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The Sumudu transform, whose fundamental properties are presented in this paper, is still
not widely known, nor used. Having scale and unit-preserving properties, the Sumudu
transform may be used to solve problems without resorting to a new frequency domain.
In 2003, Belgacem et al. have shown it to be the theoretical dual to the Laplace transform,
and hence ought to rival it in problem solving. Here, using the Laplace-Sumudu duality
(LSD), we avail the reader with a complex formulation for the inverse Sumudu trans-
form. Furthermore, we generalize all existing Sumudu differentiation, integration, and
convolution theorems in the existing literature. We also generalize all existing Sumudu
shifting theorems, and introduce new results and recurrence results, in this regard. More-
over, we use the Sumudu shift theorems to introduce a paradigm shift into the thinking
of transform usage, with respect to solving differential equations, that may be unique to
this transform due to its unit-preserving properties. Finally, we provide a large and more
comprehensive list of Sumudu transforms of functions than is available in the literature.

Copyright © 2006 F. B. M. Belgacem and A. A. Karaballi. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Due to its simple formulation and consequent special and useful properties, the Sumudu
transform has already shown much promise. It is revealed herein and elsewhere that it
can help to solve intricate problems in engineering mathematics and applied sciences.
However, despite the potential presented by this new operator, only few theoretical inves-
tigations have appeared in the literature, over a fifteen-year period. Most of the available
transform theory books, if not all, do not refer to the Sumudu transform. Even in rela-
tively recent well-known comprehensive handbooks, such as Debnath [6] and Poularikas
[8], no mention of the Sumudu transform can be found. Perhaps it is because no trans-
form under this name (as such) was declared until the late 80’s and early 90’s of the
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previous century (see Watugala [10]). On the other hand, for historical accountability,
we must note that a related formulation, called s-multiplied Laplace transform, was an-
nounced as early as 1948 (see Belgacem et al. [5] and references), if not before.

The Weerakoon [13] paper, showing Sumudu transform applications to partial dif-
ferential equations, immediately followed Watugala’s [10] seminal work. Watugala’s [11]
work showed that the Sumudu transform can be effectively used to solve ordinary dif-
ferential equations and engineering control problems. Once more, Watugala’s work was
followed by Weerakoon [14] introducing a complex inversion formula for the Sumudu
transform (see Theorem 3.1 in Section 3). The relatively recent sequence [1–3], indicated
how to use the transform to solve integrodifferential equations, with emphasis on dy-
namic systems. Watugala [12] extended the transform to two variables with emphasis on
solutions to partial differential equations.

Belgacem et al. [5] presented applications to convolution type integral equations with
focus on production problems. There, a Laplace-Sumudu duality was highlighted, and
used to establish or corroborate many fundamental useful properties of this new trans-
form. In particular a two-page table of the transforms of some of the basic functions was
provided. At the end of this paper, analogous to the lengthy Laplace transform list found
in Spiegel [9], we provide Sumudu transforms for a more comprehensive list of func-
tions. Aside from a paradigm change into the thought process of Sumudu transform us-
age with respect to applications to differential equations, we introduce more general shift
theorems that seem to have combinatorial connections to generalized stirling numbers.
Furthermore, we establish more general Sumudu differentiation, integration, and convo-
lution theorems than already established in the literature. Moreover, we use the Laplace-
Sumudu duality (LSD) to invoke a complex inverse Sumudu transform, as a Bromwhich
contour integral formula.

2. The discrete Sumudu transform

Over the set of functions,

A= { f (t) | ∃M, τ1,τ2 > 0,
∣
∣ f (t)

∣
∣ <Me|t|/τ j , if t ∈ (−1) j × [0,∞)

}
, (2.1)

the Sumudu transform is defined by

G(u)= S[ f (t)
]=

∫∞

0
f (ut)e−tdt, u∈ (− τ1,τ2

)
. (2.2)

Among others, the Sumudu transform was shown to have units preserving properties,
and hence may be used to solve problems without resorting to the frequency domain.
As will be seen below, this is one of many strength points for this new transform, es-
pecially with respect to applications in problems with physical dimensions. In fact, the
Sumudu transform which is itself linear, preserves linear functions, and hence in par-
ticular does not change units (see for instance Watugala [11] or Belgacem et al. [5]).
Theoretically, this point may perhaps best be illustrated as an implication of this more
global result.
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Theorem 2.1. The Sumudu transform amplifies the coefficients of the power series function,

f (t)=
∞∑

n=0

ant
n, (2.3)

by sending it to the power series function,

G(u)=
∞∑

n=0

n!anun. (2.4)

Proof. Let f (t) be in A. If f (t)=∑∞
n=0 ant

n in some interval I ⊂R, then by Taylor’s func-
tion expansion theorem,

f (t)=
∞∑

k=0

f (n)(0)
n!

tn. (2.5)

Therefore, by (2.2), and that of the gamma function Γ (see Table 2.1), we have

S
[
f (t)

]=
∫∞

0

∞∑

k=0

f (n)(0)
n!

(ut)ne−tdt =
∞∑

k=0

f (n)(0)
n!

un
∫∞

0
tne−tdt

=
∞∑

k=0

f (n)(0)
n!

unΓ(n+ 1)=
∞∑

k=0

f (n)(0)un.

(2.6)

Consequently, it is perhaps worth noting that since

S
[
(1 + t)m

]= S
m∑

n=0

Cm
n t

n = S
m∑

n=0

m!
n!(m−n)!

un =
m∑

n=0

m!
(m−n)!

un =
m∑

n=0

Pm
n u

n, (2.7)

the Sumudu transform sends combinations, Cm
n , into permutations, Pm

n , and hence may
seem to incur more order into discrete systems.

Also, a requirement that S[ f (t)] converges, in an interval containing u= 0, is provided
by the following conditions when satisfied, namely, that

(i) f (n)(0)−→ 0 as n−→∞,

(ii) lim
n→∞

∣
∣
∣
∣
∣
f (n+1)(0)
f (n)(0)

u

∣
∣
∣
∣
∣ < 1.

