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1. Introduction

Random nonlinear analysis is an important mathematical discipline which is mainly con-
cerned with the study of random nonlinear operators and their properties and is needed
for the study of various classes of random equations. The study of random fixed point
theory was initiated by the Prague school of probabilists in the 1950s [15, 16, 31]. Com-
mon random fixed point theorems are stochastic generalization of classical common fixed
point theorems. The machinery of random fixed point theory provides a convenient way
of modelling many problems arising from economic theory, see for example [27] and ref-
erences mentioned therein. Random methods have revolutionized the financial markets.
The survey article by Bharucha-Reid [10] attracted the attention of several mathemati-
cians and gave wings to this theory. Itoh [18] extended Spacek’s and Hans’s theorem to
multivalued contraction mappings. Now this theory has become the full fledged research
area and various ideas associated with random fixed point theory are used to obtain the
solution of nonlinear random system (see [6, 7, 9, 17, 29]). Papageorgiou [25, 26], Beg
[4, 5] studied common random fixed points and random coincidence points of a pair of
compatible random operators and proved fixed point theorems for contractive random
operators in Polish spaces. Recently, Beg and Shahzad [8], Choudhury [11], and Badshah
and Sayyed [3] used different iteration processes to obtain common random fixed points.
The aim of this paper is to find common random fixed points of two asymptotically
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2 Convergence of iterative algorithms

nonexpansive random operators through strong as well as weak convergences of sequence
of measurable functions in the setup of uniformly convex Banach spaces. We construct
different random iterative algorithms for asymptotically quasi-nonexpansive random op-
erators on an arbitrary Banach space and establish their convergence to random fixed
point of the operators mentioned afore.

2. Preliminaries

Let (Ω,Σ) be a measurable space (Σ-sigma algebra) and let F be a nonempty subset of
a Banach space X . We will denote by C(X) the family of all compact subsets of X with
Hausdorff metric H induced by the metric of X . A mapping ξ : Ω→ X is measurable if
ξ−1(U)∈ Σ, for each open subset U of X . The mapping T : Ω×X → X is a random map
if and only if for each fixed x ∈ X , the mapping T(·,x) : Ω→ X is measurable and it is
continuous if for each ω ∈Ω, the mapping T(ω,·) : X → X is continuous. A measurable
mapping ξ : Ω→ X is a random fixed point of a random map T : Ω×X → X if and only if
T(ω,ξ(ω))= ξ(ω), for each ω ∈Ω. We denote the set of random fixed points of a random
map T by RF(T).

Let B(x0,r) denote the spherical ball centered at x0 with radius r, defined as the set
{x ∈ X : ‖x− x0‖ ≤ r}.

We denote the nth iterate T(ω,T(ω,T(ω, . . . ,T(ω,x) . . .))) of T by Tn(ω,x). The letter
I denotes the random mapping I : Ω×X → X defined by I(ω,x)= x and T0 = I .

Definition 2.1. Let F be a nonempty separable subset of a Banach space X and let T :
Ω×F → F be a random map. The map T is said to be the following.

(a) Asymptotically nonexpansive random operator if there exists a sequence of numbers
{kn} (depending on ω) in [1,∞) with limn→∞ kn = 1, where n∈N (set of natural
numbers) such that for arbitrary x, y ∈ F,

∥
∥Tn(ω,x)−Tn(ω, y)

∥
∥≤ kn‖x− y‖, for each ω ∈Ω. (2.1)

(b) Asymptotically quasi-nonexpansive random operator if for each ω ∈ Ω, G(ω) =
{x ∈ F : x = T(ω,x)} �= φ and there exists a sequence of real numbers {kn} (de-
pending on ω) in [0,∞) with limn→∞ kn = 0, where n∈N such that for x ∈ F and
y ∈G(ω), the following inequality holds:

∥
∥Tn(ω,x)− y

∥
∥≤ (1 + kn

)‖x− y‖, for each ω ∈Ω. (2.2)

(c) Uniformly k-Lipschitzian random operator if for arbitrary x, y ∈ F,

∥
∥Tn(ω,x)−Tn(ω · y)

∥
∥≤ k‖x− y‖, (2.3)

where n= 1,2, . . . and k is a positive constant.
(d) Uniformly (k−α)-Lipschitzian random operator if for arbitrary x, y ∈ F,

∥
∥Tn(ω,x)−Tn(ω · y)

∥
∥≤ k‖x− y‖α, for each ω ∈Ω, (2.4)

where n= 1,2, . . . ,k is a positive constant, and α > 0.
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(e) Completely continuous random operator if for any sequence {xn} in F such that xn
converges weakly to x, limn→∞‖T(ω,xn)−T(ω,x)‖ = 0, for each ω ∈Ω.

(f) Quasi-nonexpansive random operator if for each ω ∈Ω, G(ω)= {x ∈ F : x = T(ω,
x)} �= φ and for any x ∈ F and y ∈G(ω),

∥
∥T(ω,x)− y

∥
∥≤ ‖x− y‖, for each ω ∈Ω. (2.5)

Definition 2.2 (random Ishikawa iterative process). Let T : Ω× F → F be a random oper-
ator, where F is a nonempty convex subset of a separable Banach space X . The random
Ishikawa iterative process is the sequence of functions {ξn} and {ηn} defined by

ξn+1(ω)= (1−αn
)

ξn(ω) +αnT
(

ω,ηn(ω)
)

,

ηn(ω)= (1−βn
)

ξn(ω) +βnT
(

ω,ξn(ω)
)

, for each ω ∈Ω,
(2.6)

n = 0,1,2, . . . , where {αn} and {βn} are the sequences of real numbers in [0,1] and ξ0 :
Ω → F is an arbitrarily fixed measurable mapping. Obviously, {ξn} and {ηn} are se-
quences of functions from Ω to F.

