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1. Introduction

This paper presents cone compression and expansion fixed point results of Krasnoselskii-
Petryshyn type for multimaps between Fréchet spaces. Two approaches have recently been
presented in the literature, both of which are based on the fact that a Fréchet space can be
viewed as a projective limit of a sequence of Banach spaces {En}n∈N (here N= {1,2, . . .}).
Both approaches are based on constructing maps Fn defined on subsets of En whose fixed
points converge to a fixed point of the original operator F. In the first approach [6, 7], for
each n∈N a specific map Fn is discussed; whereas in the second approach [2–4], the maps
{Fn}n∈N only need to satisfy a closure-type property. Both approaches have advantages
and disadvantages over the other [1]. In this paper, we combine the advantages of both
approaches to present a very general fixed point result.

Existence in Section 2 is based on the following result of Petryshyn [14, Theorem 3].

Theorem 1.1. Let E be a Banach space and let C ⊆ E be a closed cone. Let U and V be
bounded open subsets in E such that 0 ∈ U ⊆ U ⊆ V and let F : W → CK(C) be an upper
semicontinuous, k-set contractive (countably) map; here 0≤ k < 1, W = V ∩C, W denotes
the closure of W in C and CK(C) denotes the family on nonempty, compact, convex subsets
of C. Assume that

(1) ‖y‖ ≥ ‖x‖ for all y ∈ Fx and x ∈ ∂Ω, and ‖y‖ ≤ ‖x‖ for all y ∈ Fx and x ∈ ∂W
(here Ω=U ∩C and ∂W denotes the boundary of W in C)
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2 Cone compression and expansion

or
(2) ‖y‖ ≤ ‖x‖ for all y ∈ Fx and x ∈ ∂Ω, and ‖y‖ ≥ ‖x‖ for all y ∈ Fx and x ∈ ∂W .

Then F has a fixed point in W\Ω.

For the rest of this section, we gather some definitions and a known result which will
be needed in Section 2. Let (X ,d) be a metric space and ΩX the bounded subsets of X .
The Kuratowski measure of noncompactness is the map α : ΩX → [0,∞] defined by (here
A∈ΩX)

α(A)= inf
{
r > 0 : A⊆

n⋃
i=1

Ai and diam
(
Ai
)≤ r

}
. (1.1)

Let S be a nonempty subset of X . For each x ∈ X , define d(x,S) = inf y∈S d(x, y). We say
a set is countably bounded if it is countable and bounded. Now suppose that G : S→ 2X ;
here 2X denotes the family of nonempty subsets of X . Then G : S→ 2X is

(i) countably k-set contractive (here k ≥ 0) if G(S) is bounded and α(G(W)) ≤
kα(W) for all countably bounded sets W of S,

(ii) countably condensing if G(S) is bounded, G is countably 1-set contractive and
α(G(W)) < α(W) for all countably bounded sets W of S with α(W) 
= 0,

(iii) hemicompact if each sequence {xn}n∈N in S has a convergent subsequence
whenever d(xn,G(xn))→ 0 as n→∞.

We now recall a result from the literature [1].

Theorem 1.2. Let (Y ,d) be a metric space, D a nonempty, complete subset of Y , and G :
D→ 2Y a countably condensing map. Then G is hemicompact.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally convex
spaces. For each α∈ I , β ∈ I for which α≤ β, let πα,β : Eβ → Eα be a continuous map. Then
the set

{
x = (xα)∈

∏
α∈I

Eα : xα = πα,β
(
xβ
)∀α,β ∈ I , α≤ β

}
(1.2)

is a closed subset of
∏

α∈I Eα, is called the projective limit of {Eα}α∈I , and is denoted by
lim←Eα (or lim←{Eα,πα,β} or the generalized intersection [9, page 439]

⋂
α∈I Eα).

