

) ·
∫

B

[
fi(m)− fi

(
μi(t)

)]

· exp

{

α+
1
n

n∑

k=1

g
(
m,μk(t)

)
+m ·Xt

}

ρ(dm)

)

,

(2.9)

with α a positive constant and g ∈�b(B2).
The number α represents the level of the nervousness of the market, (general intensity

of the agents to change their mind). The term (1/n)
∑n

k=1 g(m,μk(t)) represents the in-
teraction with the other agents. m ·Xt is the influence of external events. The probability
measure ρ is the unbiased distribution of the new drift.

Conditionally to X = X[0,T], there exists a unique Markov process Pn(· | X) on the
Skorokhod space �(R+,Bn), the space of càdlàg processes with values in Bn.

Let Pn be the process defined on the space Ω=�(R+,Bn ·R). Then, we have for
f (b1, . . . ,bn)=∏n

i=1 fi(bi), fi ∈�b(B),

Mn
t = f

(
μ(n)(t)

)− f
(
μ(n)(0)

)

−
∫ t

0

n∑

i=1

(
∏

j �=i
f j
(
μj(s)

) ·
∫

B

[
fi(m)− fi

(
μi(s)

)]

· exp

{

α+
1
n

n∑

k=1

g
(
m,μk(s)

)
+m ·Xs

}

ρ(dm)

)

ds,

(2.10)

a Pn-martingale, conditionally to X .
Writing

Mn
t =

∫ t

0

∫

Bn

[
f (m)− f

(
μ(n)(s−)

)]
Λ̃(dm,ds), (2.11)

where m∈ Bn,

Λ̃(dm,ds)=Λ(dm,ds)−
n∑

i=1

∫

B
δ(μ1(s),...,μi−1(s),m,μi+1(s),...,μn(s))

· exp

{

α+
1
n

n∑

k=1

g
(
m,μk(s)

)
+m ·Xs

}

ρ(dm)ds,

(2.12)
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Λ(dm,ds), conditionally to X , is a pure point process, the corresponding increasing pro-
cess of Mn

t will be given by

〈
Mn,Mn

〉
t =

∫ t

0

∫

Bn

[
f (m)− f

(
μ(n)(s)

)]2

·
( n∑

i=1

∫

B
δ(

μ1(s),...,μi−1(s),m,μi+1(s),...,μn(s)
)

· exp

{

α+
1
n

n∑

k=1

g
(
m,μk(s)

)
+m ·Xs

}

ρ(dm)

)

dmds.

(2.13)

3. The study of the price process

3.1. Convergence of the empirical measure. Define the empirical measure μnt by

μnt =
1
n

n∑

i=1

δμi(t) ∈�(B), (3.1)

and endow �(B), the set of probability measures on the compact B, with the weak-star
topology, for which it is compact. Now, for a continuous function f ∈�(B), the process

〈
f ,μnt

〉= 1
n

n∑

i=1

f
(
μi(t)

)
(3.2)

has the compensator (the previsible dual projection)

∫

B

[〈
f ,δm

〉− 〈 f ,μnt
〉]
C
(
m,μnt ,Xt

)
ρ(dm), (3.3)

where

Cn
(
m,μnt ,Xt

)= exp
{
α+

〈
g(m,·),μnt

〉
+m ·Xt

}
. (3.4)

This can be seen by applying the linear operatorA to the expression (1/n)
∑n

i=1h
l(m) with

hl(m)= f (ml); ml is the lth component of m.
Note here that (2.7) implies

E
[

sup
t≤T

sup
m∈B

sup
μ∈�(B)

(
1 +C

(
m,μt

))2
]
≤ C1 < +∞. (3.5)

Then we have the martingale

M̃n
t =

〈
f ,μnt

〉− 〈 f ,μn0
〉−

∫ t

0
A
(
Xs
)
(

1
n

n∑

i=1

hl
)

ds. (3.6)



6 Stock market dynamics created by interacting agents

The increasing process of this martingale is given by

〈
M̃n,M̃n

〉
t =

∫ t

0

∫

B

1
n2

n∑

i=1

[
f (m)− f

(
μi(s)

)]2
C
(
m,μns ,Xs

)
ρ(dm)ds. (3.7)

Define, for a bounded and continuous function G(·) on B, the functional ϕ(G) by

ϕ(G)(u)= log
∫

B
exp

{
mu+G(m)

}
ρ(dm), u∈R. (3.8)

We get

∂uϕ(G)(u)exp
{
ϕ(G)(u)

}=
∫

B
mexp

{
mu+G(m)

}
ρ(dm). (3.9)

This gives us the following result.