Definition 2.3. Let T , S : Ω× F → F be two asymptotically nonexpansive random oper-
ators, where F is a nonempty convex subset of a separable Banach space X . Consider a
sequence of functions {ξn} and {ηn} defined by

ξn+1(ω)= (1−αn
)

ξn(ω) +αnS
n
(

ω,ηn(ω)
)

,

ηn(ω)= (1−βn
)

ξn(ω) +βnT
n
(

ω,ξn(ω)
)

,
(2.7)

for each ω ∈ Ω, n = 0,1,2, . . . , where {αn} and {βn} are sequences of real numbers in
[0,1] and ξ0 : Ω→ F is an arbitrarily fixed measurable mapping. Since F is a convex set, it
follows that for each n, ξn is a mapping from Ω to F.

Remark 2.4. Let F be a closed and convex subset of a separable Banach space X and the
sequence of functions {ξn} defined as in Definition 2.3 is pointwise convergent, that is,
ξn(ω) → q := ξ(ω), for each ω ∈ Ω. Then closedness of F implies that ξ is a mapping
from Ω to F. Since F is a subset of a separable Banach space X , so if T is a continuous
random operator, then by [2, Lemma 8.2.3], the map ω→ Tn(ω, f (ω)) is a measurable
function for any measurable function f from Ω to F. Hence {ξn} is a sequence of mea-
surable functions and ξ : Ω→ F being a limit of a sequence of measurable functions is
also measurable.

Definition 2.5. A Banach space X is said to satisfy Opial’s condition (Opial [24]). If se-
quence {xn} in X converges weakly to x ∈ X and x �= y, then liminfn‖xn− y‖ > liminfn
‖xn− x‖.

Banach spaces satisfying Opial’s condition include Hilbert spaces and lp(1 < p <∞)
spaces while Lp spaces (p �= 2) are not Opial spaces.

Definition 2.6. Let F be a nonempty bounded and convex subset of a Banach space X . A
mapping T : F → X is called demiclosed with respect to y ∈ X if for any sequence {xn} in
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F the following implication holds: w− limn→∞ xn = x and limn→∞ |T(xn)− y| = 0 implies
x ∈ F and T(x)= y. For further details and other related results we refer to [1].

A random operator T : Ω×F → X is called demiclosed if T(ω,·) is demiclosed, for each
ω ∈Ω.

Lemma 2.7 (see [14]). Let F be a nonempty closed bounded and convex subset of a uniformly
convex separable Banach space X satisfying the Opial condition. Let T be an asymptotically
nonexpansive mapping of F into itself. Then I −T is demiclosed with respect to 0.

Lemma 2.8 (see [28]). Suppose that X is a uniformly convex Banach space and 0 < p ≤ λn ≤
q < 1 for all n = 1,2, . . . . Suppose {xn} and {yn} are sequences in X such that
limsupn→∞‖xn‖ ≤ r, limsupn→∞‖yn‖ ≤ r, and limn→∞‖λnxn + (1− λn)yn‖ = r for some
r ≥ 0. Then limn→∞‖xn− yn‖ = 0.

Lemma 2.9 (see [22, Lemma 2]). Let the nonnegative number sequences {αn}, {βn}, and
{γn} satisfy that

αn+1 ≤
(

1 + γn
)

αn +βn, for each n= 1,2, . . . ,
∞
∑

n=1

βn,
∞
∑

n=1

γn <∞. (2.8)

Then
(1) limn→∞αn exists,
(2) moreover, if limn→∞ inf αn = 0, then limn→∞αn = 0.

3. Common random fixed point of asymptotically nonexpansive random operators

In this section, we find common random fixed point of two asymptotically nonexpansive
random operators. To achieve this purpose, we construct a sequence of measurable func-
tions and consider its strong as well as weak convergences to a common random fixed
point of random operators mentioned afore in the framework of uniformly convex Ba-
nach spaces. For the sake of completeness, we give the following random version of [19,
Lemma 3].

Theorem 3.1. Let F be a nonempty closed, bounded, and convex subset of a normed space
X and let T , S : Ω× F → F be two uniformly k-Lipschitzian random contractive operators.
Define the sequence of functions {ξn} as in (2.7). If for each ω ∈Ω,

lim
n→∞

∥
∥ξn(ω)− Sn

(

ω,ξn(ω)
)∥
∥= 0= lim

n→∞
∥
∥ξn(ω)−Tn

(

ω,ξn(ω)
)∥
∥ (3.1)

then

lim
n→∞

∥
∥ξn(ω)− S

(

ω,ξn(ω)
)∥
∥= 0= lim

n→∞
∥
∥ξn(ω)−T(ω,ξn(ω)

)∥
∥, (3.2)

for each ω ∈Ω.

Theorem 3.2. Let F be a nonempty closed, bounded, and convex subset of a separable uni-
formly convex Banach space X and let T , S : Ω× F → F be two continuous asymptotically
nonexpansive random operators with sequence {kn} of real numbers in [1,∞) satisfying
∑∞

n=1(kn− 1) <∞. Let the sequence of functions {ξn} be as given in (2.7), where {αn} and
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{βn} are the sequences of numbers in [ε,1− ε] for some ε ∈ (0,1) and ξ0 : Ω→ F is an ar-
bitrary measurable mapping. If (I −T)(ω,·) and (I − S)(ω,·) are demiclosed at 0 and the
set {x ∈ F : I(ω,x)− T(ω,x) = 0} ∩ {x ∈ F : I(ω,x)− S(ω,x) = 0} is nonempty for each
ω ∈Ω, then

lim
n→∞

∥
∥S
(

ω,ξn(ω)
)− ξn(ω)

∥
∥= 0= lim

n→∞
∥
∥T
(

ω,ξn(ω)
)− ξn(ω)

∥
∥, (3.3)

for each ω ∈Ω.