(2.8)

This means that the convergence radius r of S[ f (t)] depends on the sequence f (n)(0),
since

r = lim
n→∞

∣
∣
∣
∣
∣

f (n)(0)
f (n+1)(0)

∣
∣
∣
∣
∣. (2.9)

Clearly, the Sumudu transform may be used as a signal processing or a detection tool,
especially in situations where the original signal has a decreasing power tail. However,
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Table 2.1. Special functions.

(1) Gamma function Γ(n)=
∫∞

0
un−1e−udu, n > 0

(2) Beta function B(m,n)=
∫ 1

0
um−1(1−u)n−1du= Γ(m)Γ(n)

Γ(m+n)

(3) Bessel function
Jn(x)= xn

2nΓ(n+ 1)

×
{

1− x2

2(2n+ 2)
+

x4

2.4(2n+ 2)(2n+ 4)
−···

}

(4) Modified Bessel function
In(x)= i−nJn(ix)= xn

2nΓ(n+ 1)

×
{

1 +
x2

2(2n+ 2)
+

x4

2.4(2n+ 2)(2n+ 4)
−···

}

(5) Error function erf(t)= 2√
π

∫ t

0
e−u

2
du

(6) Complementary error function erf(t)= 1− erf(t)= 2√
π

∫∞

t
e−u

2
du

(7) Exponential integral Ei(t)=
∫∞

t

e−u

u
du

(8) Sine integral Si(t)=
∫ t

0

sinu
u

du

(9) Cosine integral Ci(t)=
∫ t

0

cosu
u

du

(10) Fresnel sine integral S(t)=
∫ t

0
sinu2du

(11) Fresnel cosine integral C(t)=
∫ t

0
cosu2du

(12) Laguerre polynomials Ln(t)= et

n!
dn

dtn
(tne−t), n= 0,1,2, . . .

care must be taken, especially if the power series is not highly decaying. This next example
may instructively illustrate the stated concern. For instance, consider the function

f (t)=
⎧
⎨

⎩

ln(t+ 1) if t ∈ (−1,1],

0 otherwise.
(2.10)

Since f (t)=∑∞
n=1(−1)n−1(tn/n), then except for u= 0,

S
[
f (t)

]=
∞∑

n=1

(−1)n−1(n− 1)!un (2.11)

diverges throughout, because its convergence radius

r = lim
n→∞

∣
∣
∣
∣
∣

(−1)n−1(n− 1)!
(−1)nn!

∣
∣
∣
∣
∣= lim

n→∞
1
n
= 0. (2.12)

Theorem 2.1 implies a transparent inverse transform in the discrete case, that of getting
the original function from its given transform, in the obvious manner. �
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Corollary 2.2. Up to null functions, the inverse discrete Sumudu transform, f (t), of the
power series G(u)=∑∞

n=0 bnu
n, is given by

S−1[G(u)
]= f (t)=

∞∑

n=0

(
1
n!

)
bnt

n. (2.13)

In the next section, we provide a general inverse transform formula, albeit in a complex
setting.

3. The Laplace-Sumudu duality and the complex Sumudu inversion formula

In Belgacem et al. [5], the Sumudu transform was shown to be the theoretical dual of
the Laplace transform. Hence, one should be able to rival it to a great extent in problem
solving. Defined for Re(s) > 0, the Laplace transform is given by

F(s)= $
(
f (t)

)=
∫∞

0
e−st f (t)dt. (3.1)

In consideration of the definition in (2.2), the Sumudu and Laplace transforms exhibit a
duality relation expressed as follows:

G
(

1
s

)
= sF(s), F

(
1
u

)
= uG(u). (3.2)

Equation (3.2), which from now on shall be referred as the LSD, which is short for the
Laplace-Sumudu duality, is illustrated by the fact that the Sumudu and Laplace trans-
forms interchange the images of the Dirac function, δ(t), and the Heaviside function,
H(t), since

S
[
H(t)

]= $
(
δ(t)

)= 1, S
[
δ(t)

]= $
(
H(t)

)= 1
u
. (3.3)

Similarly, this duality is also illustrated by the Sumudu and Laplace transforms inter-
change of the images of sin(t) and cos(t):

S
[

cos(t)
]= $

(
sin(t)

)= 1
1 +u2

, S
[

sin(t)
]= $

(
cos(t)

)= u

1 +u2
. (3.4)

This is also consistent with the established differentiation and integration formulas:

S
[
f ′(t)

]= S
[
f (t)

]− f (0)
u

, (3.5)

S
[∫ t

0
f (τ)dτ

]
= uS

[
f (t)

]
. (3.6)

In terms of applications, the LSD is further demonstrated by the following example.
To obtain the solution,

x(t)= 1− e−t, (3.7)
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for the initial value problem,

dx

dt
+ x = 1, x(0)= 0, (3.8)

we traditionally resort to the Laplace transform to form the auxiliary equation, F(s)(s+
1)= 1/s, from which we get F(s)= 1/s(1 + s)= 1/s− 1/(1 + s), and then invert.

Alternatively, using the Sumudu transform, we use (3.5) to get the auxiliary equation,
[G(u)/u] +G(u)= 1, which exhibits the transform G(u):

G(u)= S[x(t)
]= u

(u+ 1)
= 1− 1

(1 +u)
. (3.9)

Once again, using entries (1) and (5) in Table 3.1, we get x(t)= S−1[G(u)], as expected
in (3.7).

Nevertheless, while it is well to rely on lists and tables of functions transforms, to find
solutions to differential equations such as in the previous example, it is always a far su-
perior position for practicing engineers and applied mathematicians to have available
formula for the inverse transform (see Weerakoon [14]). Luckily, the LSD in (3.2) helps
us to establish one such useful tool. Indeed, by virtue of the Cauchy theorem, and the
residue theorem, the following is a Bromwich contour integration formula for the com-
plex inverse Sumudu transform.