2. Fixed point theory in Fréchet spaces

Let E = (E,{| · |n}n∈N) be a Fréchet space with the topology generated by a family of
seminorms {| · |n : n∈N}. We assume that the family of seminorms satisfies

|x|1 ≤ |x|2 ≤ |x|3 ≤ ··· for every x ∈ E. (2.1)

For r > 0 and x ∈ E, we let B(x,r)= {y ∈ E : |x− y|n ≤ r for all n∈N}. A subset X of E
is bounded if for every n∈N, there exists rn > 0 such that |x|n ≤ rn for all x ∈ X . To E we
associate a sequence of Banach spaces {(En,| · |n)} described as follows. For every n∈N,
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we consider the equivalence relation ∼n defined by

x ∼n y iff |x− y|n = 0. (2.2)

We denote by En = (E/∼n,| · |n) the quotient space, and by (En,| · |n) the completion of
En with respect to | · |n (the norm on En induced by | · |n and its extension to En are still
denoted by | · |n). This construction defines a continuous map μn : E→ En. Now since
(2.1) is satisfied, the seminorm | · |n induces a seminorm on Em for every m ≥ n (again
this seminorm is denoted by | · |n). Also (2.2) defines an equivalence relation on Em from
which we obtain a continuous map μn,m : Em→ En since Em/∼n can be regarded as a subset
of En. We now assume that the following condition holds:

for each n∈N, there exist a Banach space
(
En,| · |n

)
and an isomorphism (between normed spaces) jn : En −→ En.

(2.3)

Remark 2.1. (i) For convenience, the norm on En is denoted by | · |n.
(ii) In our applications, En = En for each n∈N.
(iii) Note that if x ∈ En (or En), then x ∈ E. However if x ∈ En, then x is not necessarily

in E and in fact En is easier to use in applications as we will see in Theorem 3.2 (even
though En is isomorphic to En).

For r > 0 and x ∈ En, we let Bn(x,r)= {y ∈ En : |x− y|n ≤ r}. Finally we assume that

E1 ⊇ E2 ⊇ ··· and for each n∈N, |x|n ≤ |x|n+1 ∀x ∈ En+1. (2.4)

Let lim←En (or
⋂∞

1 En, where
⋂∞

1 is the generalized intersection [9]) denote the projective
limit of {En}n∈N (note that πn,m = jnμn,m j−1

m : Em→ En form≥ n) and note that lim←En ∼=
E, so for convenience we write E = lim←En.

For each X ⊆ E and each n∈N, we set Xn = jnμn(X), and we let Xn and ∂Xn denote,
respectively, the closure and the boundary of Xn with respect to | · |n in En. Also the
pseudo-interior of X is defined by [6]

pseudo-int(X)= {x ∈ X : jnμn(x)∈ Xn\∂Xn for every n∈N}. (2.5)

The set X is pseudo-open if X = pseudo-int(X).
We begin with our main result.

Theorem 2.2. Let E and En be as described above, C a closed cone in E, U and V are
bounded pseudo-open subsets of E with 0 ∈ U ⊆ U ⊆ V , and F : C ∩ V → 2E (here 2E
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denotes the family of nonempty subsets of E). Suppose the following conditions are satisfied:

W1 ⊇W2 ⊇ ··· ; here Wn = Cn∩Vn, (2.6)

for each n∈N, Fn : Wn −→ CK
(
Cn
)

is an

upper semicontinuous map
(
here Wn denotes

the closure of Wn in Cn
)
.

(2.7)

Also for each n∈N, assume that either (here Ωn =Un∩Cn)

|y|n ≥ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Ωn,

|y|n ≤ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Wn,(
here ∂Wn denotes the boundary of Wn in Cn

) (2.8)

or

|y|n ≤ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Ωn,

|y|n ≥ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Wn,
(2.9)

hold. Finally suppose the following three conditions hold:

for each n∈N, the map �n : Wn −→ 2En , given by

�n(y)=
∞⋃

m=n
Fm(y) (see Remark 2.3), is k-set

(countably) contractive (here 0≤ k < 1);

(2.10)

for every k ∈N and any subsequence A⊆ {k,k+ 1, . . .}
if x ∈ Cn is such that x ∈Wn\Ωn for some n∈A,

then there exists a γ > 0 with |x|k ≥ γ;

(2.11)

if there exist a w ∈ E and a sequence
{
yn
}
n∈N

with yn ∈Wn\Ωn and yn ∈ Fnyn in En such that

for every k ∈N, there exists a subsequence

S⊆ {k+ 1,k+ 2, . . .} of N with yn −→w in Ek

as n−→∞ in S, then w ∈ Fw in E.