Proof. For each n, define a mapping fn : Ω×F →R by

fn(ω,x)= ∥∥I(ω,x)−T(ω,x)
∥
∥+

∥
∥I(ω,x)− S(ω,x)

∥
∥− 1

n
. (3.4)

Set Fn(ω)= {x ∈ F : fn(ω,x) < 0}, Hn(ω)= cl{Fn(ω) : ω ∈Ω}. Since X is uniformly con-
vex Banach space, therefore, F is weakly compact so using similar arguments as given in
[30, Theorem 3.1], we obtain a measurable selector ζn of Hn. Also for each n, define Ln :
Ω→WK(F) by Ln(ω) = w− cl{ζi(ω) : i ≥ n} and L : Ω→WK(F) by L(ω) = ∩k≥1w−
cl{∪Ln(ω) : n≥ k}. We obtain a subsequence {ζk(ω)} of {ζn(ω)} which converges weakly
to a measurable selector ζ(ω) of L. Now for each k, {I(ω,ζk(ω))− T(ω,ζk(ω))} and
{I(ω,ζk(ω))− S(ω,ζk(ω))} converge to 0. Using demiclosedness of (I −T)(ω,·) and (I −
S)(ω,·) at 0, we get ζ as a common random fixed point of S and T . Consider

∥
∥ξn+1(ω)− ζ(ω)

∥
∥

= ∥∥(1−αn
)

ξn(ω) +αnS
n
(

ω,ηn(ω)
)− ζ(ω)

∥
∥

≤ αn
∥
∥Sn
(

ω,ηn(ω)
)− ζ(ω)

∥
∥+

(

1−αn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ αnkn
∥
∥ηn(ω)− ζ(ω)

∥
∥+

(

1−αn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

= αnkn
∥
∥
(

1−βn
)

ξn(ω) +βnT
n
(

ω,ξn(ω)
)− ζ(ω)

∥
∥+

(

1−αn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ αnkn
[

βn
∥
∥Tn

(

ω,ξn(ω)
)− ζ(ω)

∥
∥+

(

1−βn
)∥
∥ξn(ω)− ζ(ω)

∥
∥
]

+
(

1−αn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ αnkn
[

βnkn
∥
∥ξn(ω)− ζ(ω)

∥
∥+

(

1−βn
)∥
∥ξn(ω)− ζ(ω)

∥
∥
]

+
(

1−αn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

= [(1−αn
)

+αnβnk
2
n +αnkn

(

1−βn
)]∥
∥ξn(ω)− ζ(ω)

∥
∥,

(3.5)

for each ω ∈Ω. Define vn = (1−αn) +αnβnkn2 +αnkn(1−βn). Then

∥
∥ξn+1(ω)− ζ(ω)

∥
∥≤ vn

∥
∥ξn(ω)− ζ(ω)

∥
∥, for each ω ∈Ω, (3.6)

and for each n= 1,2, . . . . Consequently, we have

∥
∥ξn+m(ω)− ζ(ω)

∥
∥≤

(n+m−1
∏

i=n
vi

)

∥
∥ξn(ω)− ζ(ω)

∥
∥, for each ω ∈Ω. (3.7)
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Also we have
∑∞

n=1(vn − 1) <∞, thus limn→∞
∏∞

i=n vi exists and hence limn→∞‖ξn(ω)−
ζ(ω)‖ exists, for each ω ∈Ω. Now if limn→∞‖ξn(ω)− ζ(ω)‖ = 0, for each ω ∈Ω, then the
result follows. Suppose limn→∞‖ξn(ω)− ζ(ω)‖ = c, where c > 0, for each ω ∈Ω. As

∥
∥Tn

(

ω,ξn(ω)
)− ζ(ω)

∥
∥≤ kn

∥
∥ξn(ω)− ζ(ω)

∥
∥, for each ω ∈Ω, (3.8)

where n = 1,2, . . . , so limsupn→∞‖Tn(ω,ξn(ω))− ζ(ω)‖ ≤ c, for each ω ∈ Ω. Now con-
sider

∥
∥ηn(ω)− ζ(ω)

∥
∥= ∥∥(1−βn

)

ξn(ω) +βnT
n
(

ω,ξn(ω)
)− ζ(ω)

∥
∥

≤ βn
∥
∥Tn

(

ω,ξn(ω)
)− ζ(ω)

∥
∥+

(

1−βn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ βnkn
∥
∥ξn(ω)− ζ(ω)

∥
∥+

(

1−βn
)∥
∥ξn(ω)− ζ(ω)

∥
∥

= ∥∥ξn(ω)− ζ(ω)
∥
∥+

(

kn− 1
)

βn
∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ ∥∥ξn(ω)− ζ(ω)
∥
∥+

(

kn− 1
)

(1− ε)
∥
∥ξn(ω)− ζ(ω)

∥
∥,

(3.9)

for each ω ∈Ω. Hence

lim sup
n→∞

∥
∥ηn(ω)− ζ(ω)

∥
∥≤ c. (3.10)

Now

∥
∥Sn
(

ω,ηn(ω)
)− ζ(ω)

∥
∥≤ kn

∥
∥ηn(ω)− ζ(ω)

∥
∥, for each ω ∈Ω. (3.11)

Now kn→ 1 as n→∞ and (3.10) give

lim sup
n→∞

∥
∥Sn
(

ω,ηn(ω)
)− ζ(ω)

∥
∥≤ c, for each ω ∈Ω. (3.12)

Hence

lim
n→∞

∥
∥ξn+1(ω)− ζ(ω)

∥
∥

= lim
n→∞

∥
∥
(

1−αn
)

ξn(ω) +αnS
n
(

ω,ηn(ω)
)− ζ(ω)

∥
∥

= lim
n→∞

∥
∥
(

1−αn
)(

ξn(ω)− ζ(ω)
)

+αn
(

Sn
(

ω,ηn(ω)
)− ζ(ω)

)∥
∥= c,

(3.13)

for each ω ∈Ω. Applying Lemma 2.8, we have

lim
n→∞

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥= 0, for each ω ∈Ω. (3.14)

Now
∥
∥ξn(ω)− ζ(ω)

∥
∥

≤ ∥∥ξn(ω)− Sn
(

ω,ηn(ω)
)∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ζ(ω)

∥
∥

≤ ∥∥ξn(ω)− Sn
(

ω,ηn(ω)
)∥
∥+ kn

∥
∥ηn(ω)− ζ(ω)

∥
∥.