Theorem 3.1. Let G(u) be the Sumudu transform of f (t) such that
(i) G(1/s)/s is a meromorphic function, with singularities having Re(s) < γ, and

(ii) there exists a circular region Γ with radius R and positive constants, M and K , with

∣
∣
∣
∣
G(1/s)

s

∣
∣
∣
∣ <MR−k, (3.10)

then the function f (t), is given by

S−1[G(s)
]= 1

2πi

∫ γ+i∞

γ−i∞
estG

(
1
s

)
ds

s
=
∑

residues
[
est

G(1/s)
s

]
. (3.11)

Proof. Let F(s)= $( f (t)), and G(u)= S[ f (t)] be the Laplace and Sumudu transforms of
f (t), respectively, then by the complex inversion formula for the Laplace transform (see
for instance Spiegel [9, Chapter 7]), for t > 0, the function f (t) is given by

f (t)= $−1[F(s)
]= 1

2πi

∫ γ+i∞

γ−i∞
estF(s)ds. (3.12)

Here s is comlex, s = x + iy, and the integration is performed in the complex plane
along the line s= γ. The real number γ is chosen, albeit otherwise arbitrarily, to supersede
the real part of any and all singularities of F(s) (this is condition (i) in the theorem). This
includes branch points, essential singularities, and poles.

In practice, the previous integral is computed in the light of a suitable Bromwich con-
tour. The Bromwhich contour BC is composed of the segment [A,B] = [γ− iT ,γ + iT],
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Table 3.1. Special Sumudu transforms.

f (t) G(u)= S( f (t))

1 1 1

2 t u

3
tn−1

(n− 1)!
, n= 1,2, . . . un−1

4
tn−1

Γ(n)
, n > 0 un−1

5 eat
1

1− au

6
tn−1eat

(n− 1)!
, n= 1,2, . . .

un−1

(1− au)n

7
tn−1eat

Γ(n)
un−1

(1− au)n

8
sinat
a

u

1 + a2u2

9 cosat
1

1 + a2u2

10
ebt sinat

a

u

(1− bu)2 + a2u2

11 ebt cosat
1− bu

(1− bu)2 + a2u2

12
sinhat

a

u

1− a2u2

13 coshat
1

1− a2u2

14
ebt sinhat

a

u

(1− bu)2− a2u2

15 ebt coshat
1− bu

(1− bu)2− a2u2

16
ebt − eat

b− a
, a 	= b

u

(1− bu)(1− au)

17
bebt − aeat

b− a
, a 	= b

1
(1− bu)(1− au)

18
sinat− at cosat

2a3

u3

(1 + a2u2)2

19
t sinat

2a
u2

(1 + a2u2)2

20
sinat+ at cosat

2a
u

(1 + a2u2)2

21 cosat− 1
2
at sinat

1
(1 + a2u2)2

22 t cosat
u(1− a2u2)
(1 + a2u2)2
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

23
at coshat− sinhat

2a3

u3

(1− a2u2)2

24
t sinhat

2a
u2

(1− a2u2)2

25
sinhat+ at coshat

2a
u

(1− a2u2)2

26 coshat+
1
2
at sinhat

1
(1− a2u2)2

27 t coshat
u(1 + a2u2)
(1− a2u2)2

28
(3− a2t2)sinat− 3at cosat

8a5

u5

(1 + a2u2)3

29
t sinat− at2 cosat

8a3

u4

(1 + a2u2)3

30
(1 + a2t2)sinat− at cosat

8a3

u3

(1 + a2u2)3

31
3t sinat+ at2 cosat

8a
u2

(1 + a2u2)3

32
(3− a2t2)sinat+ 5at cosat

8a
u

(1 + a2u2)3

33
(8− a2t2)cosat− 7at sinat

8
1

(1 + a2u2)3

34
t2 sinat

2a
u3(3− a2u2)
(1 + a2u2)3

35
1
2
t2 cosat

u2(1− 3a2u2)
(1 + a2u2)3

36
1
6
t3 cosat

u3(1− 6a2u2 + a4u4)
(1 + a2u2)4

37
t3 sinat

24a
u4(1− a2u2)
(1 + a2u2)4

38
(3 + a2t2)sinhat− 3at coshat

8a5

u5

(1− a2u2)3

39
at2 coshat− t sinhat

8a3

u4

(1− a2u2)3
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

40
at coshat+ (a2t2− 1)sinhat

8a3

u3

(1− a2u2)3

41
3t sinhat+ at2 coshat

8a
u2

(1− a2u2)3

42
(3 + a2t2)sinhat+ 5at coshat

8a
u

(1− a2u2)3

43
(8 + a2t2)coshat+ 7at sinhat

8
1

(1− a2u2)3

44
t2 sinhat

2a
u3(3 + a2u2)
(1− a2u2)3

45
1
2
t2 coshat

u2(1 + 3a2u2)
(1− a2u2)3

46
1
6
t3 coshat

u3(1 + 6a2u2 + a4u4)
(1− a2u2)4

47
t3 sinhat

24a
u4(1 + a2u2)
(1− a2u2)4

48
eat/2

3a2

{√
3sin

√
3at
2

− cos

√
3at
2

+ e−3at/2

}
u2

1 + a3u3

49
eat/2

3a

{
cos

√
3at
2

+
√

3sin

√
3at
2

− e−3at/2

}
u

1 + a3u3

50
1
3

(
e−at + 2eat/2 cos

√
3at
2

)
1

1 + a3u3

51
e−at/2

3a2

{
e3at/2− cos

√
3at
2

−√3sin

√
3at
2

}
u2

1− a3u3

52
e−at/2

3a

{√
3sin

√
3at
2

− cos

√
3at
2

+ e3at/2

}
u

1− a3u3

53
1
3

(
eat + 2e−at/2 cos

√
3at
2

)
1

1− a3u3

54
1

4a3
(sinat coshat− cosat sinhat)

u3

1 + 4a4u4

55
1

2a2
sinat sinhat

u2

1 + 4a4u4

56
1

2a
(sinat coshat+ cosat sinhat)

u

1 + 4a4u4

57 cosat coshat
1

1 + 4a4u4
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

58
1

2a3
(sinhat− sinat)

u3

1− a4u4

59
1

2a2
(coshat− cosat)

u2

1− a4u4

60
1

2a
(sinhat+ sinat)

u

1− a4u4

61
1
2

(coshat+ cosat)
1

1− a4u4

62
e−bt − e−at

2(b− a)
√
πt3

1√
u[
√

1 + au+
√

1 + bu]