Theorem 3.1. Let μn0 converge in law to a probability measure μ0 = h0dρ ∈�(B), where
h0 ∈ L∞(B). Fix the trajectory (Xt)t∈[0,T]. Then the process (μnt )t≥0 converges in law to htdρ,
where the density ht ∈ L∞(B) is solution of the functional differential equation

dht(m)
dt

= exp
{
α+ gt(m) +m ·Xt

}−ht(m)exp
{
α+ϕ

(
gt
)(
Xt
)}

, (3.10)

with initial value h0.
Here

gt(·)=
∫

B
g(·,m̃)ht(m̃)ρ(dm̃). (3.11)

Proof. (1) Since h0dρ is the limit of μn0 ∈�(B), we have h0 ≥ 0 and
∫
h0dρ = 1. We can

easily see that ht(m)≥ 0 and

sup
t

esssup
m
ht(m)≤ esssup

m
h0(m) +

∫ T

0
exp

{
α+ gs(m) +m ·Xs

}
ds

≤ ∥∥h0
∥
∥∞ +T · const·sup

s≤T
exp

{
˜constXs

}
,

(3.12)

because gt(m) is bounded by ‖g‖∞. Thus, by (2.7)

E
[

sup
t

∥
∥ht

∥
∥∞

]
< +∞. (3.13)

Equations (3.12), (3.13) show also the uniform differentiability of ht(m) with respect
to t ∈ [0,T]. Moreover,

∫
htdρ = 1 implies (d/dt)

∫
htdρ = 0, thus

∫
htdρ = 1 for all t ∈

[0,T].
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(2) As the set �(B) is compact for the weak-star topology, to show tightness of the
process (μnt )t≥0, it is enough to show the uniform continuity in the following form: for all
f ∈�(B) and all η > 0, ε > 0, there exist n0 ∈N and δ > 0 such that

sup
n≥n0

sup
0≤τ1≤τ2≤(τ1∧δ)

Pn
{∣∣〈 f ,μnτ2

〉− 〈 f ,μnτ1

〉∣∣ > η
}≤ ε, (3.14)

where 〈·,·〉 are the duality brackets and τ1, τ2 are stopping times.
From (3.6), we have

〈
f ,μnτ2

〉− 〈 f ,μnτ1

〉= M̃n
τ2,τ1

+
∫ τ2

τ1

∫

B

[〈
f ,δm

〉− 〈 f ,μns
〉]
C
(
m,μns ,Xs

)
ρ(dm)ds, (3.15)

where M̃n
τ2,τ1

= M̃n
τ2
− M̃n

τ1
. The second term of the second member is bounded in absolute

value by 2δ‖ f ‖∞C1 for n sufficiently big. By Tchebychev inequality, we get

Pn
{∣∣〈 f ,μnτ2

〉− 〈 f ,μnτ1

〉∣∣ > η
}

≤ η−2En
[(〈

f ,μnτ2

〉− 〈 f ,μnτ1

〉)2
]

≤ 2η−2En

⎡

⎣
(

1
n

n∑

i=1

∫ τ2

τ1

∫

B

[∣∣ f (m)− f
(
μi(s)

)∣∣]C(m,μns ,Xs)ρ(dm)ds

)2
⎤

⎦

+ 2η−2En
[

1
n2

n∑

i=1

∫ τ2

τ1

∫

B

[
f (m)− f

(
μi(s)

)]2
C
(
m,μns ,Xs

)
ρ(dm)ds

]

≤ 8η−2δ2‖ f ‖2
∞C

2
1 + 8η−2n−1δ‖ f ‖2

∞C1,

(3.16)

which is less than ε for all n∈N and δ sufficiently small. This shows (3.14).
(3) We will characterize the limit process of (μnt )t≥0.
We have by Kolmogorov inequality

Pn
{

sup
t≤T

∣
∣
∣
∣
∣

∫ t

0

∫

Bn

[
1
n

n∑

l=1

(
hl(m)−hl(μ(n)

s−
))
]

Λ̃(dm,ds)

∣
∣
∣
∣
∣ > ε

}

≤ ε−2 sup
t≤T
En

⎡

⎣

(∫ t

0

∫

Bn

[
1
n

n∑

l=1

(
hl(m)−hl(μ(n)

s−
))
]

Λ̃(dm,ds)

)2
⎤

⎦

≤ 4ε−2n−1‖ f ‖2
∞C1T.