(3.15)

It implies that c ≤ liminfn→∞‖ηn(ω)− ζ(ω)‖, for each ω ∈Ω.
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Now using (3.10), we have limn→∞‖ηn(ω)− ζ(ω)‖ = c, for every ω ∈Ω. That is,

lim
n→∞

∥
∥
(

1−βn
)

ξn(ω) +βnT
n
(

ω,ξn(ω)
)− ζ(ω)

∥
∥

= lim
n→∞

∥
∥
(

1−βn
)(

ξn(ω)− ζ(ω)
)

+βn
(

Tn
(

ω,ξn(ω)
)− ζ(ω)

)∥
∥= c,

(3.16)

for each ω ∈Ω. Hence by Lemma 2.8, we obtain

lim
n→∞

∥
∥Tn

(

ω,ξn(ω)
)− ξn(ω)

∥
∥= 0, (3.17)

for each ω ∈Ω. Now
∥
∥Sn
(

ω,ξn(ω)
)− ξn(ω)

∥
∥

≤ ∥∥Sn(ω,ξn(ω)
)− Sn

(

ω,ηn(ω)
)∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥

≤ kn
∥
∥ξn(ω)−ηn(ω)

∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥

≤ kn
∥
∥ξn(ω)− ((1−βn

)

ξn(ω) +βnT
n
(

ω,ξn(ω)
))∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥

≤ knβn
∥
∥ξn(ω)−Tn

(

ω,ξn(ω)
)∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥

≤ kn(1− ε)
∥
∥ξn(ω)−Tn

(

ω,ξn(ω)
)∥
∥+

∥
∥Sn
(

ω,ηn(ω)
)− ξn(ω)

∥
∥,

(3.18)

for each ω ∈Ω. So we have limn→∞‖Sn(ω,ξn(ω))− ξn(ω)‖ = 0, for every ω ∈Ω. Theorem
3.1 further gives

lim
n→∞

∥
∥ξn(ω)− S

(

ω,ξn(ω)
)∥
∥= 0= lim

n→∞
∥
∥ξn(ω)−T

(

ω,ξn(ω)
)∥
∥, (3.19)

for each ω ∈Ω. �

Theorem 3.3. Let F be a nonempty closed, bounded, and convex subset of a uniformly
convex separable Banach space X satisfying Opial’s condition and let T , S : Ω× F → F and
the sequence of functions {ξn} be as taken in Theorem 3.2, moreover, if S(ω,·) and T(ω,·)
are completely continuous and {x ∈ F : I(ω,x)−T(ω,x)= 0}∩{x ∈ F : I(ω,x)− S(ω,x)=
0} is nonempty, for each ω ∈Ω, then S and T have a common random fixed point and {ξn}
converges weakly to a common random fixed point of S and T .

Proof. Following the similar argument as used in Theorem 3.2, Let ζ : Ω→ F be the com-
mon random fixed point of S and T . Let φ and ϕ be two functions from Ω to F and let
{ξm(ω)} and {ξk(ω)} be two subsequences of {ξn(ω)} such that {ξm(ω)} and {ξk(ω)} con-
verge weakly to φ(ω) and ϕ(ω), for each ω ∈Ω as m, k→∞. As proved in Theorem 3.2,
limn→∞‖ξn(ω)− ζ(ω)‖ exists, for each ω ∈ Ω. Now by limn→∞‖ξn(ω)− S(ω,ξn(ω))‖ =
0 = limn→∞‖ξn(ω)− S(ω,ξn(ω))‖, for each ω ∈Ω and S and T are asymptotically non-
expansive, I − S(ω,·) and I −T(ω,·) are demiclosed with respect to “0,” by Lemma 2.7,
it follows that S(ω,φ(ω)) = φ(ω) and T(ω,φ(ω)) = φ(ω). Now measurability of φ fol-
lows from the fact that T and S are completely continuous random operators and from
Remark 2.4. Thus φ is a common random fixed point of T and S. Similarly, it can be
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shown that ϕ is also a common random fixed point of random operators T and S. Now
we prove that φ(ω)= ϕ(ω), for every ω ∈Ω. If not so, then for some ω ∈Ω, φ(ω) �= ϕ(ω).
Now by Opial’s condition

lim
n→∞

∥
∥ξn(ω)−φ(ω)

∥
∥= lim

m→∞
∥
∥ξm(ω)−φ(ω)

∥
∥ < lim

m→∞
∥
∥ξm(ω)−ϕ(ω)

∥
∥

= lim
n→∞

∥
∥ξn(ω)−ϕ(ω)

∥
∥= lim

k→∞
∥
∥ξk(ω)−ϕ(ω)

∥
∥

< lim
k→∞

∥
∥ξk(ω)−φ(ω)

∥
∥= lim

n→∞
∥
∥ξn(ω)−φ(ω)

∥
∥.

(3.20)

This contradiction concludes the proof. �

Theorem 3.4. Let F be a nonempty compact and convex subset of a uniformly convex sepa-
rable Banach space X and let T ,S : Ω×F → F and the sequence of functions {ξn} be as taken
in Theorem 3.2. Then S and T have a common random fixed point and {ξn} converges to a
common random fixed point of S and T .