63
erf
√
at√
a

√
u√

1 + au

64
eat erf

√
at√

a

√
u

1− au

65 eat
{

1√
πt
− beb

2t erf c(b
√
t)
}

1√
u(
√

1− au+ b)

66 J0(at)
1√

1 + a2u2

67 I0(at)
1√

1− au2

68 anJn(at); n >−1
(
√

1 + a2u2− 1)n

un
√

1 + au2

69 anIn(at); n >−1
(1−√1− a2u2)n

un
√

1− a2u2

70 J0(a
√
t(t+ 2b))

e(b/u)
(

1−
√

1+a2u2
)

√
1 + a2u2

71
J0(a

√
t2− b2), t > b e(b/u)

√
1+a2u2

√
1 + a2u2

0, t < b

86 erf
(

a

2
√
t

)
1− e−a/

√
u

87 erf c
(

a

2
√
t

)
e−a/

√
u

88 eb(bt+a) erf c
(
b
√
t+

a

2
√
t

)
e−a/

√
u

1 + b
√
u
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

89
1√

πta2n+1

∫∞

0
une−u

2/4a2t J2n(2
√
u)du; n >−1 une−a

√
u

90
e−bt − e−at

t

1
u

ln
(

1 + au

1 + bu

)

91 Ci(at)
1
2

ln
(

1 + a2u2

a2u2

)

92 Ei(at) ln
(

1 + au

au

)

93 ln t −γ+ lnu

94
2(cosat− cosbt)

t

1
u

ln
(

1 + a2u2

1 + b2u2

)

95 ln2 t
π2

6
+ (γ− lnu)2

96 ln t+ γ; γ = Euler’s constant= 0.5772156... − lnu

97 (ln t+ γ)2− 1
6
π2; γ = Euler’s constant = 0.5772156 . . . ln2u

98 tn ln t; n >−1 un[Γ′(n+ 1) +Γ(n+ 1)lnu]

99
sinat
t

tan−1 au

u

100 Si(at) tan−1 au

101
1√
πt

e−2
√
at 1√

u
eau erf c

√
au

102
2a√
π
e−a2t2 1

u
e1/4a2u2

erf c
(

1
2au

)

103 erf(at) e1/4a2u2
erf c

(
1

2au

)

104
1

√
π(t+ a)

1√
u
ea/u erf c

√
a

u

105
1

t+ a

1
u
ea/u Ei

(
a

u

)

106
1

t2 + a2

cos(a/u){(π/2)− Si(a/u)}− sin(a/u)Ci(a/u)
au

107
t

t2 + a2

sin(a/u){(π/2)− Si(a/u)}+ cos(a/u)Ci(a/u)
u
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

108 tan−1
(
t

a

)
cos
(
a

u

){
π

2
− Si

(
a

u

)}
− sin

(
a

u

)
Ci
(
a

u

)

109
1
2

ln
(
t2 + a2

a2

)
sin
(
a

u

){
π

2
− Si

(
a

u

)}
+ cos

(
a

u

)
Ci
(
a

u

)

110
1
t

ln
(
t2 + a2

a2

)
[(π/2)− Si(a/u)]2 + Ci2(a/u)

u

111 N(t) 0

112 δ(t)
1
u

113 δ(t− a)
e−a/u

u

114 u(t− a) e−a/u

115
x

a
+

2
π

∞∑

n=1

(−1)n

n
sin

nπx

a
cos

nπt

a

sinh(x/u)
sinh(a/u)

116
4
π

∞∑

n=1

(−1)n

2n− 1
sin

(2n− 1)πx
2a

sin
(2n− 1)πt

2a
sinh(x/u)
cosh(a/u)

117
t

a
+

2
π

∞∑

n=1

(−1)n

n
cos

nπx

a
sin

nπt

a

cosh(x/u)
sinh(a/u)

118 1 +
4
π

∞∑

n=1

(−1)n

2n− 1
cos

(2n− 1)πx
2a

cos
(2n− 1)πt

2a
cosh(x/u)
cosh(a/u)

119
xt

a
+

2a
π2

∞∑

n=1

(−1)n

n2
sin

nπx

a
sin

nπt

a

usinh(x/u)
sinh(a/u)

120 x+
8a
π2

∞∑

n=1

(−1)n

(2n− 1)2
sin

(2n− 1)πx
2a

cos
(2n− 1)πt

2a
usinh(x/u)
cosh(a/u)

121
t2

2a
+

2a
π2

∞∑

n=1

(−1)n

n2
cos

nπx

a

(
1− cos

nπt

a

)
ucosh(x/u)
sinh(a/u)

122 t+
8a
π2

∞∑

n=1

(−1)n

(2n− 1)2
cos

(2n− 1)πx
2a

sin
(2n− 1)πt

2a
ucosh(x/u)
cosh(a/u)

123
1
2

(t2 + x2− a2)− 16a2

π3

∞∑

n=1

(−1)n

(2n− 1)3
u2 cosh(x/u)

cosh(a/u)

×cos
(2n− 1)πx

2a
cos

(2n− 1)πt
2a

124
2π
a2

∞∑

n=1

(−1)nne−n
2π2t/a2

sin
nπx

a

sinh(x/
√
u)

usinh(a/
√
u)

125
π

a2

∞∑

n=1

(−1)n−1(2n− 1)e−(2n−1)2π2t/4a2
cos

(2n− 1)πx
2a

cosh(x/
√
u)

ucosh(a/
√
u)
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

126
2
a

∞∑

n=1

(−1)n−1e−(2n−1)2π2t/4a2
sin

(2n− 1)πx
2a

sinh(x/
√
u)√

ucosh(a/
√
u)