(2.12)

Then F has a fixed point in E.

Remark 2.3. The definition of �n in (2.10) is as follows. If y ∈Wn and y /∈Wn+1, then
�n(y) = Fn(y); whereas if y ∈Wn+1 and y /∈Wn+2, then �n(y) = Fn(y)∪ Fn+1(y), and
so on.
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Proof. Fix n∈N. We would like to apply Theorem 1.1. To do so, we need to show that

Cn is a cone, (2.13)

Un and Vn are open and bounded with 0∈Un ⊆Un ⊆Vn. (2.14)

First we check (2.13). To see this, let x̂, ŷ ∈ μn(C) and λ∈ [0,1]. Then for every x ∈ μ−1
n (x̂)

and y ∈ μ−1
n ( ŷ), we have λx + (1− λ)y ∈ C since C is convex and so λx̂ + (1− λ) ŷ =

λμn(x) + (1− λ)μn(y). It is easy to check that λμn(x) + (1− λ)μn(y) = μn(λx + (1− λ)y),
so as a result

λx̂+ (1− λ) ŷ = μn
(
λx+ (1− λ)y

)∈ μn(C), (2.15)

and so μn(C) is convex. Now since jn is linear, Cn = jn(μn(C)) is convex, and as a result
Cn is convex. Similarly it is easy to show that tx̂ ∈ μn(C) for every t ≥ 0, so Cn is a cone.
Thus (2.13) holds.

Now since U is pseudo-open and 0∈U , then 0∈ pseudo-intU , and so 0= jnμn(0)∈
Un\∂Un. Of course

Un\∂Un =
(
Un∪ ∂Un

)\∂Un =Un\∂Un, (2.16)

so 0 ∈ Un\∂Un, and in particular 0 ∈ Un. Next we show that Un is open. First note that
Un ⊆Un\∂Un since if y ∈Un, then there exists x ∈U with y = jnμn(x) and this together
with U = pseudo-intU yields jnμn(x) ∈ Un\∂Un, that is, y ∈ Un\∂Un. In addition note
that,

Un\∂Un =
(

intUn∪ ∂Un
)\∂Un = intUn\∂Un = intUn (2.17)

since intUn
⋂
∂Un =∅. Consequently

Un ⊆Un\∂Un = intUn, so Un = intUn. (2.18)

As a result Un is open. Clearly Un is bounded since U is bounded (note that if y ∈ Un,
then there exists x ∈ U with y = jnμn(x)). It just remains to show that Un ⊆ Un ⊆ Vn in
(2.14). Of course since U ⊆U ⊆V , we have

Un = jnμn(U)⊆ jnμn(U)⊆ jnμn(V)=Vn; (2.19)

and since jnμn is continuous, Un ⊆ jnμn(U) ⊆ jnμn(U) = Un. Also we see that μn(U) ⊆
μn(V) (note that U ⊆V), so since jn is an isometry,

Un = jnμn(U)= jnμn(U)⊆ jnμn(V)=Vn. (2.20)