(3.17)

Hence

Pn
{

sup
t≤T

∣
∣
∣
∣
∣

∫ t

0

∫

Bn

[
1
n

n∑

l=1

(
hl(m)−hl

(
μ(n)
s−
))
]

Λ̃(dm,ds)

∣
∣
∣
∣
∣ > ε

}

= �
(
n−1). (3.18)
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Then outside a set of uniformly small probability, we have

〈
f ,μnt

〉= 〈 f ,μn0
〉

+
∫ t

0

〈
f , exp

{
α+

∫

B
g(·,m̃)μns (dm̃) + ·Xs

}
dρ
'
ds

−
∫ t

0

〈
f ,μns

〉
exp

{
α+ϕ

(∫

B
g(·,m̃)μns (dm̃)

)
(
Xs
)
}
ds+ �

(
n−1).

(3.19)

The last term of (3.19) converges uniformly in probability to zero. Thus any limit process
(μt)t≥0 of (μnt )t≥0 satisfies

〈
f ,μt

〉= 〈 f ,μ0
〉

+
∫ t

0

〈
f ,C

(·,Xs
)
dρ
〉
ds−

∫ t

0

〈
f ,μs

〉
exp

{
α+ϕ

(
gs(·)

)(
Xs
)}
ds, (3.20)

where

C
(
m,μt,Xt

)= exp
{
α+ gt(m) +m ·Xt

}
,

gt(m)=
∫

B
g(m,m̃)μt(dm̃).

(3.21)

We will show now that (3.20) has a unique solution on [0,T]. We fix a trajectory (Xt)0≤t≤T ,
which is almost surely bounded. Set for μ∈�(B),

Ht(μ)= C(·,μ)dρ−μ〈C(·,μ),dρ
〉
. (3.22)

Let us show that Ht(μ) is a Lipschitz function with respect to μ. Let μ and ν be two mea-
sures satisfying (3.20), then we have for any function f ∈�(B),

∣
∣〈 f ,Ht(μ)−Ht(ν)

〉∣∣

= ∣∣〈 f ,C(·,μ)dρ−μ〈C(·,μ),dρ
〉〉− (〈 f ,C(·,ν)dρ− ν

〈
C(·,ν),dρ

〉〉)∣∣

= ∣∣〈 f ,eα+m·Xt(e〈g(m,·),μ〉 − e〈g(m,·),ν〉)ρ(dm)
〉

−〈 f ,μ− ν〉〈eα+m·Xt e〈g(m,·),μ〉,ρ(dm)
〉

−〈 f ,ν〉〈eα+m·Xt(e〈g(m,·),μ〉 − e〈g(m,·),ν〉),ρ(dm)
〉∣∣

≤ ∣∣〈( f −〈 f ,ν〉)eα+m·Xt(e〈g(m,·),μ〉 − e〈g(m,·),ν〉),ρ(dm)
〉∣∣

+
∣
∣〈eα+m·Xt e〈g(m,·),μ〉,ρ(dm)

〉∣∣
∣
∣〈 f ,μ− ν〉∣∣

≤ 2‖ f ‖∞ ·C1 ·
∫

B

∣
∣〈g(m,·),μ− ν

〉∣∣ρ(dm) + 2‖g‖∞ ·C2 ·
∣
∣〈 f ,μ− ν〉∣∣.

(3.23)

Set f (·)= g(m,·), then

∫

B

∣
∣〈g(m,·),Ht(μ)−Ht(ν)

〉∣∣ρ(dm)≤ C3

∫

B

∣
∣〈g(m,·),μ− ν

〉∣∣ρ(dm). (3.24)
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Define the seminorm on �(B) by ‖μ‖ = supm∈B |〈g(m,·),μ〉|. Thus

∣
∣〈 f ,Ht(μ)−Ht(ν)

〉∣∣

≤ 2‖ f ‖∞ ·C1 ·
∫

B

∣
∣〈g(m,·),μ− ν

〉∣∣ρ(dm) + 2‖g‖∞ ·C2 ·
∣
∣〈 f ,μ− ν〉∣∣.

(3.25)

Replacing f (·) by g(m,·) and changing the supm∈B, we get

∥
∥Ht(μ)−Ht(ν)

∥
∥≤ C4‖μ− ν‖, (3.26)

where C4 is a constant depending on g.
This shows, by Gronwall’s lemma that for two solutions μt = h1

t dρ and νt = h2
t dρ of

(3.10) we have

〈
g(m,·),μt

〉= 〈g(m,·),νt
〉

, (3.27)

it follows from (3.20) that for any function f ∈�(B),

∣
∣〈 f ,Ht(μ)−Ht(ν)

〉∣∣≤ C∣∣〈 f ,μt − νt
〉∣∣. (3.28)

Second application of Gronwall’s lemma will show the uniqueness of the solution. �

3.2. Convergence of price process. In this section, we rewrite the definition (2.5) in the
following way:

Snt = S0 ·�tX· ·
〈

exp{·t},μnt
〉
. (3.29)

Since the integral is a bounded continuous function, we get immediately the following
result.