127
1
a

+
2
a

∞∑

n=1

(−1)ne−n
2π2t/a2

cos
nπx

a

cosh(x/
√
u)√

usinh(a/
√
u)

128
x

a
+

2
π

∑∞
n=1

(−1)n

n
e−n2π2t/a2

sin
nπx

a

sinh(x/
√
u)

sinh(a/
√
u)

129 1 +
4
π

∑∞
n=1

(−1)n

2n− 1
e−(2n−1)2π2t/4a2

cos
(2n− 1)πx

2a
cosh(x/

√
u)

cosh(a/
√
u)

130
xt

a
+

2a2

π3

∑∞
n=1

(−1)n

n3
(1− e−n2π2t/a2

)sin
nπx

a

usinh(x/
√
u)

sinh(a/
√
u)

131
1
2

(x2− a2) + t− 16a2

π3

∑∞
n=1

(−1)n

(2n− 1)3
e−(2n−1)2π2t/4a2

cos
(2n− 1)πx

2a
ucosh(x/

√
u)

cosh(a/
√
u)

132
1− 2

∑∞
n=1

e−λ2
nt/a

2
J0(λnx/a)

λnJ1(λn)
J0(ix/

√
u)

J0(ia/
√
u)

where λ1,λ2, . . . are the positive roots of J0(λ)= 0

133
1
4

(x2− a2) + t+ 2a2
∑∞

n=1
e−λ2

nt/a
2
J0(λnx/a)

λ3
nJ1(λn)

uJ0(ix/
√
u)

J0(ia/
√
u)

where λ1,λ2, . . . are the positive roots of J0(λ)= 0

134
t if 0≤ t ≤ a

u tanh
(
a

2u

)

2a− t if a < t < 2a; f (t+ 2a)= f (t)

135
1 if 0 < t < a

tanh
(
a

2u

)

−1 if a < t < 2a; f (t+ 2a)= f (t)

136
∣
∣
∣
∣sin

(
πt

a

)∣∣
∣
∣

πau

a2 +π2u2
coth

(
a

2u

)

137
sin
(
πt

a

)
if 0≤ t ≤ a πau

(a2 +π2u2)(1− e−a/u)

0 if a < t < 2a; f (t+ 2a)= f (t)

138
t

a
, 0≤ t ≤ a, f (t+ a)= f (t)

u

a
− e−a/u

1− e−a/u

139
0 if 0≤ t < a

e−a/u

1 if t ≥ a; f (t+ 2a)= f (t)
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Table 3.1. Continued.

f (t) G(u)= S( f (t))

140 1; a≤ t ≤ a+ ε e−a/u(1− e−ε/u)

141 n+ 1, na≤ t < (n+ 1)a, n= 0,1,2, . . .
1

1− e−a/u

142 n2, n≤ t < n+ 1, n= 0,1,2, . . .
e−1/u + e−2/u

(1− e−1/u)2

143 rn, n≤ t < n+ 1, n= 0,1,2, . . .
1− e−1/u

1− re−1/u

144
sin
(
πt

a

)
if 0≤ t ≤ a πau(1 + e−a/u)

a2 +π2u2

0 if t > a

of the line s= γ, and the complementing arc Γ of a circle centred at the origin, with radius

R, such that T =
√
R2− γ2. Simply put, we have

BC= [A,B]∪Γ. (3.13)

In all cases, including infinitely many singularities for F(s), a Bromwich contour can be
modified to accommodate all situations. Hence and without loss of generality, assuming
that the only singularities of F(s) are poles, all of which lie to the left of the real line s= γ,
and that condition (ii) holds, insures that (see Spiegel [9, Theorem 7.1])

lim
R→∞

1
2πi

∫

Γ
estF(s)ds= 0, (3.14)

and consequently that

f (t)= $−1[F(s)
]= lim

R→∞
1

2πi

∫ γ+iT

γ−iT
estF(s)ds= lim

R→∞
1

2πi

∮

BC
estF(s)ds. (3.15)

Therefore, by virtue of the residue theorem, we have

f (t)= $−1[F(s)
]= 1

2πi

∫ γ+i∞

γ−i∞
estF(s)ds=

∑
residues

[
estF(s)

]
. (3.16)

Finally, by invoking into the previous relation, the LSD between the transforms F and
G, namely that

F(s)= G(1/s)
s

, (3.17)

we get the desired conclusion of the theorem (3.10).
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Obviously, the previous theorem can be readily applied to the function in (3.9), to get
the solution in (3.7) for (3.8). Indeed, one easily recognizes that the residues of est/s(s+ 1)
do occur at the poles s=−1 and s= 0, with respective values −e−t and 1. �

4. Sumudu theorems for multiple differentiations, integrations, and convolutions

In Belgacem et al. [5], this next theorem was proved by virtue of the LSD between the
Sumudu and Laplace transform. While we include it to make this paper autonomous,
here we use an induction argument to prove the result.

Theorem 4.1. Let f (t) be in A, and let Gn(u) denote the Sumudu transform of the nth
derivative, f (n)(t) of f (t), then for n� 1,

Gn(u)= G(u)
un

−
n−1∑

k=0

f (k)(0)
un−k

. (4.1)

Proof. For n = 1, (3.5) shows that (4.1) holds. To proceed to the induction step, we as-
sume that (4.1) holds for n and prove that it carries to n+ 1. Once more by virtue of (3.5),
we have

Gn+1(u)= S[( f (n)(t)
)′]=

S
[
f (n)(t)

]
− f (n)(0)

u

= Gn(u)− f (n)(0)
u

= G(u)
un+1

−
n∑

k=0

f (k)(0)
un+1−k .