Thus (2.14) holds.
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Theorem 1.1 guarantees that there exist yn ∈Wn\Ωn with yn ∈ Fnyn in En. Let us look
at {yn}n∈N. Note yn ∈W1 for each n ∈ N from (2.6). Now Theorem 1.2 (with Y = E1,
G =�1, and D =W1 and note that d1(yn,�1(yn)) = 0 for each n ∈ N since |x|1 ≤ |x|n
for all x ∈ En and yn ∈ Fnyn in En; here d1(x,Z)= inf y∈Z |x− y|1) guarantees that there
exist a subsequence N�1 of N and a z1 ∈W1 with yn → z1 in E1 as n→∞ in N�1 . Also
yn ∈Wn\Ωn for n∈N together with (2.11) yields |yn|1 ≥ γ for n∈N, and so |z1|1 ≥ γ.
Let N1 =N�1 \{1} and look at {yn}n∈N1 . Note that yn ∈W2 for n ∈N1 from (2.6). Now
Theorem 1.2 (with Y = E2, G = �2 and D =W2) guarantees that there exists a subse-
quence N�2 of N1 and a z2 ∈W2 with yn → z2 in E2 as n→∞ in N�2 . Note that z2 = z1 in
E1 since N�2 ⊆N�1 . Also yn ∈Wn\Ωn for n∈N1 together with (2.11) yields |yn|2 ≥ γ for
n ∈N1, and so |z2|2 ≥ γ. Let N2 =N�2 \{2}. Proceed inductively to obtain subsequences
of integers

N�1 ⊇N�2 ⊇ ··· , N�k ⊆ {k,k+ 1, . . .} (2.21)

and zk ∈Wk for k ∈N with yn → zk in Ek as n→∞ in N�k . Note that zk+1 = zk in Ek for
k ∈N and |zk|k ≥ γ for k ∈N. Also let Nk =N�k \{k}.

Fix k ∈ N. Let y = zk in Ek. Note that y is well defined and y ∈ lim←En = E. Now
yn ∈ Fnyn in En for n∈Nk and yn→ y in Ek as n→∞ in Nk (since y = zk in Ek) together
with (2.12) implies that y ∈ Fy in E. �

Of course for the proof, one sees that (2.11) is only needed to guarantee that the fixed
point y ∈ E satisfies |zk|k ≥ γ for k ∈N; here y = zk in Ek.

Theorem 2.4. Let E and En be as described in the beginning of Section 2, C a closed cone in
E, U and V are bounded pseudo-open subsets of E with 0∈ U ⊆ U ⊆ V , and F : C∩V →
2E. Suppose that (2.6) and (2.7) hold and in addition assume that either (2.8) or (2.9) is
satisfied. Finally assume that (2.10) and (2.12) hold. Then F has a fixed point in E.

Of course a special case of Theorem 2.2 occurs if Fn = F (i.e., Fn = F|En .

Theorem 2.5. Let E and En be as described in the beginning of Section 2, C a closed cone in
E, U and V are bounded pseudo-open subsets of E with 0∈ U ⊆ U ⊆ V , and F : C∩V →
2E. Suppose (with Wn = Cn∩Vn and Ωn = Cn∩Un) the following is satisfied:

for each n∈N, F : Wn→ CK
(
Cn
)

is an upper

semicontinuous k-set (countably) contractive map

(here 0≤ k < 1).

(2.22)

Also for each n∈N, assume that either

|y|n ≥ |x|n ∀y ∈ Fx, ∀x ∈ ∂Ωn,

|y|n ≤ |x|n ∀y ∈ Fx, ∀x ∈ ∂Wn,
(2.23)
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or

|y|n ≤ |x|n ∀y ∈ Fx, ∀x ∈ ∂Ωn,

|y|n ≥ |x|n ∀y ∈ Fx, ∀x ∈ ∂Wn,
(2.24)

hold. Finally suppose that (2.11) and the following hold that:

for each n∈ {2,3, . . .}if y ∈Wn solves y ∈ Fy

in En, then y ∈Wk for k ∈ {1, . . . ,n− 1}.
(2.25)

Then F has a fixed point in E.

Remark 2.6. Note again that (2.11) could be removed from the statement of Theorem 2.5.
The result in Theorem 2.2 is of course based on Theorem 1.1 which is of course based on
(1) and (2). One could replace Theorem 1.1 with the Leggett-Williams theorem (see [2])
or with results in [5, 13], and analogous results can be obtained in the Fréchet space
setting. Also multiplicity results could be presented as in [10].

Remark 2.7. The Kakutani maps in Theorem 2.2 could be replaced by maps admissible
with respect to Gorniewicz (if one uses results in [8]) or indeed the �κ

c maps of Park (if
one uses the results in [11]).