Corollary 3.2. Under the assumptions of Theorem 3.1, the process (Snt )t≥0 converges in
law, when n goes to infinity, to the process (St)t≥0 defined by

St = S0 ·�tX· ·
〈

exp{·t},μt
〉
. (3.30)

Proof. The proof follows directly from Theorem 3.1. �

Remark 3.3. Of course, with ρ(dm) = δμ(dm), hence ht(m) = 1{μ}(m), and Xt = σBt,
where Bt is a standard Brownian motion, we get the price process considered in Black-
Scholes model.
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4. Evolution of stock price in a nervous market

We know that when the market is very nervous, which is defined in our model by the re-
action intensity α going to infinity, stock prices may become discontinuous under certain
conditions. In this case we speak about a stock market crash. Historically, crashes appear
mostly when stock prices are dropping. This is in accordance with our model, since the
condition of high nervousness (α going to infinity) is only realistic when the prices are
already decreasing for some time. To study the convergence of the price process (St)t≥0

when α goes to infinity, we must first study the convergence of the interaction process
(gt(m))t≥0, where gt(m)= ∫B g(m,m̃)ht(m̃)ρ(dm̃), in this case.

Theorem 4.1. When α goes to infinity, the process (gt(m))t≥0 converges to the process
(ĝt(m))t≥0 such that

ĝt(m)=
∫

B
g(m,m̃)ĥt(m̃)ρ(m̃), (4.1)

where ĥt(m̃) satisfies the steady state equation

ĥt(m̃)= exp
{
ĝt(m) + m̃ ·Xt

}

exp
{
ϕ
(
ĝt(·)

)(
Xt)

} . (4.2)

Remark 4.2. Keeping Xt ≡ x fixed, there may be situations where (4.1) and (4.2) may
not have unique solution. In general, however, these are isolated points almost surely. An
additional right continuity condition will give us unique solutions.

From (4.2) we can deduce an autonomous equation for ĝt(m), which is of interest with
respect to the characterization of the price process Ŝt in the limit α→∞,

ĝt(m)=
∫
B g(m,m̃)exp

{
gt(m̃) + m̃ ·Xt

}
ρ(dm̃)

exp
{
ϕ
(
ĝt
)(
Xt
)} , (4.3)

ϕ being the functional defined by (3.8) and (3.9). Then

Ŝt = S0 ·�tX · exp
{
ϕ
(
ĝt(·)

)(
Xt + t

)−ϕ(ĝt(·)
)(
Xt
)}
. (4.4)

Example 4.3. We are going now to study (4.3), and for that we will consider a particular
case by taking B = [b,h], where b,h ∈ R with b < h and the distribution ρ = (1/2)(δb +
δh). Moreover, let g(m,m̃)= β ·m · m̃. Let ν= (b+h)/2 and δ = (h− b)/2.

With u= βm̂t +Xt, we get the well-known steady state (4.3) in the form

m̂t =
⎧
⎪⎨

⎪⎩

1
β

(
u−Xt

)
,

ν + δ tanh(δu).
(4.5)

The system (4.5) has exactly one solution if δ2β ≤ 1, that is, if β ≤ 1/δ2. However, if
β > 1/δ2, (4.5) has one or three solutions, depending on the value of βν +Xt. Thus the
market price is not uniquely determined. This indeterminateness of prices is a character-
istic phenomenon in incomplete markets.
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Example 4.4. Let S(n)
t be the price process in the market defined by logS(n)

t = (1/
n)
∑n

i=1 logSt(μi). A similar definition was proposed by Föllmer and Schweizer [2]. Let
us reconsider the previous studies for this case, and conserve the external perturbation Xt
a semimartingale null in zero. The process (Snt )t≥0 converges in law to the process (St)t≥0

defined by

St = S0 ·�tX· · exp
{
mt · t

}
, (4.6)

where as before mt =
∫
Bmht(m)ρ(dm) is the limit process of the empirical mean mn

t =
(1/n)

∑n
i=1μi(t), with ht from (3.10).

Remark 4.5. The last result can be compared with those given by Föllmer and Schweizer
(see [2, (2.18) and Theorem 3.1]). In both models, the equilibrium price process is a log-
arithmic mean of individual price assumptions. The differences between the two models
are twofold. In their model, the global stochastic perturbations result from individual un-
certainties, caused by liquidity demands. For simplicity, this quantity is not incorporated
in our model. Instead, we start with a common external perturbation process, explained
by conjuncture variations, political events, and so on. Second, we give rather explicit de-
scription of the influence of these external events to the individual price assumptions,
and of the reciprocal influence of the agents among themselves.
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