(4.2)

In particular, this means that the Sumudu transform, G2(u), of the second derivative of
the function, f (t), is given by

G2(u)= S( f ′′(t))= G(u)− f (0)
u2

− f ′(0)
u

. (4.3)

For instance, the general solution of the second-order equation,

d2y(t)
dt2

+w2y(t)= 0, (4.4)

can easily be transformed into its Sumudu equivalent,

G(u)− y(0)
u2

− y′(0)
u

−w2G(u)= 0, (4.5)

with general Sumudu solution,

G(u)= y(0) +uy′(0)
1 +w2u2

, (4.6)

and upon inverting, by using Theorem 3.1 (or see Table 3.1), we get the general time
solution:

y(t)= y(0)cos(wt) +
y′(0)
w

sin(wt). (4.7)
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Obviously, Theorem 4.1 shows that the Sumudu transform can be used just like the
Laplace transform, as in the previous example, to solve both linear differential equations
of any order. The next theorem allows us to use the Sumudu transform as efficiently to
solve differential equations involving multiple integrals of the dependent variable as well,
by rendering them into algebraic ones. �

Theorem 4.2. Let f (t) be in A, and let Gn(u) denote the Sumudu transform of the nth
antiderivative of f (t), obtained by integrating the function, f (t), n times successively:

Wn(t)=
∫∫ t

0
···

∫ t

0
f (τ)(dτ)n, (4.8)

then for n� 1,

Gn(u)= S(Wn(t)
)= unG(u). (4.9)

Proof. For n = 1, (3.6) shows that (4.9) holds. To proceed to the induction step, we as-
sume that (4.9) holds for n, and prove it carries to n+ 1. Once more, by virtue of (3.6),
we have

Gn+1(u)= S(Wn+1(t)
)= S

[∫ t

0
Wn(τ)dτ

]
= uS

[
Wn(t)

]= u
[
unG(u)

]= un+1G(u).

(4.10)

This theorem generalizes the Sumudu convolution Theorem 4.1 in Belgacem et al. [5],
which states that the transform of

( f ∗ g)(t)=
∫ t

0
f (τ)g(t− τ)dτ, (4.11)

is given by

S
(
( f ∗ g)(t)

)= uF(u)G(u). (4.12)

�

Corollary 4.3. Let f (t),g(t),h(t),h1(t),h2(t), . . . , and hn(t) be functions in A, having
Sumudu transforms, F(u),G(u),H(u),H1(u),H2(u), . . . , and Hn(t), respectively, then the
Sumudu transform of

( f ∗ g)n(t)=
∫∫ t

0
···

∫ t

0
f (τ)g(t− τ)(dτ)n (4.13)

is given by

S
(
( f ∗ g)n(t)

)= unF(u)G(u). (4.14)

Moreover, for any integer n� 1,

S
[(
h1∗h2∗···∗hn

)
(t)
]= un−1H1(u)H2(u)···Hn(u). (4.15)
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In particular, the Sumudu transform of ( f ∗ g ∗h), with f , g, h in A, is given by

S
[
( f ∗ g ∗h)(t)

]= u2F(u)G(u)H(u). (4.16)

Proof. Equation (4.14) is just a direct consequence of Theorem 4.2 due to the property of
associativity of the convolution operator, (4.12), that implies (4.15). Finally, (4.16) is just
an implication of (4.15) with n= 3.

The previous results can be used in a powerful manner to solve integral, differen-
tial, and integrodifferential equations. Such applications can be found in the indicated
references in the literature review in the paper introduction section. In particular, we
remind the reader that Belgacem et al. [5] used such results to solve convolution type
equations. �

5. Sumudu multiple shift theorems

The discrete Sumudu transform can be used effectively to discern some rules on how
the general transform affects various functional operations. Based on what was already
established in Belgacem et al. [5] such as (see Table 5.1), we have

S
[
t f ′(t)

]= u
dG(u)
du

, (5.1)

and that

S
[
t exp(t)

]= u

(1−u)2
, (5.2)

one may ask how the Sumudu transform acts on tn f (t). Clearly, if f (t)=∑∞
n=0 ant

n, then

S
[
t f (t)

]=
∞∑

n=0

(n+ 1)!anun+1 = u
∞∑

n=0

(n+ 1)!anun = u
d

du

∞∑

n=0

n!anun+1. (5.3)

This result helps us first answer this question when n= 1 (also see Belgacem et al. [5]).

Theorem 5.1. Let G(u) be the Sumudu transform of the function f (t) in A, then the
Sumudu transform of the function t f (t) is given by

S
[
t f (t)

]= u
d
(
uG(u)

)

du
. (5.4)

Proof. The function, t f (t), is in A, since f is so; and by integration by parts, (5.1) implies

S
[
t f (t)

]=
∫∞

0
ut f (ut)e−tdt = u

∫∞

0

d

dt

[
t f (ut)

]
e−tdt−u

[
t f (ut)e−t

]∞
0

= u
∫∞

0

d

dt

[
t f (ut)

]
e−tdt = u

∫∞

0

[
f (ut) +ut f ′(ut)

]
e−tdt

= u
[
G(u) +u

d

du
G(u)

]= u
d
[
uG(u)

]

du
.

(5.5)

�
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Table 5.1. Basic Sumudu transform properties.

Formula Comment

G(u)= S( f (t))=
∫∞

0
f (ut)e−tdt, −τ1 < u < τ2

Definition of Sumudu

transform for f ∈ A

G(u)= F(1/u)
u

, F(s)= G(1/s)
s

Duality with Laplace transform

S[a f (t) + bg(t)]= aS[ f (t)] + bS[g(t)] Linearity property

G1(u)= S[ f ′(t)]= G(u)− f (0)
u

= G(u)
u

− f (0)
u Sumudu transforms of

function derivativesG2(u)= S[ f ′′(t)]= G(u)
u2

− f (0)
u2

− f ′(0)
u

Gn(u)= S[ f (n)(t)]= G(u)
un

− f (0)
un

−···− f (n−1)(0)
u

S
[∫ t

0
f (τ)dτ

]
= uG(u)

Sumudu transform of

an integral of a function

S[ f (at)]=G(au) First scale preserving theorem

S
(
t
df (t)
dt

)
= u

dG(u)
du

Second scale preserving theorem

S[eat f (t)]= 1
1− au

G
(

u

1− au

)
First shifting theorem

S[ f (t− a)H(t− a)]= e−a/uG(u) Second shifting theorem

S
[

1
t

∫ t

0
f (τ)dτ

]
= 1

u

∫ t

0
f (v)dv Average preserving theorem

lim
u→0

G(u)= lim
t→0

f (t) Initial value theorem

lim
u→±∞G(u)= lim

t→±∞ f (t) Final values theorem

S( f (t))=
∫ T/u

0 f (ut)e−tdt
1− e−T/u

Sumudu transform of

a T-periodic function

S( f ∗ g)= uS( f (t))S(g(t)) Sumudu convolution
theorem

( f ∗ g)(t)=
∫ t

0
f (τ)g(t− τ)dτ

This leads us to an induction argument about the transform of the product of f with
a positive integer power of t.