3. Application

In this section, we apply the results in Section 2 to the integral equation

y(t)=
∫∞

0
k(t,s) f

(
s, y(s)

)
ds for t ∈ [0,∞). (3.1)

Our result, Theorem 3.2, was established in [10]. However, our goal here is to show how
easily and naturally Section 2 (in particular Theorem 2.2) applies when discussing prob-
lems of the form (3.1).

Remark 3.1. One could also obtain a result for the inclusion

y(t)∈
∫∞

0
k(t,s)F

(
s, y(s)

)
ds for t ∈ [0,∞) (3.2)

if one uses the ideas in the proof below with the ideas in [4].
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Theorem 3.2. Let 1≤ p ≤∞ be a constant and q the conjugate to p. Suppose the following
conditions are satisfied:

for each t ∈ [0,∞), the map s �−→ k(t,s) is measurable, (3.3)

sup
t∈[0,∞)

(∫∞
0

∣∣k(t,s)
∣∣qds

)1/q

<∞, (3.4)

∫∞
0

∣∣k(t′,s)− k(t,s)
∣∣qds−→ 0 as t −→ t′, for each t′ ∈ [0,∞), (3.5)

f : [0,∞)×R−→R is an Lp-Carathéodory function: by this,

(a) the map t �−→ f (t, y) is measurable,∀y ∈R,

(b) the map y �−→ f (t, y) is continuous for a.e. t ∈ [0,∞)

(c) for each r > 0 there exists hr ∈ Lp[0,∞) such that |y| ≤ r

=⇒ ∣∣ f (t, y)
∣∣≤ hr(t) for a.e. t ∈ [0,∞),

(3.6)

for each t ∈ [0,T], k(t,s)≥ 0, for a.e. s∈ [0, t],

f : [0,∞)×R−→ [0,∞) with f (s,u) > 0, for (s,u)∈ [0,∞)× (0,∞),
(3.7)

∃g : [0,∞)−→ (0,∞) with g ∈ Lq[0,∞),

and with k(t,s)≤ g(s) for t ∈ [0,∞),
(3.8)

∃a,b∈ [0,1], a < b, M, 0 <M < 1

with k(t,s)≥Mg(s) for t ∈ [a,b], a.e. s∈ [0,∞),
(3.9)

there exists a continuous nondecreasing function

w : [0,∞)−→ [0,∞), a φ ∈ Lp[0,∞) with

f (s,u)≤ φ(s)w(u) for a.e. s∈ [0,∞)

and all u∈ [0,∞),

(3.10)

∃r > 0 with r > w(r) sup
t∈[0,∞)

∫∞
0
φ(s)k(t,s)ds, (3.11)

there exists τ ∈ Lp[a,b] with f (s,u)≥ τ(s)w(u)

for a.e. s∈ [a,b] and all u∈ [0,∞),
(3.12)

∃R > r with R < w(MR) sup
t∈[0,1]

∫ b

a
τ(s)k(t,s)ds. (3.13)

Then (3.1) has at least one solution in C[0,∞).
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Remark 3.3. In (3.9), we picked b ∈ [0,1] for convenience. Also if there exists a σ , 0≤ σ <
∞ with

sup
t∈[0,∞)

∫ b

a
τ(s)k(t,s)ds=

∫ b

a
τ(s)k(σ ,s)ds, (3.14)

then one could replace (3.13) by

R < w(MR) sup
t∈[0,∞)

∫ b

a
τ(s)k(t,s)ds. (3.15)

Proof. Here E = C[0,∞), Ek consists of the class of functions in E which coincide on the
interval [0,k], and Ek = C[0,k]. We will apply Theorem 2.2 with U = B(0,r), V = B(0,R),

C = {y ∈ E : y(t)≥ 0 on [0,∞) and y(t)≥M|y|n, ∀t ∈ [a,b], ∀n∈N},

Fy(t)=
∫∞

0
k(t,s) f

(
s, y(s)

)
ds;