Proof. Since

lim
n→∞

∥
∥ξn(ω)− S

(

ω,ξn(ω)
)∥
∥= 0= lim

n→∞
∥
∥ξn(ω)−T

(

ω,ξn(ω)
)∥
∥, (3.21)

for each ω ∈Ω. As F is compact, for each n, define Gn : Ω→ C(X) by Gn(ω)= cl{ξi(ω) :
i ≥ n}, where cl denotes the closure. Define G : Ω→ C(X) by G(ω) =⋂∞n=1Gn(ω). Then
G is measurable and has a measurable selector ξ [31]. We may assume that there exists
a subsequence {ξnj (ω)} of {ξn(ω)} such that ξnj (ω)→ q(ω) as nj →∞, for each ω ∈Ω.
Also, continuity of S and T gives S(ω,ξnj (ω))→ q(ω) and T(ω,ξnj (ω))→ q(ω) as nj →
∞, for each ω ∈ Ω. Now (3.21) gives S(ω,q(ω)) = q(ω) = T(ω,q(ω)), for each ω ∈ Ω.
Hence q : Ω→ F is a common random fixed point of S and T . Since limn→∞‖ξn(ω)−
ζ(ω)‖ exists for any common random fixed point ζ : Ω→ F of random operators S and
T . Therefore, {ξn} must itself converge to a common random fixed point q : Ω→ F of
random operators S and T . �

4. Convergence of random iterative scheme

The term quasi-nonexpansiveness was first coined by Diaz and Metcalf [13]. Das et al.
[12], Liu [21] also studied iterative schemes for quasi-nonexpansive mappings, Liu [20]
and Liu [23] studied iteration process for different mappings with errors in Banach spaces.
We present in this section a random iterative scheme for asymptotically quasi-nonexpan-
sive random operator. We also establish the necessary and sufficient condition for the
convergence of this scheme to a random fixed point of the random operator stated afore
in the framework of Banach spaces.

Theorem 4.1. Let F be a nonempty weakly compact and convex subset of a separable Ba-
nach space X , let T : Ω×F → F be a continuous asymptotically quasi-nonexpansive random
operator with

∑∞
n=1 kn <∞ and (I − T)(ω,·) is demiclosed at zero, and the set {x ∈ F :

I(ω,x)−T(ω,x)= 0} is nonempty, for each ω ∈Ω. Let ξ0 : Ω→ F be any fixed measurable
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mapping. Define the sequence of measurable functions {ξn},{ηn},{ϕn}, and {ζn} from Ω to
F as

ξn+1(ω)= αnξn(ω) +βnT
n
(

ω,ηn(ω)
)

+ γnϕn(ω),

ηn(ω)= αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

+ γnζn(ω),
(4.1)

where the sequences of numbers {αn}, {βn},{γn}, {αn}, {βn}, and {γn} are in [0,1] sat-
isfying αn + βn + γn = αn + βn + γn = 1,

∑∞
n=1 γn, and

∑∞
n=1 γn <∞, for n = 1,2, . . . . Also if

{‖ϕn(ω)‖} and {‖ζn(ω)‖} are bounded, for every ω ∈Ω, then limn→∞‖ξn(ω)−η(ω)‖ = 0
for some η ∈ RF(T) if and only if limn→∞ inf dist(ξn(ω),{ξ(ω) : ξ ∈ RF(T)})= 0, for each
ω ∈Ω.

Proof. We note that RF(T) is nonempty by [30, Theorem 3.1]. Now if for some ξ ∈
RF(T), limn→∞‖ξn(ω)− ξ(ω)‖ = 0, for each ω ∈Ω then obviously limn→∞ inf dist(ξn(ω),
{ξ(ω) : ξ ∈ RF(T)})= 0, for every ω ∈Ω. Now for any ξ ∈ RF(T),

∥
∥ξn+1(ω)− ξ(ω)

∥
∥

= ∥∥αnξn(ω) +βnT
n
(

ω,ηn(ω)
)

+ γnϕn(ω)− ξ(ω)
∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

∥
∥Tn

(

ω,ηn(ω)
)− ξ(ω)

∥
∥+ γn

∥
∥ϕn(ω)− ξ(ω)

∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

(

1 + kn
)∥
∥ηn(ω)− ξ(ω)

∥
∥+ γn

∥
∥ϕn(ω)− ξ(ω)

∥
∥,

(4.2)

∥
∥ηn(ω)− ξ(ω)

∥
∥

= ∥∥αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

+ γnζn(ω)− ξ(ω)
∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

(

1 + kn
)∥
∥ξn(ω)− ξ(ω)

∥
∥+ γn

∥
∥ζn(ω)− ξ(ω)

∥
∥.

(4.3)

Now using (4.3) in (4.2), we have
∥
∥ξn+1(ω)− ξ(ω)

∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

(

1 + kn
)

αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βnβn

(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥

+ γnβn
(

1 + kn
)∥
∥ζn(ω)− ξ(ω)

∥
∥+ γn

∥
∥ϕn(ω)− ξ(ω)

∥
∥

= αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+

(

1−αn− γn
)(

1 + kn
)

αn
∥
∥ξn(ω)− ξ(ω)

∥
∥

+βn
(

1−αn− γn
)(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω)

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+

(

1−αn
)(

1 + kn
)2
αn
∥
∥ξn(ω)− ξ(ω)

∥
∥

+βn
(

1−αn
)(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω)

≤ αn
(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+

(

1−αn
)(

1 + kn
)2(

αn +βn
)∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω)

≤ αn
(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+

(

1−αn
)(

1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω)

= (1 + kn
)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω),

(4.4)
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for every ω ∈Ω, where mn : Ω→R is given by

mn(ω)= βn
(

1 + kn
)