Theorem 5.2. Let G(u) denote the Sumudu transform of f (t) in A, and let Gk(u) denote
the kth derivative of G(u) with respect to u, then the Sumudu transform of the function,
tn f (t), is given by

S
[
tn f (t)

]= un
n∑

k=0

anku
kGk(u), (5.6)
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where an0 = n!, ann = 1, an1 = n!n, ann−1 = n2, and for k = 2,3, . . . ,n− 2,

ank = an−1
k−1 + (n+ k)an−1

k . (5.7)

Proof. Let G(u) be the Sumudu transform of f (t), then a0
0 = 1. Furthermore, Theorem

5.1 shows that the transform of t f (t) is uG+u2G1, hence a1
0 = 1 and a1

1 = 1 as expected.
To perform the induction step, we assume that (5.7) holds for n, and show it carries to
n+ 1. Setting W(u)= S[tn f (t)], then W is given by (5.6) with coefficients in (5.7), and
by Theorem 5.1, we have

S
[
tn+1 f (t)

]= S[t[tn f (t)
]]= u

d
(
uW(u)

)

du
= uW(u) +u2 dW(u)

du

= uW(u) +u2W1(u)= un+1
n∑

k=0

anku
kGk(u) +u2 d

du

n∑

k=0

anku
n+kGk(u)

= un+1
n∑

k=0

anku
kGk(u) +u2

n∑

k=0

ank
[
(n+ k)un+k−1Gk(u) +un+kGk+1(u)

]

= un+1
n∑

k=0

anku
kGk(u) +un+1

n∑

k=0

ank
[
(n+ k)ukGk(u) +uk+1Gk+1(u)

]

= un+1
n∑

k=0

(n+ k+ 1)anku
kGk(u) +un+1

n∑

k=0

anku
k+1Gk(u).

(5.8)

Noting that for k < 0, or k > n, ank = 0, we can rewrite the previous equation as

S
[
tn+1 f (t)

]= un+1
n+1∑

k=0

(n+ k+ 1)anku
kGk(u) +un+1

n+1∑

k=0

ank−1u
kGk(u)

= un+1
n+1∑

k=0

[
(n+ k+ 1)ank + ank−1

]
ukGk(u)= un+1

n+1∑

k=0

an+1
k ukGk(u).

(5.9)

In particular, from (5.7), we observe that the coefficient ann−1, initialized at a1
0 = 1= 12,

satisfies

ann−1 = an−1
n−2 + (2n− 1)an−1

n−1 = an−1
n−2 + (2n− 1), (5.10)

which is the same as the relation consecutive squares of integers, namely,

n2 = (n− 1)2 + (2n− 1). (5.11)

Theorem 5.2 generalizes to an arbitrary positive integer n, Asiru [1, Theorem 2.5] estab-
lishing cases n = 1 & n = 2. Furthermore, Theorem 5.2 establishes a recurrence relation
that predicts the coefficients ank for any feasible nonnegative integer pair (n,k). The next
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table shows all coefficients of those values for n= 0,1,2,3,4, and 5.

n\k 0 1 2 3 4 5

0 1

1 1 1

2 2 4 1

3 6 18 9 1

4 24 96 72 16 1

5 120 600 600 200 25 1

(5.12)

For n= 6, we can use the table last row and (5.7) to get the coefficients a6
k:

a6
0 = 720, a6

1 = 4320, a6
2 = 5400, a6

3 = 2400, a6
4 = 450, a6

5 = 62 = 36, and a6
6 = 1. �

Theorem 5.3. Let G(u) denote the Sumudu transform of the function f (t) in A, let f (n)(t)
denote the nth derivative of f (t) with respect to t, and let Gn(u) denote the nth derivative of
G(u) with respect to u, then the Sumudu transform of the function, tn f (n)(t) is given by

S
[
tn f (n)(t)

]= unGn(u). (5.13)

Proof. Being the Sumudu transform of f (t),

G(u)=
∫∞

0
f (ut)e−tdt. (5.14)

Therefore, for n= 1,2,3, . . . , we have

Gn(u)=
∫∞

0

dn

dun
f (ut)e−tdt =

∫∞

0
tn f (n)(ut)e−tdt

= 1
un

∫∞

0
(ut)n f (n)(ut)e−tdt = 1

un
S
[
tn f (n)(t)

]
.

(5.15)

Upon multiplying both sides of the previous equation by un, we obtain (5.13). �

Now, for low values of n, combining Theorems 5.2 and 5.3 yields the following.

Corollary 5.4. Let Gn(u) denote the nth derivative of G(u)= S[(t)], then,

S
[
t2 f ′(t)

]= u2[2G1(u) +uG2(u)
]
,

S
[
t3 f ′(t)

]= u3[6G1(u) + 6uG2(u) +u2G3(u)
]
,

S
[
t4 f ′′(t)

]= u4[12G2(u) + 8uG3(u) +u2G4(u)
]
.