(3.16)

here |y|n = supt∈[0,n] |y(t)|. Fix n∈N. Note that

Cn = Cn=
{
y ∈ En : y(t)≥ 0 on [0,n] and y(t)≥M|y|n, ∀t ∈ [a,b]

}
, (3.17)

with Un = Bn(0,r) and Vn = Bn(0,R). Also we let

Fny(t)=
∫ n

0
k(t,s) f

(
s, y(s)

)
ds. (3.18)

Clearly (2.6) and (2.7) hold. A standard argument in the literature [12] guarantees that
(here Wn = Cn∩Vn)

F : Wn −→ En is continuous and compact. (3.19)

In addition for any y ∈Wn, note that

∣∣Fny(t)
∣∣≤

∫ n

0
g(s) f

(
s, y(s)

)
ds, for t ∈ [0,n], (3.20)

from (3.8), and

Fny(t)≥M
∫ n

0
g(s) f

(
s, y(s)

)
ds, for t ∈ [a,b], (3.21)

from (3.9), and these two inequalities yield

Fny(t)≥M
∣∣Fny∣∣n for t ∈ [a,b], (3.22)

so (2.7) holds.
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Next we show that (2.9) is satisfied (here Ωn = Cn ∩Un). Let y ∈ ∂Ωn = ∂Un ∩Cn.
Then |y|n = r and this together with (3.10) yields

∣∣Fn y(t)
∣∣≤w

(|y|n)
∫ n

0
k(t,s)φ(s)ds≤w(r) sup

t∈[0,∞)

∫∞
0
k(t,s)φ(s)ds (3.23)

for t ∈ [0,n], and so (3.11) yields

∣∣Fny∣∣n ≤w(r) sup
t∈[0,∞)

∫∞
0
k(t,s)φ(s)ds < r = |y|n. (3.24)

Now let y ∈ ∂Wn = ∂Vn ∩Cn. Then |y|n = R and y(t) ≥M|y|n =MR for t ∈ [a,b] (in
particular y(t)∈ [MR,R] for t ∈ [a,b]). Now (3.12) implies that

∣∣Fny(t)
∣∣=

∫ n

0
k(t,s) f

(
s, y(s)

)
ds≥

∫ b

a
k(t,s) f

(
s, y(s)

)
ds

≥w(MR)
∫ b

a
k(t,s)τ(s)ds,

(3.25)

so (3.13) yields

∣∣Fny∣∣n ≥w(MR) sup
t∈[0,n]

∫ b

a
k(t,s)τ(s)ds

≥w(MR) sup
t∈[0,1]

∫ b

a
k(t,s)τ(s)ds > R= |y|n.

(3.26)

Thus (2.9) holds.
To show (2.10), fix n∈N. Let y ∈Wn. Without loss of generality, assume that there ex-

ists l ∈ {0,1,2, . . .} with y ∈ Wn+l and y /∈ Wn+l+1. Then by definition, �n(y) =⋃n+l
m=n Fm(y). Now since y ∈Wn+l we have from (3.6) that there exists an hR ∈ Lp[0,∞)

with | f (s, y(s))|≤ hR(s) for a.e. s ∈ [0,n+ l]. Fix j ∈ {0,1, . . . , l} and so we have for t ∈
[0,n] that

∣∣Fn+ j y(t)
∣∣≤

∫ n+ j

0
hR(s)k(t,s)ds

≤
(∫∞

0

[
hR(s)

]p
ds
)1/p

sup
t∈[0,∞)

(∫∞
0

[
k(t,s)

]q
ds
)1/q

,

(3.27)

so

∣∣Fn+ j y
∣∣
n ≤

(∫∞
0

[
hR(s)

]p
ds
)1/p

sup
t∈[0,∞)

(∫∞
0

[
k(t,s)

]q
ds
)1/q

, (3.28)
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and as a result

∣∣�ny
∣∣
n ≤

(∫∞
0

[
hR(s)

]p
ds
)1/p

sup
t∈[0,∞)

(∫∞
0

[
k(t,s)