γn
∥
∥ζn(ω)− ξ(ω)

∥
∥+ γn

∥
∥ϕn(ω)− ξ(ω)

∥
∥. (4.5)

Thus for every ω ∈Ω and ξ ∈ RF(T), we have

∥
∥ξn+1(ω)− ξ(ω)

∥
∥≤ (1 + kn

)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω). (4.6)

Since
∑∞

n=1 γn and
∑∞

n=1 γn<∞. Also,
∑∞

n=1 kn<∞{‖ϕn(ω)‖} and {‖ζn(ω)‖} are bounded,
for every ω ∈Ω. Thus,

∑∞
n=1mn(ω) <∞, for every ω ∈Ω. Now using (4.6), we have

dist
(

ξn+1(ω),RF(T)
)≤ (1 + kn

)2
dist

(

ξn(ω),RF(T)
)

+mn(ω), (4.7)

for every ω ∈Ω. Now Lemma 2.9 and limn→∞ inf dist(ξn(ω),{ξ(ω) : ξ ∈ RF(T)})= 0 im-
ply limn→∞dist(ξn(ω),{ξ(ω) : ξ ∈ RF(T)})= 0, for every ω ∈Ω. Now further using (4.6),
we have

∥
∥ξn+m(ω)− ξ(ω)

∥
∥

≤ (1 + kn+m−1
)2∥
∥ξn+m−1(ω)− ξ(ω)

∥
∥+mn+m−1(ω)

≤ exp
(

2kn+m−1
)∥
∥ξn+m−1(ω)− ξ(ω)

∥
∥+mn+m−1(ω)

≤ exp
(

2kn+m−1
)

exp
(

2kn+m−2
)∥
∥ξn+m−2(ω)− ξ(ω)

∥
∥

+ exp
(

2kn+m−1
)

mn+m−2(ω) +mn+m−1(ω)

≤ exp2
(

kn+m−1
)

+
(

kn+m−2
)∥
∥ξn+m−2(ω)− ξ(ω)

∥
∥

+ exp
(

2kn+m−1
)[

mn+m−2(ω) +mn+m−1(ω)
]

...

≤ exp

(

2
n+m−1
∑

j=n
kj

)

∥
∥ξn(ω)− ξ(ω)

∥
∥+ exp

(

2
n+m−1
∑

j=n
kj

)n+m−1
∑

j=n
mj(ω)

≤M
∥
∥ξn(ω)− ξ(ω)

∥
∥+M

n+m−1
∑

j=n
mj(ω).

(4.8)

That is,

∥
∥ξn+m(ω)− ξ(ω)

∥
∥≤M

∥
∥ξn(ω)− ξ(ω)

∥
∥+M

n+m−1
∑

j=n
mj(ω), (4.9)

for every ω ∈ Ω and m, n ∈ N, where M = exp(2
∑∞

j=n kj) > 0, for each ω ∈ Ω. Since
limn→∞dist(ξn(ω),{ξ(ω) : ξ ∈ RF(T)}) = 0 and

∑∞
n=1mn(ω) <∞, for every ω ∈Ω. Take
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ε>0, there exists n1∈N such that dist(ξn(ω),{ξ(ω) : ξ∈RF(T)})<ε/3M and
∑n+m−1

k=n mk(ω)<
ε/3M, for each ω ∈Ω and n ≥ n1. So, there exists ξ∗ ∈ RF(T)‖ξn(ω)− ξ∗(ω)‖ < ε/3M,
for every ω ∈Ω and n≥ n1. Consider for n≥ n1 and ω ∈Ω,

∥
∥ξn+m(ω)− ξn(ω)

∥
∥

≤ ∥∥ξn+m(ω)− ξ∗(ω)
∥
∥+

∥
∥ξ∗(ω)− ξn(ω)

∥
∥

≤M
∥
∥ξn(ω)− ξ(ω)

∥
∥+M

n+m−1
∑

j=n
mj(ω) +M(ω)

∥
∥ξ∗(ω)− ξn(ω)

∥
∥

<M
ε

3M
+M

ε

3M
+M

ε

3M
= ε.

(4.10)

It implies that {ξn(ω)} is a Cauchy sequence, for every ω ∈Ω. Therefore, ξn(ω)→ p(ω),
for every ω ∈ Ω, p : Ω→ F being the limit of sequence of measurable functions is also
measurable. There exist n2,n3 ∈ N such that for n ≥ n2,n3 and ξ∗∗ ∈ RF(T), we have
‖ξn(ω)− p(ω)‖ < ε/2(2 + k1) and ‖ξn(ω)− ξ∗∗(ω)‖ < ε/2(4 + 3k1), for each ω ∈Ω. Put
n4 =max{n2,n3}. Now

∥
∥T
(

ω, p(ω)
)− p(ω)

∥
∥

≤ ∥∥T(ω, p(ω)
)− ξ∗∗(ω)

∥
∥+ 2

∥
∥T
(

ω,ξn4 (ω)
)− ξ∗∗(ω)

∥
∥

+
∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥+

∥
∥ξn4 (ω)− p(ω)

∥
∥

≤ (1 + kn
)∥
∥p(ω)− ξ∗∗(ω)

∥
∥+ 2

(

1 + kn
)∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥

+
∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥+

∥
∥ξn4 (ω)− p(ω)

∥
∥

≤ (1 + kn
)∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥+

(

1 + kn
)∥
∥p(ω)− ξn4 (ω)

∥
∥

+ 2
(

1 + kn
)∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥+

∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥+

∥
∥ξn4 (ω)− p(ω)

∥
∥

≤ (2 + kn
)∥
∥p(ω)− ξn4 (ω)

∥
∥+

(

4 + 3kn
)∥
∥ξn4 (ω)− ξ∗∗(ω)