(5.16)

The previous results in this section are likely to build up to a global Sumudu shift the-
orem about S[tn f (m)(t)]. Furthermore, patterns in Theorem 5.2, and Corollary 5.4, seem
to exude beautiful connections with Stirling-like numbers, or some of their generalized
versions (see, for instance, Belgacem [4], and Merris [7] and their references).
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6. Applications to differential equations

Theorem 5.3 does indicate that the general Euler equation,

n∑

k=0

cku
k y(k)(t)= R(t), (6.1)

with second-order prototype,

t2 d
2y(t)
dt2

+ bt
dy(t)
dt

+ ay(t)= R(t), (6.2)

is kept unchanged by the Sumudu transform if the equation right hand side, R(t), is
a linear function. Hence, there seems to be no direct advantage in using the Sumudu
transform in this case, except possibly if there is a discernible benefit in transforming
particular forms of R(t). Of course, just like with the Laplace transform, the Sumudu
transform can always be indirectly applied to such equations after effecting the change of
variable, t = exp(x), which for instance renders (6.2) into the constant coefficients linear
nonhomogeneous equation of second order:

d2y(x)
dx2

+ (b− 1)
dy(x)
dx

+ ay(x)= R(x). (6.3)

On the other hand, much more mileage may be obtained from the Sumudu transform in
such instances if we recall that since the Sumudu transform preserves units, in applica-
tions the arguments t and u can be used “somewhat interchangeably.” So, the paradigm
shift in terms of transform techniques usage here is to possibly look at the given equation
as the Sumudu transform of some other equation, and look for the inverse sumudu trans-
form of the equation, rather than the other way around. To illustrate this idea by a simple
a priori cooked up example. Consider the second-order Euler differential equation

2H(w) + 4wH′(w) +w2H′′(w)= 2. (6.4)

Clearly, one obvious solution of (6.4) is H(w) = 1. As stated above, it is futile to try to
solve the equation by directly Sumudu transforming as it will remain unchanged. Instead,
may be we should find a suitable format for the equation so that it can be readily inverted.
This comes down to a sort of finding a suitable (not integrating) but an “inverting factor”
for the problem.

Recalling that taking n= 2, in Theorem 5.2 (see row n= 2 in the ank coefficients table
in the previous section), and setting H(w)= S[h(s)], in (6.4), yields

S
[
s2h(s)

]=w2[2H(w) + 4wH1(w) +w2H2(w)
]= 2w2 = S[s2] (6.5)

Clearly in this case, up to null functions, H(w)= h(s)= 1.
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At the first glance, the triviality of the example may look like an apparent let-down
by this technique of Sumudu transform usage, but this is not really the case as solving
the example was not the issue here, as it was mainly set up to convey the following idea.
The main point here is that unlike other transforms, the units-preservation property in
combination with other properties of the Sumudu transform may allow us, according
to the situation at hand, to transform the equation studied from the t domain to the
u domain if the obtained equation is believed to be more accessible; or if necessary to
consider the given equation as the Sumudu transform of another more readily solvable
equation in the t domain, begotten by u inverse Sumudu transforming the equation at
hand. So, the Sumudu transform may be used either way, but the successful usage remains
dependent on the astuity of the user and familiarity with the properties and technical
rules governing the behavior of this transform.

Seeking the discovery and establishment of such governing rules, and finding interest-
ing applications, especially where other techniques (such as using the Laplace transform)
may not be adequate or turn out to be more cumbersome, remains our quest. Towards
this goal, for which we hope the present effort is another step in the right direction, con-
vergence, albeit still slightly elusive, now seems to be highly feasible. This work, which
uncovered many characteristic features of an expanding puzzle, is due to illiciting the
spring-up of many more theoretical investigations, various mathematical interconnec-
tions, and ramifications.

References

[1] M. A. Asiru, Sumudu transform and the solution of integral equations of convolution type, Interna-
tional Journal of Mathematical Education in Science and Technology 32 (2001), no. 6, 906–910.

[2] , Further properties of the Sumudu transform and its applications, International Journal
of Mathematical Education in Science and Technology 33 (2002), no. 3, 441–449.

[3] , Classroom note: application of the Sumudu transform to discrete dynamic systems, In-
ternational Journal of Mathematical Education in Science and Technology 34 (2003), no. 6,
944–949.

[4] F. B. M. Belgacem, A generalized Stirling inversion formula, Algebras, Groups and Geometries 18
(2001), no. 1, 101–114.

[5] F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla, Analytical investigations of the Sumudu trans-
form and applications to integral production equations, Mathematical Problems in Engineering
2003 (2003), no. 3, 103–118.

[6] L. Debnath, Integral Transforms and Their Applications, CRC Press, Florida, 1995.
[7] R. Merris, The p-Stirling numbers, Turkish Journal of Mathematics 24 (2000), no. 4, 379–399.
[8] A. D. Poularikas (ed.), The Transforms and Applications Handbook, The Electrical Engineering

Handbook Series, CRC Press, Florida, 1996.
[9] M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-

Hill, New York, 1965.
[10] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and

control engineering problems, International Journal of Mathematical Education in Science and
Technology 24 (1993), no. 1, 35–43.

[11] , Sumudu transform—a new integral transform to solve differential equations and control
engineering problems, Mathematical Engineering in Industry 6 (1998), no. 4, 319–329.

[12] , The Sumudu transform for functions of two variables, Mathematical Engineering in In-
dustry 8 (2002), no. 4, 293–302.



F. B. M. Belgacem and A. A. Karaballi 23

[13] S. Weerakoon, Application of Sumudu transform to partial differential equations, International
Journal of Mathematical Education in Science and Technology 25 (1994), no. 2, 277–283.

[14] , Complex inversion formula for Sumudu transform, International Journal of Mathemat-
ical Education in Science and Technology 29 (1998), no. 4, 618–621.

Fethi Bin Muhammed Belgacem: Faculty of Information Technology, Arab Open University,
P.O. Box 3322, Safat 13033, Kuwait
E-mail address: fbmbelgacem@gmail.com

Ahmed Abdullatif Karaballi: Department of Mathematics and Computer Science, Faculty of Science,
Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: karabali@mcs.sci.kuniv.edu.kw

mailto:fbmbelgacem@gmail.com
mailto:karabali@mcs.sci.kuniv.edu.kw

	1. Introduction
	2. The discrete Sumudu transform
	3. The Laplace-Sumudu duality and the complex Sumudu inversion formula
	4. Sumudu theorems for multiple differentiations, integrations, and convolutions
	5. Sumudu multiple shift theorems
	6. Applications to differential equations
	References