]q
ds
)1/q

, (3.29)

that is,

|u|n ≤
(∫∞

0

[
hR(s)

]p
ds
)1/p

sup
t∈[0,∞)

(∫∞
0

[
k(t,s)

]q
ds
)1/q

∀u∈�ny. (3.30)

Also for t1,t2 ∈ [0,n] and j ∈ {0,1, . . . , l}, we have

∣∣Fn+ j y
(
t1
)−Fn+ j y

(
t2
)∣∣≤

∫ n+ j

0
hR(s)

∣∣k(t1,s
)− k

(
t2,s
)∣∣ds

≤
(∫∞

0

[
hR(s)

]p
ds
)1/p(∫∞

0

∣∣k(t1,s
)− k

(
t2,s
)∣∣qds

)1/q

,

(3.31)

and so

∣∣�ny
(
t1
)−�ny

(
t1
)∣∣≤

(∫∞
0

[
hR(s)

]p
ds
)1/p(∫∞

0

∣∣k(t1,s
)− k

(
t2,s
)∣∣qds

)1/q

, (3.32)

that is,

∣∣u(t1)−u
(
t2
)∣∣≤

(∫∞
0

[
hR(s)

]p
ds
)1/p(∫∞

0

∣∣k(t1,s
)− k

(
t2,s
)∣∣qds

)1/q

(3.33)

for all u ∈ �ny. Thus {�ny : y ∈Wn} is uniformly bounded and equicontinuous on
[0,n]. The Arzela-Ascoli theorem implies that �n : Wn→ 2En is compact, so (2.10) holds.

Next we show (2.11) is satisfied with γ =Mr. Fix k ∈N and take a subsequence A ⊆
{k,k+ 1, . . .}. Let x ∈ Cn be such that x ∈Wn\Ωn (i.e., R≥ |x|n ≥ r) for some n∈ A. Then
mint∈[a,b] x(t)≥M|x|n ≥Mr = γ, so as a result |x|k =maxt∈[0,k] |x(t)| ≥ γ.

Finally, we show (2.12). Suppose that there exist a w ∈ C[0,∞) and a sequence
{wn}n∈N with yn ∈Wn\Ωn (i.e., R ≥ |wn|n ≥ r) and wn = Fnwn in C[0,n] such that for
every k ∈N, there exists a subsequence S⊆ {k + 1,k + 2, . . .} of N with wn → w in C[0,k]
as n→∞ in S. If we show that

w(t)=
∫∞

0
k(t,s) f

(
s,w(s)

)
ds for t ∈ [0,∞), (3.34)
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then (2.12) holds. To see (3.34), fix t ∈ [0,∞). Consider k ≥ t and n ∈ S (as described
above). Then wn = Fnwn for n∈ S, so

wn(t)−
∫ k

0
k(t,s) f

(
s,wn(s)

)
ds=

∫ n

k
k(t,s) f

(
s,wn(s)

)
ds, (3.35)

and so
∣∣∣∣∣wn(t)−

∫ k

0
k(t,s) f

(
s,wn(s)

)
ds

∣∣∣∣∣≤
∫ n

k
k(t,s)hR(s)ds (3.36)

(here (3.6) guarantees that there exists hR ∈ Lp[0,∞) with | f (s,wn(s))| ≤ hR(s) for a.e.
s∈ [0,∞)). Let n→∞ through S and use the Lebesgue dominated convergence theorem
to obtain

∣∣∣∣∣w(t)−
∫ k

0
K(t,s) f

(
s,w(s)

)
ds

∣∣∣∣∣≤
∫∞
k
k(t,s)hR(s)ds (3.37)

since wn→w in C[0,k]. Finally, let k→∞ (note (3.5)) to obtain

w(t)−
∫∞

0
k(t,s) f

(
s,w(s)

)
ds= 0. (3.38)

Thus (2.12) holds. Our result now follows from Theorem 2.2, that is, there exists a solu-
tion y ∈ C[0,∞) to (3.1). Note in fact that γ ≤ |y|n ≤ R for each n∈N. �
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