∥
∥

<
(

2 + kn
) ε

2
(

2 + k1
) +

(

4 + 3kn
) ε

2
(

4 + 3k1
) = ε,

(4.11)

for every ω ∈Ω. Hence p ∈ RF(T). �

Remark 4.2. Let F be a nonempty weakly compact and convex subset of a separable Ba-
nach space X , let T : Ω×F → F be a continuous asymptotically quasi-nonexpansive ran-
dom operator with

∑∞
n=1 kn <∞ and (I −T)(ω,·) is demiclosed at zero. Let ξ0 : Ω→ F

be any fixed measurable mapping. Define the sequence of measurable functions {ξn},
{ηn}, {ϕn}, and {ζn} from Ω to F as taken in Theorem 4.1. Then {ξn} converges to some
p ∈ RF(T) if and only if there exists some infinite subsequence of {ξn} which converges
to p ∈ RF(T).
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Theorem 4.3. Let F be a nonempty compact and convex subset of a separable uniformly con-
vex Banach space X , let T : Ω×F → F be a continuous (L−α) uniform Lipschitz asymptot-
ically quasi-nonexpansive random operator with

∑∞
n=1 kn <∞. Define the sequence of mea-

surable functions {ξn}, {ηn}, {ρn}, and {ζn} from Ω to F as

ξn+1(ω)= αnξn(ω) +βnT
n
(

ω,ηn(ω)
)

+ γnρn(ω),

ηn(ω)= αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

+ γnζn(ω),
(4.12)

where the sequences of numbers {αn} in [α,1− α], {βn} in [β,1− β], {αn} in [α,1], {βn}
in [0,β], and {γn},{γn} in [0,1] satisfy αn + βn + γn = αn + βn + γn = 1, limn→∞βn = 0,
∑∞

n=1 γn,
∑∞

n=1 γn <∞, for some α,β ∈ (0,1), where n = 1,2, . . . . Then {ξn} converges to
some random fixed point of T .

Proof. The existence of random fixed point of T follows from Bharucha-Reid’s stochastic
analogue (see [10]) of well-known Schauder’s fixed point theorem. Let ξ : Ω→ F be the
random fixed point of T . Also as proved in Theorem 4.1, we have

∥
∥ξn+1(ω)− ξ(ω)

∥
∥≤ (1 + kn

)2∥
∥ξn(ω)− ξ(ω)

∥
∥+mn(ω), (4.13)

for every ω ∈Ω. Since,
∑∞

n=1 γn and
∑∞

n=1 γn <∞. Also
∑∞

n=1 kn <∞ and F is bounded so
∑∞

n=1mn(ω) <∞, for every ω ∈Ω. Thus from Lemma 2.9, we conclude limn→∞‖ξn(ω)−
ξ(ω)‖ exists, for each ω ∈Ω. Consider

∥
∥ηn(ω)− ξ(ω)

∥
∥

≤ ∥∥αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

+ γnζn(ω)− ξ(ω)
∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

∥
∥Tn

(

ω,ξn(ω)
)− ξ(ω)

∥
∥+ γn

∥
∥ζn(ω)− ξ(ω)

∥
∥

≤ αn
∥
∥ξn(ω)− ξ(ω)

∥
∥+βn

(

1 + kn
)∥
∥ξn(ω)− ξ(ω)

∥
∥+ γn

∥
∥ζn(ω)− ξ(ω)

∥
∥,

(4.14)

for every ω ∈Ω. Thus

lim sup
n→∞

∥
∥ηn(ω)− ξ(ω)

∥
∥≤ lim sup

n→∞

∥
∥ξn(ω)− ξ(ω)

∥
∥= lim

n→∞
∥
∥ξn(ω)− ξ(ω)

∥
∥, (4.15)

for every ω ∈Ω. Also

lim sup
n→∞

∥
∥Tn

(

ω,ηn(ω)
)− ξ(ω)

∥
∥

≤ lim sup
n→∞

(

1 + kn
)∥
∥ηn(ω)− ξ(ω)

∥
∥

≤ lim sup
n→∞

∥
∥ηn(ω)− ξ(ω)

∥
∥≤ lim

n→∞
∥
∥ξn(ω)− ξ(ω)

∥
∥,

(4.16)
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for each ω ∈Ω. Finally,

lim
n→∞

∥
∥ξn+1(ω)− ξ(ω)

∥
∥

= lim
n→∞

∥
∥αnξn(ω) +βnT

n
(

ω,ηn(ω)
)

+ γnρn(ω)− ξ(ω)
∥
∥

= lim
n→∞

∥
∥
∥αn

(

ξn(ω)− ξ(ω)
)

+βn
(

Tn
(

ω,ηn(ω)
)− ξ(ω)

)

+ γn
(

ρn(ω)− ξ(ω)
)∥∥
∥

= lim
n→∞

∥
∥
∥
∥
∥
∥
∥
∥
∥

αn

[
(

ξn(ω)− ξ(ω)
)

+
γn

2αn

(

ρn(ω
)− ξ(ω)

)
]

βn

[
(

Tn
(

ω,ηn(ω)
)− ξ(ω)

)

+
γn

2βn

(

ρn(ω)− ξ(ω)
)
]

∥
∥
∥
∥
∥
∥
∥
∥
∥

= lim
n→∞

∥
∥ξn(ω)− ξ(ω)

∥
∥, for every ω ∈Ω.

(4.17)

Thus from Lemma 2.8, we have for every ω ∈Ω,

lim
n→∞

∥
∥
∥
∥

(

ξn(ω
)−Tn

(

ω,ηn(ω)
)

+
(
γn

2αn
− γn

2βn

)
(

ρn(ω)− ξ(ω)
)
]∥
∥
∥
∥= 0. (4.18)

Since γn→ 0 and ‖ρn(ω)− ξ(ω)‖ is bounded, thus

lim
n→∞

∥
∥
∥
∥

(
γn

2αn
− γn

2βn

)
(

ρn(ω)− ξ(ω)
)
∥
∥
∥
∥= lim

n→∞

∥
∥
∥
∥γn

(
1

2αn
− 1

2βn

)∥
∥
∥
∥ lim
n→∞

∥
∥ρn(ω)− ξ(ω)

∥
∥,

(4.19)

for each ω ∈Ω. Therefore,

lim
n→∞

∥
∥ξn(ω)−Tn

(

ω,ηn(ω)
)∥
∥= 0, for each ω ∈Ω. (4.20)

Since F is compact, for each n, defineGn : Ω→ C(X) byGn(ω)= cl{ξi(ω) : i≥ n}, where cl
denotes the closure. Define G : Ω→ C(X) by G(ω)=⋂∞n=1Gn(ω). Then G is measurable
and has a measurable selector ξ [31]. We may assume that there exists a subsequence
{ξnj (ω)} of {ξn(ω)} such that for each ω ∈Ω,

ξnj (ω)−→ p(ω), as nj −→∞. (4.21)

Now using γnj → 0 and using (4.20), we obtain

∥
∥ξnj+1(ω)− ξnj (ω)

∥
∥

≤ ∥∥αnj ξnj (ω) +βnjT
nj
(

ω,ηnj (ω)
)

+ γnj ρnj (ω)− ξnj (ω)
∥
∥

≤ βnj

∥
∥Tnj

(

ω,ηnj (ω)
)− ξnj (ω)

∥
∥+ γnj

∥
∥ρnj (ω)− ξnj (ω)

∥
∥−→ 0,

(4.22)
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for each ω ∈Ω when nj →∞. Also βn→ 0, γn→ 0, ‖ζn(ω)− ξn(ω)‖ is bounded and using
(4.20), we have

∥
∥ηn(ω)− ξn(ω)

∥
∥

= ∥∥αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

+ γnζn(ω)− ξn(ω)
∥
∥

≤ βn
∥
∥Tn

(

ω,ξn(ω)
)− ξn(ω)

∥
∥+ γn

∥
∥ζn(ω)− ξn(ω)

∥
∥−→ 0,

(4.23)

for each ω ∈Ω when n→∞. From (4.20) and (4.21), we have

Tnj
(

ω,ηnj (ω)
)−→ p(ω), for each ω∈Ω, when nj −→∞. (4.24)

Now
∥
∥T
(

ω, p(ω)
)− p(ω)

∥
∥

≤ ∥∥p(ω)−Tnj+1(ω,ηnj+1(ω)
)∥
∥+

∥
∥Tnj+1(ω,ηnj+1(ω)

)−Tnj+1(ω,ξnj+1(ω)
)∥
∥

+
∥
∥Tnj+1(ω,ξnj+1(ω)

)−Tnj+1(ω,ξnj (ω)
)∥
∥

+
∥
∥Tnj+1(ω,ξnj (ω)

)−Tnj+1(ω,ηnj (ω)
)∥
∥+

∥
∥T
(

ω, p(ω)
)−Tnj+1(ω,ηnj (ω)

)∥
∥

≤ ∥∥p(ω)−Tnj+1(ω,ηnj+1(ω)
)∥
∥+L

∥
∥ηnj+1(ω)− ξnj+1(ω)

∥
∥
α

+L
∥
∥ξnj+1(ω)− ξnj (ω)

∥
∥
α

+L
∥
∥ξnj (ω)−ηnj (ω)

∥
∥
α

+L
∥
∥Tnj

(

ω,ηnj (ω)
)− p(ω)

∥
∥
α
,

(4.25)

for each ω ∈Ω. Therefore, T(ω, p(ω)) = p(ω), for each ω ∈Ω. The result follows from
Remark 4.2. �

Remark 4.4. If we take γn = γn = 0 and replace Tn by T in Theorem 4.3, then we obtain
Ishikawa random scheme for asymptotically quasi-nonexpansive random operator.

Theorem 4.5. Let F be a nonempty weakly compact and convex subset of a separable Ba-
nach space X , let T : Ω×F → F be a continuous asymptotically quasi-nonexpansive random
operator with

∑∞
n=1 kn <∞ and (I −T)(ω,·) is demiclosed at zero. Let ξ0 : Ω→ F be any

fixed measurable mapping. Define the sequence of measurable functions {ξn} and {ηn} from
Ω to F as

ξn+1(ω)= αnξn(ω) +βnT
n
(

ω,ηn(ω)
)

,

ηn(ω)= αnξn(ω) +βnT
n
(

ω,ξn(ω)
)

,
(4.26)

where the sequences of numbers {αn}, {βn}, {αn}, and {βn} are in [0,1] satisfying αn +βn =
αn +βn = 1, for each n= 1,2, . . . .

Then limn→∞‖ξn(ω)−η(ω)‖ = 0 for some η ∈ RF(T) if for each ω ∈Ω, limn→∞‖ξn(ω)
− T(ω,ξn(ω))‖ = 0 and there exists a constant L > 0 such that ‖T0(ω,ξn(ω)) − T(ω,
ξn(ω))‖ ≥ Ldist(ξn(ω),{ξ(ω) : ξ ∈ RF(T)}).
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Proof. Note that RF(T) �= φ. Since ‖ξn(ω) − T(ω,ξn(ω))‖ ≥ Ldist(ξn(ω),{ξ(ω) : ξ ∈
RF(T)}), and T(ω,ξn(ω))→ ξn(ω), for each ω ∈Ω. Therefore, limn→∞dist(ξn(ω),{ξ(ω) :
ξ ∈ RF(T)}) = 0, for every ω ∈ Ω. This concludes the result using Theorem 4.1 and
Remark 4.4. �
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